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Abstract 

 
The flow separation (trapping) at the wall through peristaltic motion for non-

Newtonian power-law fluid in uniform tube has been investigated under zero 
Reynolds number with long wavelength approximation. A condition frequently used 
to predict separation in boundary layer theory is to set the vorticity equal to zero on 
the boundary. We solve the problem numerically to get flow separation points on the 
wall surface. It has been noted that, the trapping region decreases with increasing 
volume flow rate but it increases with increasing power-law index n. Furthermore, the 
shearing extra stress increases with increasing volume flow rate. Also, it increases 
with n at certain values of volume flow rate and amplitude ratio but it decreases with 
increasing n at another certain values of volume flow rate and amplitude ratio.  
Moreover, the friction force at flow separation points declares reflux phenomena in 
contraction region. We discuss behaviour of the vertical velocity, the shearing extra 
stress, the pressure rise and the friction force at flow separation points for the physical 
parameters of interest. 
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I.  Introduction 

When a progressive wave-resulting from area contraction and relaxation of an 
extensible tube propagates along the length of the tube, a fluid contained in the tube is 
mixed and transported in the direction of the wave propagation as if it were squeezed 
out by the moving wall. This phenomenon, called Peristalsis, is an inherent property  
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of any tubular organ of the human body such as the ureter, the gastro-intestinal tract, 
or the small blood vessels.  

The mechanics of peristalsis has been examined by a number of investigators. 
Latham [15] was probably the first to investigate the mechanism of peristalsis in 
relation to mechanical pumping. Lew et al [9] observed that Reynolds number in the 
small intestine was very small. Shukla et al. [10] have investigated the effects of 
peripheral-layer viscosity on peristaltic transport of a bio-fluid in uniform tube and 
have used the long wavelength approximation as in Shapiro et al  [3]. Shapiro et al  
[3] investigated the fluid mechanics of peristaltic pumping in connection with the 
function of systems such as the ureter, the gastro-intestinal tract, the small blood 
vessels, and other glandular ducts. They found that there was two physiologically 
significant phenomena called reflux and trapping in peristaltic flow. Yin and Fung [8] 
have investigated peristaltic waves in circular cylindrical tubes using a perturbation 
method. Srivastava and Srivastava [11] have investigated the effects of power law 
fluid in uniform and non-uniform tube under zero Reynolds number and long 
wavelength approximations. Pozrikidis [6] has investigated a study of peristaltic flow 
under the assumption of creeping motion and used the boundary integral method for 
Stokes flow. Takabatake and Ayukawa [13] presented finite-difference solutions for 
two-dimensional peristaltic flows. The influences of the magnitudes of wave 
amplitude, wavelength and Reynolds number on the flow are investigated through 
numerical calculations, and the results are compared with those of the perturbation 
analysis. Takabatake et al [14] solved the problem of peristaltic pumping in an 
axisymmetric tube by generalizing the numerical method of Takabatake and Ayukawa 
[13] to the axisymmetric case. Also, they have studied the trapping and reflux 
phenomena at the centerline.  El Shehawey and Mekheimer  [7] have investigated the 
effects of couple-stresses in peristaltic transport of fluid and have used a perturbation 
method as in Fung and Yih [16]. Siddiqui and Schwarz [4] have investigated 
peristaltic flow of a second-order fluid in tube and studied the flow separation at the 
centerline (centerline trapping). Abd El Hakeem and El Misery [2] have investigated 
peristaltic pumping of Carreau fluid in presence of an endoscope. Abd El Hakeem 
Abd El Naby et al [1] studied the flow separation on the wall. Also, they found that 
the trapping region at the wall decreases with increasing volume flow rate 

In this paper, we investigated the reflux and trapping phenomena at the wall in 
non-Newtonian power-law fluid through uniform tube in the small intestine. 
 
II. Formulation and analysis: 

We consider the peristaltic flow of an incompressible non-Newtonian power-
law fluid through a tube of average radius a. The geometry of the wall surface is 
described as figure (1): 
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where b is the wave amplitude, λ is the wavelength, t is the time and c is the 
wave speed. We will assume that there is no motion of the wall in the axial direction. 

We choose the cylindrical coordinate system ),Z,R( where the Z -axis lies 

along the center–line of the tube, and R  is the distance measured radially. In the fixed 
coordinates ),Z,R(  the flow in the tube is unsteady but if we choose moving 
coordinates ),z,r(  which travel in the Z - direction with the same speed as the wave, 
then the flow can be treated as steady. The coordinates frame are related through: 

,Rr,tcZz =−=         (2.2)

,Uuc,Ww =−=        (2.3)

where W,U and w,u are the velocity components in the radial and axial 
directions in the fixed and moving coordinates respectively. 

Equations of motion and boundary conditions in the moving coordinates are  
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Constitutive equation: 
 

Figure (1): The flow separation through peristaltic motion in an uniform tube. 
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( )1nγ mη −= & , (2.7)

( )
ij

1n
ij γγ mτ && −−= , (2.8)

where ρ is the density, ijτ , i, j = 1,2,3 are the components of the extra stress tensor, 

P  is the pressure,  m is the consistency, n  is the dimensionless power law index 

(when n=1, then m=μ  is the Newtonian viscosity of the fluid) and γ& is defined as : 
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         Using the dimensionless variables appearing in equations (2.1-2.11) introducing 
Reynolds number (Re), wave number (δ) as follows:  
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where 1<=
a
bφ  is the amplitude ratio. 

Continuity equation becomes: 
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Navier-Stokes equations become: 
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with the dimensionless boundary conditions: 
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Also, γ& is defined in the dimensionless form as following: 
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Using the long wavelength approximation and neglecting the wave number then from 
equations (2.16), (2.18) and (2.19) shearing extra stress becomes 

n

3113 r
wττ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−== . (2.20)

Navier-Stokes equations reduce to:  
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Integrating equation (2.21) with using equations (2.22) and (2.17), we get 
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 From Siddiqui and Schwarz [4] and Abd El Hakeem Abd El Naby et al [1] the 
dimensionless time-mean flow rate Θ in moving coordinates is given by 
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The pressure rise λΔP  and the friction force λF  (at the wall) in the tube of length λ , 
in their non-dimensional forms, are given by 
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Substituting from equation (2.26) into equation (2.23), we get: 
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Integrating equation (2.13) and using equation (2.29), we get: 
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where the dash means differentiation with respect to z . 
From equations (2.20) and (2.29) shearing extra stress is given by: 
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A condition frequently used to predict separation in boundary layer theory is to set the 
vorticity equal to zero on the boundary, setting 
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Substituting from equations (2.29) and (2.30) into equation (2.32), we get: 
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Solving equation (2.34) numerically to get flow separation points zs. Hence, we 
substitute the flow separation points zs into equations (2.26-2.28) and equation (2.31), 
we get: 
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From equation (2.30), the vertical velocity component at separation points on the wall 
is given by : 

.πz2Cos2hu sss πφ−=′−=  (2.40)

 
III. Numerical results and discussion   

We discuss the phenomenon of flow separation (trapping) through the figures 
(2-3) where the separated flow phenomenon means that a bolus (defined as a volume 
of fluid bounded by closed streamlines in the wave frame) is transported at the wave 
speed.  

The flow separation position has longitudinal component zs and vertical 
component hs on the wall surface. Figure (2) shows that the relation between hs, 
which given by equation (2.39), and φ . We notice that, at {{φ <0.5, Θ=0.4} and 
{φ <0.7, Θ=0.6} for different values of n} hs decreases with increasing φ , but at  
{Θ=0.2, {0.5 φ≤ , Θ=0.4} and {0.7 φ≤ , Θ=0.6} for different values of n} hs 
increases with increasing φ . Furthermore, hs decreases with increasing Θ, but it  
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increases with increasing power law index n. Also, the relation is non linear for 
different values of volume flow rate Θ and n. 

Figure (3) shows that the relation between zs, which given by equation (2.34), 
andφ . We notice that, at {{φ <0.6, Θ=0.2}, Θ=0.4 and Θ=0.6, for different values of 
n} there exist two values of zs one of them approaches to inlet of contraction region 
and the other approaches to outlet of contraction region. The regoin of flow separation 
for zs increases with increasing Θ and with decreasing n in the forward of contraction 
region but it decreases with increasing Θ and with decreasing n in the backward of 
contraction region. Moreover, at {{0.6 φ≤ , Θ=0.2} for different values of n} there 
exist two values of zs one of them into inlet of relaxation region and the other into 
outlet of relaxation region. Furthermore, the region of flow separation for zs is 
independent approximately of φ  at inlet and outlet of relaxation region. Figures (2-3) 
show that non-separation points of the flow occur at {φ <0.04, Θ=0.2, for different 

values of n}, {{φ <0.08, n=1}, {φ <0.1, n= 2
1 }, {φ <0.13, n= 3

1 }, Θ=0.4} and 

{{φ <0.15, n=1}, {φ <0.2, n= 2
1 }, {φ <0.27, n= 3

1 }, Θ=0.4}. 
Figure (4) shows that the relation between the radial velocity us of the fluid, 

which given by equation (2.40), and φ . We notice that, the magnitude of us increases 
with increasing φ  and n in contraction region but it decreases with increasing Θ in 
contraction region. Also, at { ,16.0 ≤≤ φ Θ=0.2} for different values of n in 
relaxation region, the magnitude of us increases with increasing φ  and it is 
independent approximately of n. Furthermore, the positive and negative values of us 
show that there exist a portion of fluid towards to forward of contraction region and 
the other towards to backward of contraction region. Figures (5-6) show that the 
relation between shearing extra stress ( )s13τ at flow separation points, which given by 

equation (2.38), and φ . We notice that, ( )s13τ  increases with increasing n for Θ=0.6 
and for { 42.004.0,2.0 ≤≤=Θ φ } but it decreases with increasing n for 
{ 142.0,2.0 ≤<=Θ φ }. Furthermore, ( )s13τ  decreases with increasing amplitude 
ratio φ  for Θ=0.2 and for { 163.0,6.0 ≤≤=Θ φ } but it increases with increasing φ  
for { 63.0,6.0 <=Θ φ }. Figures (7-8) show that the relation between ( )s13τ and Θ. 

We notice that, ( )s13τ  increases with increasing Θ. Moreover, ( )s13τ  decreases with 
increasing n for { 18.00,2.0 ≤Θ≤=φ } and { 3.00,8.0 ≤Θ≤=φ }, but it increases 
with increasing n for { Θ<= 18.0,2.0φ } and { Θ<= 3.0,8.0φ }. Figure (9) shows 
that the relation between the pressure rise ( )sλΔP at flow separation points, which 
given by equation (2.36), and Θ.  We notice that, at {0 <Θ≤ 0.28, n=1} and 
{0 <Θ≤ 0.2, n=1/3} ( )sλΔP  is independent approximately of φ , and the magnitude 
of ( )sλΔP  decreases with increasing Θ, but at {0.28 Θ≤ , n=1} and {0.2 Θ≤ , n=1/3} 
the magnitude of ( )sλΔP increases with increasing Θ. Also, this relation shows that 
the magnitude of ( )sλΔP  approximately has the same values at the two values of the 

longitudinal component zs for different values of Θ except at  {{ ,5.0 Θ< φ<2.0 } for  
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different values of n}. Figure (10) shows that the relation between the friction force 
( )sλF at flow separation points, which given by equation (2.37), and Θ. We notice 

that, at {0 <Θ≤ 0.28, n=1} and {0 <Θ≤ 0.15, n=1/3} ( )sλF  decreases with 
increasing Θ, but at { ,28.0 Θ≤  n=1} and { ,15.0 Θ≤ n=1/3} ( )sλF  increases with 
increasing Θ. Also, at {0.28 Θ≤ <0.5} ( )sλF  decreases with increasing φ , but it 
increases with decreasing n. Moreover, this relation shows that ( )sλF  approximately 
has the same values at the two values of the longitudinal component zs for different 
values of volume flow rate Θ except at  {{0.5<Θ<0.6, φ =0.6} for different values of 
n}. Moreover, the friction force ( )sλF  declare reflux phenomenon in contraction 
region. Also, figures (9-10) show that the pressure rise at flow separation points has 
the opposite behavior of friction force for different values of φ and Θ. 

Without considering flow separation points, the results have been obtained by 
Shapiro et al [3], Siddiqui and Schwarz [4], Rao and Usha [5] and Li and Brasseur 
[12] showed that the trapping occurs at the centerline in cylindrical coordinates. 
Furthermore, Takabatake et al [14], showed that the trapping region decreases with 
increasing stream function. Also, they showed that the reflux takes place near the axis 
for large Reynolds number and/or for large wave number, where it occurs near the 
wall for small Reynolds number and small wave number as pointed out by Shapiro et 
al [3]. Abd El Hakeem Abd El Naby et al [1] studied flow separation through 
peristaltic motion of a Carreau fluid in uniform tube at the wall. Our results showed 
that the trapping region decreases with increasing volume flow rate but it increases 
with increasing power-law index n. Also, the trapping and the reflux phenomena 
occur at the wall for zero Reynolds number and zero wave number. These results 
agree with Abd El Hakeem Abd El Naby et al [1] for Newtonian case. 
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Figure (2): The vertical component on the wall surface at flow 
separation points  versus amplitude ratio. 

 

Figure (3): The longitudinal component of flow separation 
points versus amplitude ratio. 
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Figure (4): The radial velocity of the fluid at flow separation 
points  versus   amplitude ratio. 
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Figure (5): The shearing extra stress at flow separation points 
versus amplitude ratio for Θ=0.2. 

 

Figure (6): The shearing extra stress at flow separation points 
versus amplitude ratio for Θ=0.6. 
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Figure (7): The shearing extra stress at flow separation points 
versus volume flow rate for φ =0.2. 

Figure (8): The shearing extra stress at flow separation points 
versus volume flow rate for φ =0.8. 
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Figure (9): The pressure rise at flow separation points versus 
volume flow  rate . 

 

Figure (10): The friction force at flow separation points versus 
volume flow  rate . 
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