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Abstract

Interpolation of 2n+k data by spline spaces of order k with n knots
is studied. Some conditions on existence of interpolating splines are
given. Numerical methods for constructing a solution are suggested.
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0. Introduction
Grandine [1] has given a characterization of spline spaces of order k with

a set of n simple knots, i.e., linear spaces of dimension n + k, from which
Lagrange interpolation at 2n + k data might be possible. Recently, we have
extended his results to Hermite interpolation by splines with multiple knots
and have obtained some results on uniqueness of interpolating splines [2].

In this paper we give some conditions on existence of interpolating splines.
In the case of linear splines we establish a simple characterization of the spline
solution. Finally, we make some comments on determining the solutions nu-
merically applying the Newton method for vector-valued functions.

1. Characterization of Minimal Spline Interpolation
The considered Hermite problem of interpolating 2n + k data by a spline

of order k (k ≥ 2) with n knots (n ≥ 1) counting multiplicities is as follows:
Let be given real data points

x0 < . . . < xl,

each of them of multiplicity mi + 1 (mi ≥ 0), i = 0, . . . , l, such that

ρ = max
0≤i≤l

mi ≤ k − 2,
l∑

i=0

(mi + 1) = 2n + k,
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and a data vector {yji}mi l
j=0 i=0. We arrange the data points according to their

multiplicities by

{z0, . . . , z2n+k−1} = {x0, . . . , x0︸ ︷︷ ︸
m0+1

, . . . , xl, . . . , xl︸ ︷︷ ︸
ml+1

}, (1.1)

and set, for h ∈ Cρ[x0, xl], the jth divided difference of h with respect to
{zi, . . . , zi+j} by

μj
ih = [zi, . . . , zi+j ]h, i, j ≥ 0

where

[zp, . . . , zp+q]h =
1

q!
h(q)(zp)

if zp = . . . = zp+q. Replacing h by a function y ∈ Cρ[x0, xl] such that

y(j)(xi) = yji, j = 0, . . . , mi, i = 0, . . . , l,

we analogously define the jth divided difference of the given data vector
{yji}mi l

j=0 i=0 with respect to {zi, . . . , zi+j} by

μj
iy = [zi, . . . , zi+j]y, i, j ≥ 0.

The spline space Sk(T ) of order k of interest is defined by a knot vector

T : t0 = x0 < t1 < . . . < tr < xl = tr+1 (1.2)

where each ti has multiplicity 1 ≤ ki ≤ k − 1 − ρ, i = 1, . . . , r, such that

r∑
i=1

ki = n,

i.e.,

Sk(T ) = {s : [t0, tr+1] → R : s
(j)
− (ti) = s

(j)
+ (ti), j = 0, . . . , k − ki − 1,

i = 1, . . . , r, s|[ti,ti+1] ∈ Πk−1, i = 0, . . . , r}

(Πk−1 denotes the linear space of polynomials of degree at most k − 1). It is
well-known that dimSk(T ) = n + k.

We are interested in solving the minimal Hermite interpolation problem
(H): Under what conditions on the data does a knot vector T of the above
type exist such that

s(j)(xi) = yji, j = 0, . . . , mi, i = 0, . . . , l, (H)

for some s ∈ Sk(T )?
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An answer to this question is closely related to certain properties of the
class {Bi}2n−1

i=0 of B-splines of order k to the knots {zj}2n+k−1
j=0 . These functions

satisfy the well-known representation

Bi(t) = (−1)kk[zi, . . . , zi+k](t − ·)k−1
+ , i = 0, . . . , 2n − 1

where the kth divided difference is evaluated with respect to the function
x → (t − x)k−1

+ (for details see e. g. [2]).
The main result in [2] can now be stated as follows.
Theorem 1. Consider any set of 2n+k ordered data points as in (1.1), any

data vector {yji}mi l
j=0 i=0 and any knot vector T as in (1.2). Then the following

statements are equivalent:

(1) There exists a solution s ∈ Sk(T ) of problem (H).

(2) The vector of the kth divided differences of the data, i.e.,

ỹ = (μk
0y, μk

1y, . . . , μk
2n−1y)t

can be written as a linear combination of the columns of

B(T ) =

⎛⎜⎜⎜⎜⎝
B0(t1) · · · B

(k1−1)
0 (t1) · · · B0(tr) · · · B

(kr−1)
0 (tr)

B1(t1) · · · B
(k1−1)
1 (t1) · · · B1(tr) · · · B

(kr−1)
1 (tr)

...
...

...
...

B2n−1(t1) · · · B
(k1−1)
2n−1 (t1) · · · B2n−1(tr) · · · B

(kr−1)
2n−1 (tr)

⎞⎟⎟⎟⎟⎠ .

Remarks. (1) Theorem 1 is an extension of the main result in [1] where a
characterization is given for the case when mi = 0 for all i in (1.1) and ki = 1
for all i in (1.2), i.e., Lagrange interpolation by splines with simple knots.
In addition, it is supposed in [1] that the solution knot vector T satisfies an
interlacing property.
(2) As we have shown in [2], problem (H) is not uniquely solvable, in general.
But assuming an interlacing property

z2i−1 < t̂i < z2i+k−2, i = 1, . . . , n (IP)

for every solution knot vector T = {ti}r+1
i=0 where

t̂0 = t0, t̂1 = . . . = t̂k1 = t1, . . . , t̂n−kr+1 = . . . = t̂n = tr, t̂n+1 = tr+1,

in [2] we have shown the uniqueness of the interpolating spline s ∈ Sk(T ).
An important role for the following arguments plays a result on the sign

behavior of ỹ given in [2].
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Theorem 2. If statement (2) of Theorem 1 is true, it is necessary that
the vector ỹ has at most n − 1 sign changes, i.e., there do not exist indices
0 ≤ i0 < . . . < in ≤ 2n − 1 such that

μk
ij
y · μk

ij+1
y < 0, j = 0, . . . , n − 1.

2. Necessary Conditions for Spline Solutions
Using the arguments in the proof of Theorem 2 we obtain additional infor-

mation on the sign behavior of the vector of the kth divided differences.
Let us assume that problem (H) has a solution s ∈ Sk(T ). This implies

that
ỹ = (μk

0y, μk
1y, . . . , μk

2n−1y)t = (μk
0s, μ

k
1s, . . . , μk

2n−1s)
t.

To simplify notations we omit the upper index k of the components of ỹ in
the following statements.

Theorem 3. Suppose that for some indices 0 ≤ ρ0 < . . . < ρj ≤ 2n − 1
(j ≥ 1) the following is true:

• I =
j⋃

p=0

Iρp is an open interval where Iρp = (zρp , zρp+k), p = 0, . . . , j;

• I ∩ T = {t̃0, . . . , t̃j−1} = {tm, . . . , tm︸ ︷︷ ︸
km

, tm+1, . . . , tm+1︸ ︷︷ ︸
km+1

, . . . , tq, . . . , tq︸ ︷︷ ︸
kq

}, for

some 1 ≤ m ≤ q ≤ r;

• t̃p ∈ Iλp (resp. t̃p ∈ Iλp ∩ Iλp+1), p = 0, . . . , j − 1, for some indices
ρ0 ≤ λ0 < λ1 < . . . < λj−1 ≤ ρj.

Then the vector
(μρ0s, μρ1s, . . . , μρj

s)

has at most j − 1 sign changes (resp. at most j − 1 weak sign changes or each
component is zero).

Proof. First note that

j =

q∑
i=m

ki ≤ n

by (1.2). We follow the lines in the proof of proposition 3 in [2]. In view of our
hypotheses, property (3.13) in that proof is satisfied (with σ = 0). Let Bρp be

the B-spline of order k with the knots {zi}ρp+k
i=ρp

, i.e.,

supp Bρp = [zρp, zρp+k], p = 0, . . . , j.

Suppose first that

t̃p ∈ Iλp = (zλp , zλp+k) = int supp Bλp , p = 0, . . . , j − 1.

Now using properties (2.12) and (3.14) in [2] we obtain
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• det M(ρ0, . . . , ρp−1, ρp+1, . . . , ρj) ≥ 0, p = 0, . . . , j,

• det M(λ0, . . . , λj−1) > 0,

• 0 =
j∑

p=0

(−1)j+p μρps det M(ρ0, . . . , ρp−1, ρp+1, . . . , ρj). (2.1)

M(ν1, . . . , νj) denotes a (j×j)-submatrix of B(T ) where ρ0 ≤ ν1 < ν2 < . . . <
νj ≤ ρj defined by

M(ν1, . . . , νj) =⎛⎜⎝ Bν1(tm) · · · B
(km−1)
ν1 (tm) · · · Bν1(tq) · · · B

(kq−1)
ν1 (tq)

...

Bνj
(tm) · · · B

(km−1)
νj (tm) · · · Bνj

(tq) · · · B
(kq−1)
νj (tq)

⎞⎟⎠ .

Assume now that (μρ0s, . . . , μρj
s) has j sign changes, i.e.,

μρp−1s · μρps < 0, p = 1, . . . , j. (2.2)

This, in particular, implies that μρps �= 0 for all p.
Hence each summand in (2.1) has the same weak sign (nonpositive or nonneg-
ative). Since the resulting sum is zero, each term in (2.1) must vanish which
in view of (2.2) implies that

det M(ρ0, . . . , ρp−1, ρp+1, . . . , ρj) = 0, p = 0, . . . , j.

This, however, contradicts the fact that

det M(λ0, . . . , λj−1) > 0

for some indices ρ0 ≤ λ0 < . . . < λj−1 ≤ ρj .
Thus we have shown that (μρ0s, . . . , μρj

s) has at most j − 1 sign changes.
To prove the second statement assume that the vector

(μρ0s, . . . , μρj
s)

has j weak sign changes, i.e.,

μρp−1s · μρp s ≤ 0, p = 1, . . . , j,

and
μρl

s �= 0

for some l ∈ {0, . . . , j}. Since by assumption

t̃p ∈ Iλp ∩ Iλp+1 = int supp Bλp ∩ int suppBλp+1 ,
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it follows from (2.12) in [2] that

det M(ρ0, . . . , ρp−1, ρp+1, . . . , ρj) > 0, p = 0, . . . , j.

Now analogously arguing as in the first case we can verify that each summand
in (2.1) must vanish. But in view of the above properties, we have got

μρl
s det M(ρ0, . . . , ρl−1, ρl+1, . . . , ρj) �= 0,

a contradiction.
Thus we have shown that the vector (μρ0s, . . . , μρj

s) is either zero or has at
most j − 1 weak sign changes. �

Remarks. (1) While the vector (μ0y, . . . , μ2n−1y) has at most n − 1 sign
changes by Theorem 2 (if a solution exists), the number of weak sign changes
may not be bounded by n − 1. To show it let n = k = 2, xi = i, i = 0, . . . , 5
and

(μ2
0y, . . . , μ2

3y) = (0, 0, 2, 1).

It is easily seen that⎛⎜⎜⎝
0
0
2
1

⎞⎟⎟⎠ = c1

⎛⎜⎝B0(t1)
...

B3(t1)

⎞⎟⎠ + c2

⎛⎜⎝B0(t2)
...

B3(t2)

⎞⎟⎠ = c1

⎛⎜⎜⎝
1/2
1/2
0
0

⎞⎟⎟⎠ + 3

⎛⎜⎜⎝
0
0

2/3
1/3

⎞⎟⎟⎠
where c1 ∈ R arbitrarily, t1 = 3/2 and t2 = 10/3. Hence by Theorem 1,
T = {0, 3/2, 10/3, 5} is a solution knot vector. Moreover, the vector (0, 0, 2, 1)
has n (= 2) weak sign changes. This is no contradiction to Theorem 3, because
neither (0, 0, 2) nor (0, 0, 1) satisfy all the hypotheses of the theorem. In the
first case we obtain I = (x0, x4) = (0, 4), I∩T = {t1, t2}, however t2 /∈ I1∩I2 =
(1, 3) ∩ (2, 4) = (2, 3). A similar argument holds in the second case.
Note that T satisfies property (IP).
(2) The vector of the kth divided differences can even have the maximal number
of 2n − 1 weak sign changes: As in (1) let n = k = 2, xi = i, i = 0, . . . , 5 and

(μ2
0y, . . . , μ2

3y) = (1, 0, 0,−1).

Again using Theorem 1 it is easily verified that T = {0, 1, 4, 5} is a solution
knot vector. Nevertheless, it follows that the vector (1, 0, 0,−1) has the max-
imal number of 2n − 1 (= 3) weak sign changes.

In the case when k = 3 we obtain some more information on the number
of sign changes of the vector of divided differences. Moreover, if k = 2, we are
even able to give a simple construction of a solution knot vector (if it exists).

Corollary 4. Let k = 3 and assume that mi = 0, i.e., zi = xi, i =
0, . . . , 2n+2 (simple knots). Moreover, assume that problem (H) has a solution
s ∈ S3(T ), where T satisfies property (IP). Then the following statements hold:
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(i) The vectors (μ0s, μ1s, μ2s) and (μ2n−3s, μ2n−2s, μ2n−1s) have at most one
sign change;

(ii) if t2 ∈ (x3, x4) resp. tn−1 ∈ (x2n−2, x2n−1), then (μ0s, μ1s, μ2s) resp.
(μ2n−3s, μ2n−2s, μ2n−1s) has at most one weak sign change or each com-
ponent is zero;

(iii) the vector (μ2i−1s, μ2is, μ2i+1s, μ2i+2s) has at most two sign changes, i =
1, . . . , n − 2;

(iv) if ti ∈ (x2i, x2i+1) and ti+2 ∈ (x2i+3, x2i+4), then (μ2i−1s, . . . , μ2i+2s) has
at most two weak sign changes or each component is zero, i = 1, . . . , n−2.

Proof. To simplify the proof we may assume that the solution vector T
consists of simple knots only. Hence, T = {x0, t1, . . . , tn, x2n+2}, ti < tj , if
i < j. Since T satisfies property (IP), it follows that

x2i−1 < ti < x2i+1, i = 1, . . . , n. (2.3)

To prove statement (i) we apply Theorem 3: Set ρp = p, p = 0, 1, 2. Then

Ip = (xp, xp+3), p = 0, 1, 2, and I =
2⋃

p=0

Ip = (x0, x5). Moreover, it follows from

(2.3) that

T ∩ (x0, x5) = {t1, t2}
and

t1 ∈ (x1, x3) ⊂ I0 ∩ I1, t2 ∈ (x3, x5) ⊂ I2.

Hence by Theorem 3, (μ0s, μ1s, μ2s) has at most one sign change. The same
property follows analogously for (μ2n−3s, μ2n−2s, μ2n−1s).
This proves (i).
To prove statement (ii) assume that t2 ∈ (x3, x4). This implies that

t1 ∈ I0 ∩ I1, t2 ∈ I1 ∩ I2,

and by Theorem 3, (μ0s, μ1s, μ2s) has at most one weak sign change or each
component is zero.
The statement for (μ2n−3s, μ2n−2s, μ2n−1s) follows analogously.
This proves (ii).
To prove (iii) resp. (iv) we again apply Theorem 3: Set ρp = 2i − 1 + p,

p = 0, . . . , 3. Then Ip = (x2i−1+p, x2i+2+p), p = 0, . . . , 3, and I =
3⋃

p=0

Ip =

(x2i−1, x2i+5). From (2.3) it follows that

T ∩ I = {ti, ti+1, ti+2}
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and

ti ∈ (x2i−1, x2i+1) ⊂ I0, ti+1 ∈ (x2i+1, x2i+3) ⊂ I1 ∩ I2,

ti+2 ∈ (x2i+3, x2i+5) ⊂ I3.

Hence statement (iii) follows from Theorem 3. Statement (iv) follows analo-
gously, because then

ti ∈ (x2i, x2i+1) ⊂ I0 ∩ I1, ti+2 ∈ (x2i+3, x2i+4) ⊂ I2 ∩ I3.

This completes the proof of Corollary 4. �

In practise one would be interested in an algorithm to construct a solution
vector T of the considered interpolation problem. In the case when n = 1 (one
interior knot) Grandine [1] has given a simple condition for an optimal knot
x1 < t1 < xk. If it exists, it is a solution of

f(x) = det

(
B0(x) μk

0y
B1(x) μk

1y

)
= 0.

In the following we establish a method to determine optimal knots in the case
when k = 2: Let 2n + 2 ordered data points {(xi, yi)}2n+1

i=0 be given. We are
interested in a solution of

s(xi) = yi, i = 0, . . . , 2n + 1 (2.4)

by a spline s ∈ S2(T ) where

T : t0 = x0 < t1 < . . . < tn < x2n+1 = tn+1.

To obtain a characterization we suppose a weak interlacing property for T :

x2i−1 ≤ ti ≤ x2i, i = 1, . . . , n. (2.5)

It is easily verified (see the definition in Section 1) that the linear B-splines
{Bi}2n−1

i=0 to the knots {xi}2n+1
i=0 are given by

Bi(x) = βi ·

⎧⎪⎨⎪⎩
x−xi

xi+1−xi
, if xi ≤ x ≤ xi+1,

xi+2−x
xi+2−xi+1

, if xi+1 < x ≤ xi+2,

0, elsewhere,

where βi = 2
xi+2−xi

, i = 0, . . . , 2n − 1. Then the matrix B(T ) in Theorem 1

has the form

B(T ) =

⎛⎜⎜⎜⎜⎜⎜⎝

B0(t1) · · · B0(tn)
...

...
...

...
...

...
B2n−1(t1) · · · B2n−1(tn)

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
β0

x2−t1
x2−x1

0 · · · · · ·
β1

t1−x1

x2−x1
0 · · · · · ·

0 β2
x4−t2
x4−x3

0 · · ·
... β3

t2−x3

x4−x3
0 · · ·

... 0
. . . · · ·

⎞⎟⎟⎟⎟⎟⎟⎠ .
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Assume now that
ỹ = (μ0y, . . . , μ2n−1y)t,

the vector of the second divided differences of the data, and suppose that for
a vector c = (c1, . . . , cn)t

ỹ = B(T )c

or, equivalently,

ciβ2i−2
x2i − ti

x2i − x2i−1
= μ2i−2y, ciβ2i−1

ti − x2i−1

x2i − x2i−1
= μ2i−1y, i = 1, . . . , n.

Thus for each i we have a system of two equations for ci and ti which are
independent of the corresponding system with j �= i. To obtain solutions we
distinguish several cases.

(i) Assume that μ2i−2y = μ2i−1y = 0. We set ci = 0, and take any ti ∈
[x2i−1, x2i].

(ii) Assume that μ2i−2y = 0 and μ2i−1y �= 0. We set ci = μ2i−1y
β2i−1

and ti = x2i.

(iii) Assume that μ2i−2y �= 0 and μ2i−1y = 0. We set ci = μ2i−2y
β2i−2

and ti = x2i−1.

(iv) Assume that μ2i−2y · μ2i−1y �= 0. Then, since βi > 0 for each i, and by
(2.5),

β2i−2
x2i − ti

x2i − x2i−1

> 0, β2i−1
ti − x2i−1

x2i − x2i−1

> 0

which implies that a solution (ci, ti) exists if and only if μ2i−2y·μ2i−1y > 0.
In this case we obtain a unique solution

ti =
1

β2i−1μ2i−2y + β2i−2μ2i−1y
[x2i−1β2i−1μ2i−2y + x2iβ2i−2μ2i−1y].

(This formula remains true if only one of the terms {μ2i−2y, μ2i−1y} is
nonzero. The resulting knot is the same one as in the corresponding cases
(ii) or (iii).)

Hence we have shown the following statement.
Theorem 5. Under the above hypotheses there exists a solution s ∈ S2(T )

of (2.4) if and only if

μ2i−2y · μ2i−1y ≥ 0, i = 1, . . . , n.

In this case we obtain a solution knot vector T as follows:
If μ2i−2y = μ2i−1y = 0, then any ti ∈ [x2i−1, x2i], otherwise,

ti =
1

β2i−1μ2i−2y + β2i−2μ2i−1y
[x2i−1β2i−1μ2i−2y + x2iβ2i−2μ2i−1y].
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Remark. If the vector ỹ has a strong sign change from μ2i−2y to μ2i−1y for
some i, then there does not exist any solution s ∈ S2(T ) of (2.4). On the other
hand, ỹ can have n − 1 strong sign changes, but each of them from μ2i−1y to
μ2iy, and a solution would exist by Theorem 5.

3. Some Numerical Tests
Grandine [1] has presented some numerical examples on optimal spline

interpolation having computed the knots as solutions of a nonlinear least-
squares problem. In the following we also study the problem of determining
a solution s ∈ Sk(T ) of (H) numerically (at least for the case of Lagrange
interpolation). We apply the Newton method for vector-valued functions. To
develop it let us assume that for a given set {(xi, yi)}2n+k−1

i=0 of ordered data
points there exists a knot vector

T : t0 = x0 < t1 < . . . < tn < tn+1 = x2n+k−1

and an s ∈ Sk(T ) such that

s(xi) = yi, i = 0, . . . , 2n + k − 1.

Moreover, assume that T satisfies property (IP), i.e.,

x2i−1 < ti < x2i+k−2, i = 1, . . . , n.

Then, in view of Theorem 4.3 in [3], the solution s is unique under this as-
sumption, and the vector ỹ = (μk

0y, . . . , μk
2n−1y)t = (μk

0s, . . . , μk
2n−1s)

t satisfies⎛⎜⎝ B0(t1) · · · B0(tn)
...

...
B2n−1(t1) · · · B2n−1(tn)

⎞⎟⎠
︸ ︷︷ ︸

B(T )

⎛⎜⎝c1
...
cn

⎞⎟⎠
︸ ︷︷ ︸

c

=

⎛⎜⎝ μk
0y
...

μk
2n−1y

⎞⎟⎠

resp.
B(T ) c − ỹ = 0 ∈ R

2n,

Bi the B-spline of order k to the knots {xj}i+k
j=i , i = 0, . . . , 2n − 1.

To apply the Newton method we set

F (c, t) = F (c1, . . . , cn, t1, . . . , tn) := B(T ) c− ỹ

=

⎛⎜⎜⎜⎜⎜⎝
n∑

j=1

cjB0(tj) − μk
0y

...
n∑

j=1

cjB2n−1(tj) − μk
2n−1y

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
F0(c, t)

...

...
F2n−1(c, t)

⎞⎟⎟⎟⎠ .
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This defines a function F : D → R
2n with some D ⊂ R

2n. We still need the
matrix of the partial derivatives,

F ′(c, t) =

⎛⎜⎝
∂F0

∂c1
· · · ∂F0

∂cn

∂F0

∂t1
· · · ∂F0

∂tn
...

...
...

...
∂F2n−1

∂c1
· · · ∂F2n−1

∂cn

∂F2n−1

∂t1
· · · ∂F2n−1

∂tn

⎞⎟⎠
=

⎛⎜⎝ B0(t1) · · · B0(tn) c1B
′
0(t1) · · · cnB′

0(tn)
...

...
...

...
B2n−1(t1) · · · B2n−1(tn) c1B

′
2n−1(t1) · · · cnB′

2n−1(tn)

⎞⎟⎠ .

Now starting with a vector (c(0), t(0)), in the m-th step we determine
(c(m+1), t(m+1)) iteratively by

F (c(m), t(m)) + F ′(c(m), t(m))[(c(m+1), t(m+1)) − (c(m), t(m))] = 0, (N)

m = 0, 1, . . . . In view of (IP), it seems to be reasonable setting

t
(0)
i =

{
x2i+(k−3)/2, if k is odd,
1
2
(x2i−2+k/2 + x2i−1+k/2), if k is even.

(3.1)

We have tested the algorithm with Maple 9.5 for the cases k = 3 and k = 4,
and have chosen the vector c(0) = (c

(0)
1 , . . . , c

(0)
n )t as follows.

The case k = 3: Since t
(0)
i = x2i for each i by (3.1), it is easily seen that

B2j−2(t
(0)
i ) = B2j−1(t

(0)
i ) = 0, j �= i, i, j = 1, . . . , n.

This implies that

F (c(0), t(0)) =

⎛⎜⎜⎜⎜⎜⎜⎝
c
(0)
1 B0(t

(0)
1 ) − μ3

0y

c
(0)
1 B1(t

(0)
1 ) − μ3

1y
...

c
(0)
n B2n−2(t

(0)
n ) − μ3

2n−2y

c
(0)
n B2n−1(t

(0)
n ) − μ3

2n−1y

⎞⎟⎟⎟⎟⎟⎟⎠ .

Hence we suggest setting

c
(0)
i =

μ3
2i−2y

B2i−2(t
(0)
i )

or c
(0)
i =

μ3
2i−1y

B2i−1(t
(0)
i )

, i = 1, . . . , n.

The case k = 4: Since t
(0)
i = 1

2
(x2i + x2i+1) for each i by (3.1), we obviously

obtain

F (c(0), t(0)) =

⎛⎜⎜⎜⎜⎜⎜⎝
c
(0)
1 B0(t

(0)
1 ) − μ4

0y

c
(0)
1 B1(t

(0)
1 ) + c

(0)
2 B1(t

(0)
2 ) − μ4

1y
...

c
(0)
n−1B2n−2(t

(0)
n−1) + c

(0)
n B2n−2(t

(0)
n ) − μ4

2n−2y

c
(0)
n B2n−1(t

(0)
n ) − μ4

2n−1y

⎞⎟⎟⎟⎟⎟⎟⎠ .
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We suggest setting

c
(0)
i =

μ4
2i−2y

B2i−2(t
(0)
i )

, i = 1, . . . , n − 1, c(0)
n =

μ4
2n−1y

B2n−1(t
(0)
n )

,

or

c
(0)
1 =

μ4
0y

B0(t
(0)
1 )

, c
(0)
i =

μ4
2i−1y

B2i−1(t
(0)
i )

, i = 2, . . . , n.

Our numerical experiences with the algorithm are different. In the case when
k = 4, n = 5, xi = i, i = 0, . . . , 13 we have taken the data yi = s(xi),
i = 0, . . . , 13 from the test splines

s(x) = x3 − (x − 2)3
+ + 2(x − 4)3

+ + 1/2(x − 11/2)3
+ − (x − 8)3

+ − 2(x − 11)3
+

resp.

s̃(x) = x3 − (x − 2)3
+ + 2(x − 4)3

+ − 3(x − 7)3
+ + (x − 9)3

+ − 2(x − 11)3
+,

and have started the Newton method (N) with the above defined initial vectors.
In the first case the solution knot vector (2, 4, 11/2, 8, 11) has been computed
by 8 iterations within an accuracy of 10−7 while in the second case the com-
putation of the knot vector (2, 4, 7, 9, 11) has needed 12 iterations.

In the case when k = 3, n = 5, xi = i, i = 0, . . . , 12, we have tested
our algorithm (N) with several vectors ỹ of third divided differences satisfying
the sign properties given in Corollary 4. In most cases the algorithm works
satisfactory and determines a solution knot vector within few iterations.
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