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Abstract

Computation of eigenvalues of regular Sturm-Liouville problems with
periodic boundary conditions is considered. It is shown through nu-
merical illustrations that both polynomial-based differential quadra-
ture (PDQ) and Fourier expansion-based differential quadrature (FDQ)
methods can be successfully used to accurately predict the first kth
(k = 1, 2, 3, · · ·) eigenvalues of the problem using (at least) 2k mesh
points in the computational domain. The errors in computed solutions
are compared with other published results in the literature for the nu-
merical illustrations considered in this work.
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1 Introduction

Problems in the fields of elasticity and vibration, including applications of the
wave equations of modern physics, fall into a special class of boundary-value
problems known as characteristic-value problems. Certain problems in statics
also reduce to such problems.

In this work, we consider a special type of boundary-value problem called
Sturm-Liouville problem. A general Sturm-Liouville problem consists of the
linear homogeneous second-order differential equation of the form

d

dx

(
p(x)

dy

dx

)
+
(
r(x)λ − q1(x)

)
y = 0. (1)
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This problem can be easily reduced to the so-called Liouville normal form (or
equivalently, the one-dimensional, time independent form of the all-pervading
equation of physics, the Schrödinger equation)

y′ + q(x)y = λy. (2)

Pryce [9] has provided an excellent review of the mathematical backround
of Sturm-Liouville problems and their numerical solution, as well as a detailed
discussion of applications, up to approximately 1993. He provides examples of
Sturm-Liouville problems that have been considered by numerous authors.

Here, we consider the above differential equation with periodic boundary
conditions of the type

y(0) = y(π) , y′(0) = y′(π). (3)

These types of boundary conditions arise in the study of planetary orbits and
other periodic physical phenomena as well as when polar coordinates are used
in partial differential equations solved by the method of seperation of variables.
Problems with these boundary conditions in applications usually satisfy q(0) =
q(π) [7].

In general, it is not possible to obtain the eigenvalues of problem (2) an-
alytically. However, there are various approximate methods as, for example,
finite difference and finite elements methods. Paine et al. [8] considered com-
putation of the eigenvalues of the regular Sturm-Liouville problem (2) with
the boundary conditions

y(0) = y(π) = 0, (4)

by the centered finite difference method with uniform mesh, and showed that
when q is constant, the error in λk has the same asymptotic form as k → ∞ as
the error for general q. They also showed that the accuracy of the estimates
obtained for high eigenvalues could be dramatically improved at negligible
extra cost by using the known error for q = 0 to correct the estimates ob-
tained for general q. Andersen and de Hoog [1] extended the analysis of [8]
to problems with the general seperated boundary conditions. The correction
technique was succesfully used by Andrew [2] for important non-seperated
boundary conditions (periodic boundary conditions given by (3)). Vanden
Berghe et al. [14] used a modified difference scheme for periodic and semi-
periodic Sturm-Liouville problems and presented some numerical examples in
which application of the same correction to the modified difference scheme gave
more accurate results than [2]. Use of the correction technique in conjunction
with the finite element method was studied in [3] for periodic and some other
types of boundary conditions. Yücel [15] used differential quadrature (DQ)
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method to approximate the eigenvalues of problem (2) with boundary condi-
tions (4) and obtained encouraging results when compared to other published
results in the literature.

In this study, the DQ method is applied to obtain approximate eigenval-
ues of the Sturm-Liouville problem with periodic boundary conditions. In the
DQ method, derivatives of a function with respect to a coordinate direction
is expressed as linear weighted sums of all the functional values at all mesh
(grid) points along that direction. The weighting coefficients in that weighting
sum are determined using test functions. Among the many kinds of test func-
tions, the Lagrange interpolation polynomial is widely employed since it has
no limitation on the choice of the grid points. This leads to polynomial-based
differential quadrature (PDQ) which is suitable in most engineering problems.
For problems with periodic behaviours, polynomial approximation may not
be the best choice for the true solution. In contrast, Fourier series expansion
can be the best approximation giving the Fourier expansion-based differen-
tial quadrature (FDQ). The ease for computation of weighting coefficients in
explicit formulations [13] for both cases is based on the analysis of function
approximation and linear vector space.

Here is the outline of the paper. In Section 2 we summarize the DQ method.
Its application to the periodic Sturm-Liouville problems is given in Section 3.
Numerical results and conclusions are presented in Sections 4 and 5, respec-
tively.

2 Differential Quadrature Method

Differential quadrature (DQ) method was presented for the first time by [4] for
solving differential equations. The DQ method uses the basis of the quadrature
method in driving the derivatives of a function. It follows that the partial
derivative of a function with respect to a space variable can be approximated
by a weighted linear combination of function values at some intermediate points
in that variable.

In order to show the mathematical representation of DQ method, we con-
sider a single variable function f(x) on the domain a ≤ x ≤ b; then the nth
order derivative of the function at an intermediate point (grid point) can be
written as:

dnf

dxn

∣∣∣∣
x=xi

=
N∑

j=1

rn
j (xi)f(xj) , i = 1, 2, · · · , N , n = 1, 2, · · · , N − 1, (5)

where N is the number of grid points in the whole domain (a = x1, x2, · · · , xN =
b) and rn

j (xi) are the weighting coefficients of the nth derivative. As it can be
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seen from (5), two important factors control the quality of the approximation
resulting from the application of DQ method. These are the values of weighting
coefficients and the positions of the discrete variables. Once the weighting
coefficients are determined, the bridge to link the derivatives in the governing
differential equation and the functional values at the mesh points is established.
In other words, with the weighting coefficients, one can easily use the functional
values to compute the derivatives. Note that for multidimensional problems
each derivative is approximated in the respective direction similarly.

In order to determine the weighting coefficients in (5), f(x) must be ap-
proximated by some test functions.

2.1 Polynomial-based differential quadrature

When the function f(x) is approximated by a higher order polinomial, Shu
[13] and Shu and Richards [11] presented some explicit formulations to com-
pute the weighting coefficients within the scope of a higher order polynomial
approximation and a linear vector space. It is supposed that the solution of a
one-dimensional differential equation is approximated by a (N − 1)th degree
polynomial

f(x) =
N−1∑
k=0

ckx
k. (6)

If rk(x), k = 1, 2, , · · · , N , are the base polynomials in VN (N -dimensional linear
vector space), then f(x) can be expressed by

f(x) =
N∑

k=1

dkrk(x). (7)

Here, the base polynomials rk(x), k = 1, 2, · · · , N , are chosen as the Lagrange
interpolated polynomials

rk(x) =
M(x)

(x − xk)M (1)(xk)
, (8)

where

M(x) =
N∏

j=1

(x − xj) , M (1)(xk) =
N∏

j=1,j �=k

(xk − xj), (9)

and xi, i = 1, 2, · · · , N , are the coordinates of grid points which may be chosen
arbitrarily. Substituting (7) into (5) and using (8) result in the following
weighting coefficients for the first- and second-order derivatives
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r
(1)
j (xi) =

M (1)(xi)

(xi − xj)M (1)(xj)
, forj �= i , i, j = 1, · · · , N

r
(1)
i (xi) = −

N∑
j=1,i�=j

r
(1)
j (xi), (10)

r
(2)
j (xi) = 2r

(1)
j (xi)

(
r

(1)
i (xi) − 1

(xi − xj)

)
, forj �= i , i, j = 1, · · · , N

r
(2)
i (xi) = −

N∑
j=1,i�=j

r
(2)
j (xi). (11)

It can be seen from the above equations that the weighting coefficients of
the second-order derivative can be completely determined from those of the
first-order derivative.

2.2 Fourier expansion-based differential quadrature

When the function f (x) is approximated by a Fourier series expansion in the
form

f(x) = c0 +
N/2∑
k=1

(
ck cos

kπx

L
+ dk sin

kπx

L

)
, (12)

and Lagrange interpolated trigonometric polynomials are taken as

rk(x) =
sin x−x0

2L
π... sin x−xk−1

2L
π sin x−xk+1

2L
π... sin x−xN

2L
π

sin xk−x0

2L
π... sin xk−xk−1

2L
π sin xk−xk+1

2L
π... sin xk−xN

2L
π

, (13)

the FDQ approach is obtained for f(x) and its first- and second-order deriva-

tives. So, the weighting coefficients r
(n)
j (xi), (n = 1, 2) to be determined by

the FDQ method are given by

r
(1)
j (xi) =

π

2L

P (xi)

sin
(
(xi − xj)

π
2L

)
P (xj)

, forj �= i , i, j = 1, · · · , N

r
(1)
i (xi) = −

N∑
j=1,i�=j

r
(1)
j (xi), (14)

r
(2)
j (xi) = r

(1)
j (xi)

(
2r

(1)
i (xi) − π

L
cot(

xi − xj

2L
π)
)
, forj �= i, i, j = 1, · · · , N

r
(2)
i (xi) = −

N∑
j=1,i�=j

r
(2)
j (xi), (15)
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where L is the length of the interval (physical domain) and

P (xi) =
N∏

j=0,j �=i

sin
xi − xj

2L
π. (16)

2.3 Choice of the grid point distributions

The selection of locations of the sampling points plays a significant role in the
accuracy of the solution of the differential equations. Using equally spaced
points (uniform grid) can be considered to be a convenient and easy selection
method. For a domain specified by a ≤ x ≤ b and discretized by N points,
then the coordinate of any point i can be evaluated by

xi = a +
i − 1

N − 1
(b − a). (17)

Quite frequently, the DQ method delivers more accurate solutions with a
set of unequally spaced points (non-uniform grid). The so-called Chebyshev-
Gauss-Lobatto points, which are first used by [11] and whose advantage has
been discussed by [5], are well accepted in the DQ method as follows:

xi = a +
1

2

(
1 − cos

( i − 1

N − 1
π
))

(b − a), (18)

for a domain a ≤ x ≤ b again.

2.4 Implementation of boundary conditions

Proper implementation of the boundary conditions is also very important for
the accurate numerical solution of differential equations. Dirichlet, Neumann,
mixed and periodic boundary conditions can be approximated by DQ method.
Using the DQ method for solving differential equations, we actually satisfy
the governing equations at each sampling point of the domain, so we have one
equation for each point, for each unknown. To satisfy the boundary condi-
tions, at the boundary points, the boundary condition equations are satisfied
instead of the governing equations. In other words, in the resulting system of
algebraic equations from DQ method, each boundary condition replaces the
corresponding field equation. This procedure is straightforward when there is
one boundary condition at each boundary and when we have distributed the
sampling points so that there is one point at each boundary.
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3 Applications to Sturm-Liouville problems

The DQ method has been applied to solve (2) with the periodic boundary
conditions given by (3). We suppose that the number of grid points is N with
coordinates of grid points given as 0 = x1, x2, · · · , xN = π. By applying the
PDQ or FDQ methods, equation (2) can be discretized as

−
N∑

j=1

r
(2)
j (xi)y(xj) + q(xi)y(xi) = λy(xi) , i = 2, · · · , N − 1, (19)

where r
(2)
j (xi) the weighting coefficients of the second order derivative given by

(11) for PDQ and (15) for FDQ. It is convenient to write (19) in the following
form

−
N∑

j=1

r
(2)
j,i yj + qiyi = λyi , i = 2, · · · , N − 1. (20)

Equation (20) shows an eigenvalue equation system. It involves N − 2 equa-
tions and N unknowns. Two unknows can be eliminated using the boundary
conditions. The implementation of boundary conditions is shown as follows.
From the first equation of (3), the numerical condition can be written as

y(x1) = y1 = yN = y(xN). (21)

Application of the DQ method to discritize the derivatives in the second equa-
tion of (3) gives

N∑
j=1

r
(1)
j,1yj =

N∑
j=1

r
(1)
j,Nyj , (22)

where r
(1)
j,1 and r

(1)
j,N are the weighting coefficiens of the first order derivatives

given by (10) for PDQ and (14) for FDQ. Equation (22) can be rewriten in
the following form

r
(1)
1,1y1 + r

(1)
N,1yN +

N−1∑
j=2

r
(1)
j,1yj = r

(1)
1,Ny1 + r

(1)
N,NyN +

N−1∑
j=2

r
(1)
j,Nyj. (23)

After substituting (21) into (23), we can solve (23) for y1 to obtain

y1 = α
N−1∑
j=2

(
r

(1)
j,N − r

(1)
j,1

)
yj, (24)

where

α =
1(

r
(1)
1,1y1 + r

(1)
N,1yN

)
−
(
r

(1)
1,Ny1 + r

(1)
N,NyN

) . (25)
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Now, using (21) and (24) in (20) leads to the following (N − 2) × (N − 2)
eigenvalue equation system

Ay = λy. (26)

Here, the elements of matrix A are completely determined from the weighting
coefficients of first and second order derivatives given explicitly in the previous
section.

From equation (26), the λ values can be obtained from the eigenvalues of
matrix. This can be done by using various methods. Here, we use a FORTRAN
IMSL Routine called DEVLRG. Routine DEVLRG computes the eigenvalues
of a real matrix. The matrix is first balanced. Elementary or Gauss similarity
transformations with partial pivoting are used to reduce this balanced matrix
to a real upper Hessenberg matrix. A hybrid double-shifted LR-QR algorithm
is used to compute the eigenvalues of the Hessenberg matrix. Computed eigen-
values is sorted out by routine DSVRGN. This routine sorts the elements of
an array into ascending order by algebraic value.

4 Numerical illustrations

To demonstrate the efficiency and accuracy of the DQ method, the sample
problem, i.e. equation (2) with q(x) = 0 and boundary conditions given by
(3), which has exact eigenvalues, namely λk = 4k2 , k = 1, 2, 3, · · ·, is first
choosen for study. Both the PDQ and FDQ methods with the grid points
distribution given by (18) are applied. The performance of the DQ approach
is measured by the relative error εk which is defined as

εk =

∣∣∣∣∣λk − λDQ
k

λk

∣∣∣∣∣ , k = 1, 2, 3, · · · , (27)

where λDQ
k indicates kth algebraic eigenvalues obtained by DQ method.

Table 1 lists the relative errors of the DQ results with different number
of mesh points N . Note that even if we are only interested in non-negative
eigenvalues, the routine that we use here gives all of the eigenvalues of the
problem. In this sample problem, it can be seen that the algebraic multiplicity
of the eigenvalues is 2. So, the errors are listed for λ1 = 4, λ2 = 4, λ3 = 16, λ4 =
16, · · · and so on. It can be observed from Table 1 that in order to have good
approximations to the first kth eigenvalues, at least 2k grid points have to be
used. It is also observed that the accuracy of the computed eigenvalues by
the FDQ method is better than the PDQ approach. This is especially true for
the higher eigenvalues. In both methods, the computed values for the lower
eigenvalues have a better accuracy than those for the higher eigenvalues. As
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the number of grid points further increased to above 2k, the accuracy of the
DQ results especially for the higher eigenvalues can be further improved.

Table 1: Relative errors of the DQ results with q(x) = 0 for several values of
the number of grid points N

k εk (N = 21) εk (N = 31) εk (N = 41)
PDQ FDQ PDQ FDQ PDQ FDQ

1 .266E − 14 .289E − 14 .175E − 13 .389E − 14 .222E − 14 .733E − 14
2 .266E − 14 .888E − 15 .129E − 13 .999E − 14 .404E − 13 .733E − 14
3 .213E − 10 .133E − 14 .122E − 14 .400E − 14 .355E − 14 .266E − 14
4 .450E − 09 .888E − 15 .133E − 14 .355E − 14 .113E − 13 .266E − 14
5 .818E − 06 .197E − 15 .987E − 15 .138E − 14 .138E − 14 .592E − 15
6 .357E − 07 .197E − 15 .369E − 13 .237E − 14 .493E − 14 .592E − 15
7 .189E − 05 .155E − 14 .121E − 09 .111E − 14 .155E − 14 .444E − 15
8 .105E − 03 .222E − 15 .365E − 11 .133E − 14 .733E − 14 .111E − 14
9 .386E − 02 .568E − 15 .129E − 08 .156E − 14 .118E − 13 .426E − 15

10 .100E − 02 .000E + 00 .461E − 07 .213E − 14 .711E − 15 .256E − 14
11 .117E − 01 .420E − 02 .425E − 05 .395E − 15 .272E − 12 .987E − 15
12 .326E − 01 .132E − 01 .115E − 06 .395E − 15 .124E − 10 .276E − 14
13 .492E − 01 .730E − 02 .272E − 05 .435E − 15 .257E − 08 .145E − 15
14 .263E + 00 .198E + 00 .130E − 03 .870E − 15 .531E − 10 .261E − 14
15 .488E + 00 .397E + 00 .259E − 02 .130E − 04 .380E − 08 .777E − 15
16 .119E + 01 .109E + 01 .711E − 03 .308E − 04 .200E − 06 .289E − 14
17 .192E + 01 .197E + 01 .665E − 02 .169E − 02 .706E − 05 .105E − 14
18 .855E + 01 .816E + 01 .154E − 01 .497E − 02 .151E − 06 .105E − 14
19 .100E + 01 .100E + 01 .445E − 01 .281E − 02 .540E − 05 .568E − 15
20 .100E + 01 .100E + 01 .103E + 00 .660E − 01 .118E − 03 .114E − 14

In order to facilitate comparision with the results of [2,6], we also choose
the same functions q(x) for our numerical examples, i.e. q(x) = 10 cos(2x) and
q(x) = x2(π − x) .

In Table 2, we compare the errors in computed solutions of the present
work for q(x) = 10 cos(2x) with the corrected Λ̃

(n)
k non-negative eigenvalues

of Andrew [2]. From left to right the columns of Table 2 show, for various
k, the exact eigenvalue, the errors in the corrected estimates with n = 40, 80,
the errors in the PDQ and FDQ calculations with N = 41, respectively. Note
that equation (18) has been used for the grid point distributions in the DQ
calculations. It can be observed from the table that the PDQ method used in
this work to obtain the approximate non-negative eigenvalues of the periodic
Sturm-Liouville problem produced very accurate results when compared to the
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corrected results of Andrew [2] for n = 40 . This is true even for n = 80 case,
except for the last couple of eigenvalues shown in the table. It can be also
observed from the table that the FDQ method produce more accurate results
than the PDQ method.

Table 2: Comparison of errors in computed solutions for q(x) = 10 cos(2x)

k λk λk − Λ̃
(40)
k λk − Λ̃

(80)
k λk − λ

PDQ(41)
k λk − λ

FDQ(41)
k

2 2.09946 0.0175 0.0044 −0.0000004 −0.0000004
3 7.44911 0.0235 0.0058 0.0000003 0.0000003
4 16.64822 0.0169 0.0041 0.0000001 0.0000001
5 17.09658 0.0048 0.0011 −0.0000017 −0.0000017
6 36.35887 0.0134 0.0031 0.0000032 0.0000032
7 36.36090 0.0131 0.0031 0.0000000 0.0000000
8 64.19884 0.0145 0.0033 0.0000005 0.0000005

10 100.12637 0.0158 0.0034 0.0000008 0.0000008
12 144.08745 0.0175 0.0034 0.0000027 0.0000027
14 196.06412 0.0197 0.0036 0.0000209 0.0000039
16 256.04903 0.0225 0.0037 0.0000093 0.0000044
18 324.03870 0.0263 0.0038 0.0069764 0.0000016
20 400.03133 0.0313 0.0040 −0.0084761 0.0005062

In Table 3, we compare the errors in computed solutions of the present
work for q(x) = x2(π − x) with the corrected eigenvalues of Andrew [2] and
Condon [6]. From left to right the columns of Table 3 show, for various k, the
exact eigenvalue, the errors in the corrected finite difference estimate of [2] with
n = 40 and the errors in the corrected estimates of [6] with n = 40. Similarly,
the next two colums show the errors in the corrected estimates of [2] and [6]
with n = 80, respectively. The last column of Table 3 shows the errors in the
FDQ calculations for N = 40. Here, we can also see that the FDQ method
accurately predicts the eigenvalues of the periodic Sturm-Liouville problem.
And, the errors in computed solutions for this approach is much smaller than
the other errors listed in the table obtained using correction techniques in
conjunction with finite differences [2,6].

5 Conclusions

The PDQ and FDQ methods have been applied to compute the eigenvalues of
periodic Sturm-Liouville problems. Through test examples, it was found that
in order to obtain accurate numerical results for the first kth (k = 1, 2, · · ·)
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Table 3: Comparison of errors in computed solutions for q(x) = x2(π − x)

k λk Λ̃(40)
k − λk Γ̃(40)

k − λk Λ̃(80)
k − λk Γ̃(80)

k − λk λ
FDQ(40)
k − λk

1 − 0.0040215 −0.0017898 0.0010033 −0.0004477 −
2 6.5005 0.0035214 −0.0015784 0.0008756 −0.0003975 −0.0000093
3 7.0151 0.0001520 0.0000792 0.0000389 0.0000206 −0.0000431
4 18.5848 0.0035783 −0.0023903 0.0008826 −0.0006079 −0.0000278
5 18.6655 0.0006379 0.0006105 0.0001615 0.0001547 −0.0000185
6 38.5816 0.0038340 −0.0023911 0.0009330 −0.0006215 0.0000279
7 38.6215 0.0006269 0.0006023 0.0001613 0.0001551 0.0000425
8 66.5821 0.0040092 −0.0023175 0.0009563 −0.0006233 −0.0000521
9 66.6054 0.0006047 0.0005879 0.0001593 0.0001550 −0.0000352

10 102.5825 0.0041890 −0.0021885 0.0009728 −0.0006192 0.0000262
11 102.5977 0.0005762 0.0005649 0.0001572 0.0001541 0.0000205
12 146.5829 0.0044024 −0.0020046 0.0009874 −0.0006116 −0.0000344
13 146.5935 0.0005407 0.0005333 0.0001557 0.0001528 0.0000230
14 198.5831 0.0046700 −0.0017563 0.0010023 −0.0006010 −0.0000017
15 198.5910 0.0004960 0.0004916 0.0001525 0.0001509 −0.0000240
16 258.5833 0.0050144 −0.0014259 0.0010185 −0.0005876 −0.0000393
17 258.5893 0.0004394 0.0004373 0.0001498 0.0001485 0.0000162
18 326.5834 0.0054656 −0.0009854 0.0010365 −0.0005716 −0.0000225
19 326.5882 0.0003670 0.0003665 0.0001467 0.0001456 −0.0000248
20 402.5835 0.0060690 −0.0003908 0.0010571 −0.0005525 −0.0000434

eigenvalues of the problem, the minimum number of grid points N used in the
DQ calculations must be equal to 2k. In addition, we found that Chebyshev-
Gauss-Lobatto grid point distribution is suitable for both PDQ and FDQ ap-
proaches in the accurate computation of eigenvalues.

Comparison of errors in computed solutions showed that the DQ method
has the capability of producing highly accurate results using considerably small
number of grid points in the computational domain with minimal computa-
tional effort even if it produces dense, non-symmetric matrices. We can also
conclude that the FDQ approach is very suitable for the periodic problems
discussed here. The DQ method can be also applied for computing approx-
imate eigenvalues of Sturm-Liouville problems with the Dirichlet, Neumann
and mixed types of boundary conditions.

References

[1] R.S. Andersen and F. R. de Hoog, On the correction of finite differ-



1228 Uğur Yücel
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