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Abstract
In this paper, we give some properties of α-convex functions and we

characterize this class of functions via some weakly α-monotone bifunc-
tions.
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1 Introduction

It is very natural in nonsmooth analysis to characterize generalized convex
functions in terms of generalized directional derivatives. Recently, several con-
tributions related to this question have been made. Let us just mention Kom-
losi in [6], Sach and Penot in [5].
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The main purpose of this note is to give an analogous characterization involv-
ing α-convex functions.
The paper is organized as follows: we recall first the definition of this class
of functions (see Avriel in [1]) and we give some properties of regularity of
such functions. Finally, we characterize α-convex functions via a new family
of monotone bifunctions called class of weakly α-monotone bifunctions.

2 α-convex functions

Let X be a convex set of Rn and f be a function acting from X into R.

• f is said to be convex if for all u, v ∈ X and λ ∈ [0, 1] one has:

f(λu + (1 − λ)v) ≤ λf(u) + (1 − λ)f(v).

• f is said to be concave if −f is convex.

• f is said to be quasiconvex if for all u, v ∈ X and λ ∈ [0, 1] one has:

f(λu + (1 − λ)v) ≤ max{ f(u), f(v) }.

We define α-convex functions as follows:

Definition 2.1 let f be a function acting from X into R and α be a real
number.
If α = 0, then f is said to be α-convex if f is convex.
If α �= 0, then f is said to be α-convex if αe−αf is concave.

In order to give a link between the class of α-convex functions and those of
quasiconvex functions, we need to use a powerful tool like the convexity index
of a function, which is defined in [3] by the following way:

Definition 2.2 Given a nonempty convex subset X of Rn and a real valued
function f on X. Set rλ,f(x) = e−λf(x) for x ∈ X and λ ∈ R. Then the
convexity index c(f) of f is defined as follows: if there exists μ < 0 such that
rμ,f is not convex, then

c(f) = sup{ λ : λ < 0, rλ,f is convex}.

Otherwise,

c(f) = sup{ λ : λ ≥ 0, rλ,f is concave}.
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We can easily see that f is α-convex if and only if c(f) − α is non negative.
Assume now that X is an open convex subset of Rn. Consider the bifunction
fα, with α ∈ R∗, defined on X×]0, +∞[ by:

fα(x, u) = f(x) + α−1 ln(u).

Then we have the following result:

Proposition 2.3 Let f be a non constant function acting from X into R and
α ∈ R∗ . Then the following assertions are equivalent:

i) f is α-convex.
ii) fα is quasiconvex.

Proof. By ([3], theorem 5), fα is quasi convex iff c(f)−α is non negative. On
the other hand, c(f)−α is non negative is equivalent to say that f is α-convex.
Therefore, (i) is equivalent to (ii). Thus, we achieve the proof.

Proposition 2.4 Let f be a function acting from X into R and α be a real
number. Assume that f is a α-convex function . Then, f is locally Lips-
chitzian.

Proof. By the definition of c(f), we can easily see that there exists β > 0
such that the function h ≡ eβf is convex. Therefore, h is locally lipschitzian.
Consequently, f is continuous. Let x̄ ∈ X. Then, there are k > 0 and λ > 0
such that for all x, y ∈ B̄(x̄, λ)

|h(x) − h(y)| ≤ k‖x − y‖.
By the continuity of f , we deduce that f is bounded. This implies that there
is a > 0 such that a ≤ eβf(x) for all x close to x̄. Hence,

|f(x) − f(y)| ≤ k

a
β−1‖x − y‖.

Thus, we achieve the proof.
Let us recall that the directional derivative of every function f is defined, when
it exists for x ∈ X and v ∈ Rn by:

f ′(x, v) = lim
t→0+

f(x + tv) − f(x)

t
.

While the Clarke directional derivative is defined for x ∈ X and v ∈ Rn by:

f 0(x, v) = lim sup
t→0+,y→x

f(y + tv) − f(y)

t
.

Next, we prove that every α-convex function is regular in the following sense:
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Definition 2.5 A function f is said to be regular at x if :

i) f ′(x, v) exists for all v ∈ Rn.
ii) f ′(x, v) = f 0(x, v) for all v ∈ Rn.

Recall that f is regular on X if it is regular at every x in X.

Proposition 2.6 Let f be a function acting from X into R. Assume that f
is α-convex. Then f is regular.

Proof. By the definition of c(f), there is β such that the function h ≡ eβf is
convex.
Let x̄ ∈ X, v ∈ Rn and λ > 0. We have

f(x̄ + λv) − f(x̄)

λ
= β−1 ln(h(x̄ + λv)) − ln(h(x̄))

λ
.

Therefore,
f(x̄ + λv) − f(x̄)

λ
= (λβ)−1(ln(1 + u(λ))

where,

u(λ) =
h(x̄ + λv) − h(x̄)

h(x̄)
.

By the continuity of h, we deduce

lim
λ→0+

f(x̄ + λv) − f(x̄)

λ
=

h′(x̄, v)

βh(x̄)
.

Thus,

f ′(x̄, v) =
h′(x̄, v)

βh(x̄)
. (1.1)

Let us now show that f ′(x̄, v) = f 0(x̄, v).
Since h is convex, then h is regular at x̄. By the definition of Clarke directional
derivative, there are sequences tn ↓ 0+ and yn → x̄ such that

lim sup
t→0+,y→x̄

f(y + tv) − f(y)

t
= lim

n

f(yn + tnv) − f(yn)

tn
.

On the other hand,

f 0(x̄, v) = β−1 lim sup
t→0+,y→x̄

t−1 ln(1 + u(t, y)),

where u(t, y) = h(y+tv)−h(y)
h(y)

. Therefore, since u(tn, yn) → 0 and ln(1 + s) ≤ s

for s small enough, then f 0(x̄, v) ≤ β−1 h0(x̄,v)
h(x̄)

= β−1 h′(x̄,v)
h(x̄)

= f ′(x̄, v). Hence,

f ′(x, v) = f 0(x, v). Thus, we achieve the proof.
Next, we show that the class of α-convex functions is stable under positive
scalar multiplication and summation under certain conditions.
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Proposition 2.7 Let f be a function acting from X into R, λ ∈ R∗
+, k ∈ R,

α ∈ R. Assume that f is α-convex. Then the function h ≡ λf + k is (αλ−1)-
convex.

Proof. Without loss of generality, we can assume that α �= 0. Since f is α-
convex, then the function g ≡ αe−αf is concave. Therefore, gλ ≡ (λ−1α)e−αλ−1(λf)

is also concave. Consequently, h is (αλ−1)-convex.

Definition 2.8 Assume that X and Y are non-empty open convex subsets
of Rn and Rp respectively, f and g are real-valued functions on X and Y
respectively. we define the direct sum f

⊕
g to be the function s acting from

X × Y into R and defined by s(x, y) = f(x) + g(y).

Theorem 2.9 Let X and Y be non-empty open convex subsets of Rn and
Rp respectively, f and g be non constant real-valued functions on X and Y
respectively. Let α1, α2 > 0. Assume that f and g are respectively α1 and
α2-convex. Then (f

⊕
g) is r-convex with r = (α1

−1 + α2
−1)

−1
.

Proof. Since c(f)+ c(g) ≥ 0 and f , g are non constant, then by ([3], theorem
5), f

⊕
g is quasiconvex. Consequently, using ([3], theorem 9), we deduce

1
c(f

⊕
g)

= 1
c(f)

+ 1
c(g)

. On the other hand, f is α1-convex and g is α2-convex.

Hence, by ([3], theorem 8), it follows that (f
⊕

g)r is quasiconvex. Therefore,
f

⊕
g is r-convex. Thus, we achieve the proof.

3 α-monotone and weakly α-monotone bifunc-

tions

Let X be a subset of Rn and let F be a bifunction acting from X × Rn into
R. F is said to be monotone if for any x, y ∈ X one has

F (x, y − x) − F (y, y − x) ≤ 0.

F is said to be quasimonotone if for any x, y ∈ X one has

F (x, y − x) > 0 ⇒ F (y, y − x) ≥ 0.

F is said to be pseudomonotone if for any x, y ∈ X one has

F (x, y − x) > 0 =⇒ F (y, y − x) > 0.

Recall that M =⇒ PM =⇒ QM.
In this section, we introduce a new class of monotone bifunctions called class



1246 S. Lahrech, A. Jaddar, A. Ouahab and A. Mbarki

of weakly α-monotone bifunctions and we characterize α-convex functions via
this new kind of monotone bifunctions.
Let F be a bifunction acting from X × Rn into R, α be a real number such
that α �= 0. By definition, Fα is the function acting from X×]0, +∞[×Rn ×R
into R and defined by: F α(x, t, v, u) = F (x, v) + u

αt
.

Definition 3.1 Let F be a bifunction acting from X × Rn into R. F is
said to be anti-quasimonotone if the following implication holds:
F (x, x − y) ≥ 0 ⇒ F (y, x− y) ≥ 0. That is −F is quasimonotone.

Definition 3.2 Let F be a bifunction acting from X × Rn into R. F is
said to be α-monotone if ∀x, y ∈ X F (x, y − x) − F (y, y − x) ≥ α.

Definition 3.3 Let F be a bifunction acting from X×Rn into R. F is said
to be weakly α-monotone if F α is anti-quasimonotone as a function acting from
(X × Rn) × Rn+1 into R.

We have the following results which are immediate consequences of definitions
11 and 12.

Proposition 3.4 If F is s-monotone and s ≥ r, then F is r-monotone.

Proposition 3.5 Let F be a bifunction acting from X × Rn into R. Assume
that F is α-monotone. Then F is weakly α-monotone.

4 Characterization of α-convex functions via

weakly α-monotone bifunctions

Let X be an open convex subset of Rn and α ∈ R∗, f be a function acting
from X into R. Recall that the upper and lower Dini directional derivatives
are respectively defined by :

fD+(x, v) = lim sup
t→0+

f(x + tv) − f(x)

t
,

fD−(x, v) = lim inf
t→0+

f(x + tv) − f(x)−
t

.

Analogously, the upper and lower Hadamard directional derivatives are respec-
tively defined by :

fH+(x, v) = lim sup
t→0+,u→v

f(x + tu) − f(x)

t
.



Characterization of α-convex functions 1247

fH−(x, v) = lim inf
t→0+,u→v

f(x + tu) − f(x)

t
.

The class of α-convex functions are characterized via weakly α-monotone bi-
functions as follows:

Theorem 4.1 Let f be a continuous function acting from X into R, α ∈
R∗. Then we have the following implications:

a) f is α-convex ⇒ fD− is weakly α-monotone.
b) fH− is weakly α-monotone ⇒ f is α-convex.

Proof. a) Suppose that f is α-convex. First let us remark that (fα)D− =
(fD−)α. Since f is α-convex, then by proposition 3, fα is quasiconvex. Con-
sequently, applying theorem 2.1 of [5], we deduce that (fα)D+ is quasimono-
tone. Therefore, (fα)D− is anti-quasimonotone. On the other hand, (fα)D− =
(fD−)α. Hence, fD− is weakly α-monotone.
b) Assume now that fH− is weakly α-monotone. Then, (fH−)α is anti-
quasimonotone. On the other hand, (fH−)α = (fα)H−. Consequently, (fα)H+

is quasimonotone. Therefore, by ([5], theorem 2.1), we deduce that fα is qua-
siconvex. Hence, by proposition 3, f is α-convex. Thus, we achieve the proof.

Corollary 4.2 Let f be a continuous function acting from X into R, α ∈
R∗. Assume that fH− is α-monotone. That is ∀x, y ∈ X fH−(x, y − x) −
fH−(y, y − x) ≥ α. Then f is α-convex.

Proof. Using proposition 14 and (theorem 15, b)), we deduce the result.

References

[1] M. Avriel, r-convex functions, Math. Program., Vol.2, (1972), 309–323.

[2] D. Aussel, théoreme de la valeur moyenne et convexité géneralisée en
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