
Applied Mathematical Sciences, Vol. 1, 2007, no. 25, 1203 - 1215

An Efficient Algorithm for Graph Bisection

of Triangularizations

Gerold Jäger

Department of Computer Science
Washington University

Campus Box 1045, One Brookings Drive
St. Louis, Missouri 63130-4899, USA

jaegerg@cse.wustl.edu

Abstract

Graph bisection is an elementary problem in graph theory. We con-
sider the best known experimental algorithms and introduce a new al-
gorithm called Longest-Path-Algorithm. Applying this algorithm to the
cluster tree generation of hierarchical matrices, arising for example in
discretizations of partial equations, we show that this algorithm outper-
forms previous algorithms.

Mathematics Subject Classification: 05C85, 68Q25, 68W20

Keywords: Graph bisection, hierarchical matrices, triangularizations

1 Introduction

Let G = (V, E) be an undirected and unweighted graph with |V | = n. Gen-
eralizing the standard definition for odd n we define a bisection as a partition
(X, Y) of V with |X | =

⌈
n
2

⌉
. The bisection width is defined as the minimum

number of edges between X and Y among all possible bisections (X, Y) and
MinBisection is the NP-hard problem of finding a bisection with minimum
bisection width.

Saran and Vazirani [9] developed a polynomial-time algorithm approximating
the bisection width by a factor of n/2 and showed that their algorithm does not
approximate it with a better factor. Feige, Krauthgamer, Nissim [2] improved
the approximation factor to

√
n log n. For some classes we can compute the

bisection width in polynomial time. Papadimitriou, Sideri [8] gave such an
algorithm for grid graphs. Boppana [1] gave an algorithm based on eigenvalue

1204 Gerold Jäger

computation and the ellipsoid algorithm, which is able to compute a lower
bound for the bisection width and equals it for a class of random graphs.

We consider some elementary algorithms, as the Simple-Greedy-Algorithm [7],
the Kernighan-Algorithm [7] and the Randomized-Black-Holes-Algorithm [3].
Although only few complexity results are known about them, they give good
experimental results. In this paper, we introduce a new elementary bisection
algorithm. We show that its complexity is equal or better than the complexity
of the previous algorithms. In experiments with planar graphs it beats the
known algorithms and finds optimal solutions. Our application is the following
problem which is important in many topics, e.g. solving partial differential
equations and integral equations:

Consider high-dimensional matrices, which are dense, but might have a large
rank. As addition, multiplication and inversion of those matrices are expensive,
they are represented as hierarchical matrices (H-matrices). The operations ap-
plied to the hierarchical matrices give the exact results with a small error term,
but with an almost linear complexity. The hierarchical matrices consist of some
blocks of different size each having a small rank. The partition of the hierar-
chical matrices is described by cluster trees and can be viewed as a graph (for
details see [4], [5], [6]). Finding a small bisection width of this graph enables
us to efficiently compute the above operations. We apply the algorithms to
the following typical example. We partition the matrices by triangularization,
with refining at different places: uniform refinement, refinement at one side,
refinement at all sides.

2 Previous Algorithms

For the algorithms we need the following definition:

Definition 1. Let G = (V, E) be a graph and X, Y ⊆ V with X ∩ Y = ∅ and
X ∪ Y = V .

a) For x ∈ X denote with I(x) the inner costs, i.e. the number of edges
(x, z) ∈ E with z ∈ X \ {x}. Analogously we define I(y) for y ∈ Y .

b) For x ∈ X denote with O(x) the outer costs, i.e. the number of edges
(x, z) ∈ E with z ∈ Y . Analogously we define O(y) for y ∈ Y .

c) For x ∈ X, y ∈ Y let ω(x, y) :=

{
1, if (x, y) ∈ E
0, otherwise

.

d) For x ∈ X, y ∈ Y let S(x, y) := O(x)− I(x) + O(y)− I(y)− 2ω(x, y).

Efficient algorithm for graph bisection 1205

2.1 Simple-Greedy-Algorithm

The following elementary algorithm starts with a random bisection and swaps
two vertices of different sides of the bisection obtaining a better bisection, until
there is no improvement by this method. As the inner costs become outer costs
and the outer costs become inner costs by swapping two vertices x, y, we get
an improvement, if and only if S(x, y) > 0.

Algorithm 1. (Simple-Greedy)

Input Graph G = (V, E) with |V | = n.

1 Choose a bisection (X, Y), uniformly at random among all possible bi-
sections.

2 Choose x ∈ X, y ∈ Y with S(x, y) > 0.

3 Swap vertices x and y.

4 Repeat steps 2 and 3, until there are no x ∈ X, y ∈ Y with S(x, y) > 0.

Output Bisection (X, Y)

As the bisection width is smaller than n2, the steps 2 and 3 can be executed at
most n2 times. Since in each execution of step 2 the value S(x, y) is computed
at most n

2
· n

2
times, it follows:

Remark 1. The Simple-Greedy-Algorithm needs O(n4) steps.

2.2 Kernighan-Lin-Algorithm

The following algorithm of Kernighan, Lin [7] is a generalization of the Simple-
Greedy-Algorithm. We do some swaps, even if there is no improvement after
the swaps, but there might be a later improvement.

Algorithm 2. (Kernighan, Lin)

Input Graph G = (V, E) with |V | = n.

1 Choose a bisection (X, Y), uniformly at random among all possible bi-
sections.

2 Copy (X, Y) to (X ′, Y ′).

3 Choose x ∈ X ′, y ∈ Y ′ with maximum S(x, y) (it might be S(x, y) ≤ 0).

4 Swap vertices x and y.

1206 Gerold Jäger

5 X ′ := X ′ \ {y}, Y ′ := Y ′ \ {x}.

6 Repeat steps 3 to 5, until X ′ := ∅, Y ′ := ∅.

7 Choose the bisection (X, Y) as the bisection with minimum bisection
width among all bisections received after step 4.

8 Repeat steps 2 to 7, until we cannot get any improvement by these steps.

Output Bisection (X, Y)

Instead of one execution of the steps 2 and 3 in the Simple-Greedy-Algorithm,
we execute n

2
times the steps 3 to 5 of the Kernighan-Lin-Algorithm. So we

obtain:

Remark 2. The Kernighan-Lin-Algorithm needs O(n5) steps.

2.3 Randomized-Black-Holes-Algorithm

The following algorithm of Ferencz et al. [3] starts with two empty sets X, Y ,
called the black holes, and alternately adds to both sets one vertex, until we
have a bisection.

Algorithm 3. (Randomized-Black-Holes)

Input Graph G = (V, E) with |V | = n.

1 X := ∅, Y := ∅.

2 Choose uniformly at random an edge between V \{X∪Y } and X and add
the corresponding vertex in V \ {X ∪ Y } to X. If there is no such edge,
choose uniformly at random a vertex among all vertices in V \ {X ∪ Y }
and add it to X.

3 Do step 2 for Y .

4 Repeat steps 2 and 3, until (X, Y) is a bisection.

Output Bisection (X, Y)

Since in each execution of step 2 or 3 we have to test at most n2 edges and the
steps 2 or 3 are executed n times, it follows:

Remark 3. The Randomized-Black-Holes-Algorithm needs O(n3) steps.

Efficient algorithm for graph bisection 1207

3 Longest-Path-Algorithm

For planar graphs, it is reasonable to partition the vertices into two classes,
which are separated by only one line. We should get such a separation, if we
start from two vertices with large distance.
So we choose one arbitrary vertex z. By repeatedly determining the neighbor-
hoods of z, we find another vertex x, as far as possible from z. After repeating
this process with x, we obtain y. We start with {x} and {y} and iteratively
add the neighborhoods to the previous sets, until we have a bisection.

Algorithm 4. (Longest-Path)

Input Graph G = (V, E) with |V | = n.

1 Choose uniformly at random a vertex z.

2 Z := {z}.

3 List all neighbors of vertices from Z and add it to Z.

4 Repeat step 3, until Z = V .

5 Choose one of the vertices, added in the last execution of step 3, and
denote it with x.

6 Repeat steps 2 to 5 with x instead of z. The resulting vertex is denoted
with y.

7 X := {x}, Y := {y}.

8 List all neighbors of vertices from X and add each neighbor to X, except
for |X | ≥

⌈
n
2

⌉
.

9 Repeat step 8, if |X | <
⌈

n
2

⌉
.

10 List all neighbors of vertices from Y and add each neighbor to Y , except
for |Y | ≥

⌊
n
2

⌋
.

11 Repeat step 10, if |Y | <
⌊

n
2

⌋
.

12 Add the remaining vertices in an arbitrary way, so that |X | =
⌈

n
2

⌉
and

|Y | =
⌊

n
2

⌋
.

Output Bisection (X, Y)

1208 Gerold Jäger

As in the steps 3,8 and 10 for every added vertex we have to test at most
n2 edges, we obtain the same complexity as for the Randomized-Black-Holes-
Algorithm:

Remark 4. The Longest-Path-Algorithm needs O(n3) steps.

As the Simple-Greedy-Algorithm should reduce the length of the line separat-
ing the two sides of the bisection, we execute this algorithm after the Longest-
Path-Algorithm. In this case, for the Simple-Greedy-Algorithm it is sufficient
to test only the vertices, which have at least one neighbor at the other side of
the bisection.

4 Experimental Results

We have tested the Simple-Greedy-Algorithm (SG), the Kernighan-Lin-Algorithm
(KL), the Randomized-Black-Holes-Algorithm (RBH), the Longest-Path-Algo-
rithm (LP) and the Longest-Path-Algorithm followed by the Simple-Greedy-
Algorithm (LP+ SG) for the examples described in the introduction. We
compare their bisection widths with the optimal ones and additionally com-
pare their execution times. Finally we graphically present one typical example
of all three graph classes. We color all areas at the one side of the bisection with
red and all areas at the other side of the bisection with green. Areas between
the sides of the bisection are not colored. For the Longest-Path-Algorithm, we
additionally show, where are the starting vertices x and y. In the tables let n
be the number of vertices and m the number of edges of the graph.

4.1 Uniform refinement

From the structure of the graph, the optimal bisection width of step k of
refinement can easily be shown to be 2k+1 + 1.

The Kernighan-Lin-Algorithm and the Randomized-Black-Holes-Algorithm pro-
duce better results than the Simple-Greedy-Algorithm. Although they need
much more execution time, they give considerably worse results than the two
versions of the Longest-Path-Algorithm. The Simple-Greedy-Algorithm af-
ter the Longest-Path-Algorithm leads only to a small improvement. With the
Longest-Path-Algorithm followed by the Simple-Greedy-Algorithm, we find an
optimal solution or a solution, only larger by 1, in comparison to the optimal
one.

Efficient algorithm for graph bisection 1209

4.2 Refinement at one side

For these graphs, the optimal bisection width of step k of refinement is 2k +3.
The Longest-Path-Algorithm followed by the Simple-Greedy-Algorithm finds
an optimal solution in all cases. The other results are similar to the case of
uniform refinement.

4.3 Refinement at all sides

As there is no trivial formula for the optimal bisection width, we calculate it
separately for every step of refinement.
The Simple-Greedy-Algorithm after the Longest-Path-Algorithm gives a much
smaller bisection width. Except for step k = 7 of refinement, we find an optimal
or almost optimal solution. The case k = 7 gives such a bad result, as there
are two green areas in the red area, and so there is not only one line separating
the two areas. For regular structures like rectangular grid graphs or the graph
of uniform refinement of section 4.1 this case cannot appear.

5 Conclusions

In most cases the Longest-Path-Algorithm followed by the Simple-Greedy-
Algorithm finds bisections with minimum bisection width. These bisection
widths are considerably smaller than those that can be obtained from previous
algorithms. The execution times as well as the complexity of the algorithm is
better or equal to previous algorithms.

Acknowledgement

I would like to thank Wolfgang Hackbusch and Anand Srivastav for introduc-
ing me to the partitioning problem of hierarchical matrices as well as for the
idea of the Longest-Path-Algorithm and Lars Grasedyck for some hints for
implementing and graphically presenting the graphs.
The research was funded in part by the United States National Science Foun-
dation grant IIS-053525.

References

[1] R.B. Boppana, Eigenvalues and Graph Bisection: An Average-Case Anal-
ysis, IEEE Symposium on Foundations of Computer Science (FOCS)
(1987), 280-285.

1210 Gerold Jäger

[2] U. Feige, R. Krauthgamer and K. Nissim, Approximating the Mini-
mum Bisection Size, Annual ACM Symposium on Theory of Computing
(STOC) (2000), 530-536.

[3] A. Ferencz, R. Szewczyk, J. Weinstein and J. Wilkening, Graph Bisection,
Final Report, University of California at Berkeley (1999).

[4] L. Grasedyck, Theorie und Anwendungen Hierarchischer Matrizen, Ph.
D. Thesis, University of Kiel (2001).

[5] W. Hackbusch, A Sparse Matrix Arithmetic Based on H-Matrices. Part
I: Introduction to H-Matrices, Computing, 62(2) (1999), 89-108.

[6] W. Hackbusch and B.N. Khoromskij, A Sparse H Arithmetic. Part II:
Application to Multi-Dimensional Problems, Computing, 64 (2000), 21-
47.

[7] B.W. Kernighan and S. Lin, An Efficient Heuristic Procedure for Parti-
tioning Graphs, The Bell System Technical Journal, 49(2) (1970), 291-307.

[8] C.H. Papadimitriou and M. Sideri, The Bisection Width of Grid Graphs,
Mathematical Systems Theory, 29 (1996), 97-110.

[9] H. Saran and V.V. Vazirani, Finding k Cuts within Twice the Optimal,
SIAM J. Comput., 24(1) (1995), 101-108.

Received: October 19, 2006

Efficient algorithm for graph bisection 1211

SG KL RBH LP LP+SG OPT
n = 9 Bisection width 5 5 7 6 5 5

m = 16 Execution time 00:00:00 00:00:00 00:00:00 00:00:00 00:00:00 −
n = 25 Bisection width 12 9 9 9 9 9
m = 56 Execution time 00:00:00 00:00:00 00:00:00 00:00:00 00:00:00 −
n = 81 Bisection width 55 37 31 20 18 17

m = 208 Execution time 00:00:00 00:00:02 00:00:01 00:00:00 00:00:00 −
n = 289 Bisection width 98 88 69 35 33 33
m = 800 Execution time 00:00:00 00:02:33 00:00:37 00:00:00 00:00:00 −
n = 1089 Bisection width 442 207 105 69 66 65
m = 3136 Execution time 00:00:05 05:44:04 00:33:46 00:00:02 00:00:06 −
n = 4225 Bisection width 1890 1501 261 131 129 129

m = 12416 Execution time 00:01:23 240:27:19 33:20:59 00:00:32 00:01:35 −
n = 16641 Bisection width 7750 265 258 257
m = 49408 Execution time 00:22:53 00:08:35 00:25:11 −

Table 1: Triangularization graphs with uniform refinement

SG-Algorithm KL-Algorithm RBH-Algorithm

y →

LP-Algorithm

← x

LP+SG-Algorithm/
Optimal Solution

Figure 1: Example for uniform refinement: n = 289, m = 800

1212 Gerold Jäger

SG KL RBH LP LP+SG OPT
n = 9 Bisection width 5 5 7 6 5 5

m = 16 Execution time 00:00:00 00:00:00 00:00:00 00:00:00 00:00:00 −
n = 18 Bisection width 7 7 11 7 7 7
m = 39 Execution time 00:00:00 00:00:00 00:00:00 00:00:00 00:00:00 −
n = 35 Bisection width 18 11 9 9 9 9
m = 84 Execution time 00:00:00 00:00:00 00:00:00 00:00:00 00:00:00 −
n = 68 Bisection width 11 11 27 15 11 11

m = 173 Execution time 00:00:00 00:00:03 00:00:00 00:00:00 00:00:00 −
n = 133 Bisection width 33 31 39 17 13 13
m = 350 Execution time 00:00:00 00:00:21 00:00:03 00:00:00 00:00:00 −
n = 262 Bisection width 81 109 69 34 15 15
m = 703 Execution time 00:00:00 00:02:09 00:00:27 00:00:00 00:00:00 −
n = 519 Bisection width 173 149 49 50 17 17

m = 1408 Execution time 00:00:02 00:21:33 00:03:27 00:00:00 00:00:01 −
n = 1032 Bisection width 444 315 152 39 19 19
m = 2817 Execution time 00:00:05 02:50:37 00:27:15 00:00:02 00:00:05 −
n = 2057 Bisection width 546 87 43 21 21
m = 5634 Execution time 00:00:22 03:37:28 00:00:07 00:00:22 −
n = 4106 Bisection width 722 68 23 23

m = 11267 Execution time 00:01:37 00:00:29 00:01:27 −
n = 8203 Bisection width 2409 74 25 25

m = 22532 Execution time 00:06:17 00:01:58 00:05:56 −
n = 16396 Bisection width 5821 76 27 27
m = 45061 Execution time 00:21:49 00:07:54 00:23:08 −

Table 2: Triangularization graphs with refinement at one side

Efficient algorithm for graph bisection 1213

SG-Algorithm KL-Algorithm RBH-Algorithm

LP-Algorithm

← y

← x

LP+SG-Algorithm/
Optimal Solution

Figure 2: Example for refinement at one side: n = 133, m = 350

1214 Gerold Jäger

SG KL RBH LP LP+SG OPT
n = 9 Bisection width 5 5 7 6 5 5

m = 16 Execution time 00:00:00 00:00:00 00:00:00 00:00:00 00:00:00 −
n = 25 Bisection width 12 9 9 9 9 9
m = 56 Execution time 00:00:00 00:00:00 00:00:00 00:00:00 00:00:00 −
n = 73 Bisection width 21 21 31 16 16 15

m = 184 Execution time 00:00:00 00:00:02 00:00:01 00:00:00 00:00:00 −
n = 185 Bisection width 64 59 75 38 19 19
m = 488 Execution time 00:00:00 00:00:44 00:00:09 00:00:00 00:00:00 −
n = 425 Bisection width 134 103 73 64 25 25

m = 1144 Execution time 00:00:01 00:15:58 00:01:58 00:00:00 00:00:01 −
n = 921 Bisection width 238 275 105 118 32 32

m = 2504 Execution time 00:00:04 02:44:46 00:20:07 00:00:01 00:00:04 −
n = 1929 Bisection width 432 224 97 34
m = 5272 Execution time 00:00:22 00:00:07 00:00:20 −
n = 3961 Bisection width 902 418 44 43

m = 10856 Execution time 00:01:28 00:00:27 00:01:23 −
n = 8041 Bisection width 2720 808 47 45

m = 22072 Execution time 00:05:25 00:01:53 00:05:46 −
n = 16217 Bisection width 5026 1580 53 53
m = 44552 Execution time 00:22:24 00:07:45 00:23:29 −

Table 3: Triangularization graphs with refinement at all sides

Efficient algorithm for graph bisection 1215

SG-Algorithm KL-Algorithm RBH-Algorithm

y →

LP-Algorithm

← x

LP+SG-Algorithm
Optimal Solution

Figure 3: Example for refinement at all sides: n = 425, m = 1144

