
Applied Mathematical Sciences, Vol. 1, 2007, no. 26, 1277 - 1298

Stability Analysis of a Delay-Difference

SIS Epidemiological Model

Alma V. Lara-Sagahón2,3, Vladislav Kharchenko3 and Marco V. José 1 2
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Abstract

We develop a discrete-time SIS model with exponential incidence and
where the proportion of infectives takes the form of a delay-difference
equation. This model generalizes a model developed by Cooke, Calf,
and Level (1977) by allowing the period of infectivity to be of arbi-
trary length. The model is analyzed to determine the equilibria, its
stability and threshold quantities. The endemic equilibrium state is
globally asymptotically stable. The solution tends to the endemic equi-
librium through infinite damped oscillation if the transmission param-
eter is greater than a critical value. This critical value is a function of
the period of infectiousness.
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1 Introduction

SIS epidemic models have been used to represent the spread of infectious dis-

ease that do not confer immunity (e.g. [11] and references therein). We for-

mulate and analyse a simple discrete time SIS model for disease transmission
1Corresponding author, email: marcojose@biomedicas.unam.mx
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in a closed population. The model is built in the form of a delay-difference

equation assuming an exponential incidence and a period of infectivity whose

length can be fixed arbitrarily. In epidemic models the rate at which individ-

uals leave the susceptible compartment is given by an incidence function. The

most commonly used forms of the incidence function are the standard incidence

rate (true mass action) and the simple mass action (pseudo mass action). The

standard function states that the incidence is proportional to the fraction of

infectives times the number of susceptibles [20, 21]. The proportionality con-

stant of the standard incidence, usually denoted by β, is the average number

of contacts sufficient for achieving transmission [8, 20]. On the other hand,

the simple mass action is formulated in terms of numbers i.e. the incidence is

proportional to the number of infectives times the number of susceptibles. In

this case, the proportionality constant of the simple mass action, β, has been

considered as a transmission parameter that involves a myriad of epidemiolog-

ical, environmental and social factors affecting the transmission rates [4], but

without a direct epidemiological interpretation [20].

The SIS (susceptible-infected-susceptible) delay-difference model proposed

here uses an exponential incidence function. One advantage of the exponential

incidence over the mass action is that it always gives biologically sensible

well-posed discrete models. In contrast, in discrete models the law of mass

action cannot be properly used, and therefore restrictions must be put in the

parameters in order to insure not to get absurd solutions (see [2], Lemma 2).

In the ordinary differential equation (ODE) epidemic models the recovery

rate is assumed to be a constant, ν, related with the average infectiousness

period D by D = 1/ν [4]. It has been shown that this assumption corre-

sponds to the situation in which the duration of the period of infectiousness is

exponentially distributed [8, 20], and it is equivalent to the assumption that

the chance to recover is independent of the time in which an individual enters

the infective class [4, 25]. It is well known that this principle is mathemati-

cally convenient but not necessarily realistic [4, 25], much less if the waiting

time is supposed to be a constant. The more general assumption of an arbi-

trary distribution of the period of infectiousness can be treated in a stochastic

setting on chain-binomial models (see [6] chapter 8). Some developments of

SIS models deal with stochastic features, where quasi-stationarity and time to

extinction are analyzed (see [27] and references therein). If the period of infec-

tivity is held constant, the continuous ODE model becomes a delay-differential

equation (e.g. [8, 13, 17, 20] and citations in these works).

The simple SIS model analyzed here is a discrete time model where the

period of infectivity is assumed to be a constant. The following discrete or

“quantum” principle is of fundamental importance for our approach. We sup-
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pose that the individual infection is a consequence of daily contacts, so that,

the time step –one day– of our discrete model is a basic cycle of the population

life history, a quantum of time. It may be considered neither as an arbitrary

convenient small value, as in the discrete models of Allen et al. [1, 2], nor as

an infinitesimal one.

In Section 2 we derive the exponential incidence function. Our formulation

of the incidence rate is closely related to the derivation of the discrete–time

stochastic models of Greenwood and Reed-Frost [1, 12, 24]. We note that the

continuous version of the exponential incidence is exactly the law of mass ac-

tion, but not vice versa, since the “quantification” of the mass action provides

an incidence function different from the exponential incidence. The formula-

tion and analysis of the deterministic discrete SIS model with a fixed period of

infectiousness are given in Sections 3 and 4, respectively. To find the equilib-

ria, we observed that the initial data have to satisfy an algebraic equation that

takes into account the individual infectious history. This equation is invari-

ant under the process defined by the difference system. Therefore, equilibrium

states turn out to be the constant solutions of this algebraic equation. In order

to analyze the stability properties of our model we use additive perturbation

techniques instead of using popular methods, such as the linearized stability

analysis [23]. The proof of stability uses some ideas from the paper by Cooke

et al. [12]. We extend their results to the delay case.

2 Incidence in homogeneous and uniformly mix-

ing populations

Let us consider the incidence rate function in homogeneous and uniformly

mixed populations. A population is uniformly mixed if its members make

contact homogeneously with each other. For example, if a person has a total of

k contacts per day, then among these there are ky/N contacts with infectives,

where N is the population size and Y is the number of infectives. Let c be

the probability that a given susceptible becomes infective in one contact with

one infective (this is, probably, the main characteristic of the transmission

of a disease in a population). Assume that c is a constant for the disease

under investigation. Then 1 − c is the probability that a given susceptible

does not become infective in one contact with one infective.Thus, assuming

that each contact is independent of other contacts, the probability that a

given susceptible does not become infective during a day (that is in kY/N

contacts with infectives) equals (1 − c)kY/N . Hence, the probability that a

given susceptible becomes infective in one day is 1−(1−c)kY/N , or equivalently,
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1− e−βY , where β = −k ln(1− c)/N . Thus, the transmission coefficient β is a

parameter that summarizes both population and disease spread characteristics.

Now, we may express the incidence as the number of susceptibles, X, times

the probability to become infective, i.e.,

G(X, Y ) = X(1 − e−βy). (1)

If x, y, and g denote the proportions of susceptibles, infectives and new

infectives, respectively, we can write 1 in the form

g(x, y) = x(1 − e−γy), (2)

where γ = βN = −k ln(1 − c). It is straightforward to show that the law

of mass action is just a first approximation that can be obtained from 1 and

2 by the Taylor series expansion. The foregoing derivation of the incidence

function leads to the law of mass action if applied properly to a continuous

process. Indeed, if we suppose that during a day the contacts of a person are

distributed homogeneously, then for a period of time [t, t + dt] the person will

have kydt contacts with infectives. Therefore, the proportion of new infectives

for the period of time [t, t + dt] equals Δg(x, y) = x(1 − e−γydt). Thus, the

continuous version of 2 is

gc = lim
dt→0

Δg(x, y)

dt
= γxy, (3)

which is exactly the law of mass action expressed in proportions. We cannot

say, however, that the incidence 1 or 2 is a discrete version of the law of mass

action. Indeed, suppose that we have a continuous process of incidence that is

defined by the law of mass action. Then the proportion of new infectives for

one day equals a difference (gc)d = y(t + 1) − y(t), where y(t) is a solution of

the incidence equation dy
dt

= γxy = γ(1 − y)y. The solution of this differential

equation is y(t) = Ceγt

1+Ceγt . Now the number of new infectives in one day, the

discrete version of mass action, can be calculated by

(gc)d = y(t + 1) − y(t)

=
Ceγt

1 + Ceγt

(
1 − Ceγt

1 + Ceγt

)(
eγ − 1

1 + (eγ − 1) Ceγt

1+Ceγt

)

=
γ1xy

1 + γ1y
, (4)

where γ1 = eγ − 1. Note that this last result is different from the incidence

g(x, y).
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The above arguments show that the standard reduction to a continuous

process will essentially change the dynamics: g �= (gc)d. We remark that in

a discrete model developed by Castillo-Chavez and Yakubu [11] the time step

equals the period of one generation, whilst in those proposed by Cooke et al.

[12] it is equal to the period of infectivity.

Another important note is that in discrete models the law of mass action in

its continuous form cannot be properly used. This can be seen in the following

example. Suppose that an infection with a period of infectiousness greater than

one day, and a parameter γ greater than one, attacks a virgin population. In

this way, at day zero the proportion of infectives equals zero and in the first

day a proportion p1 of new infectives ensues. By the mass action principle, in

the second day the proportion of infectives would be p2 = p1 + γp1(1 − p1).

If we suppose that p1 = (1 + γ−1)/2, then by direct calculations it is easy to

see that p2 = 1 + (γ − 1)2/4γ which is greater than unity! This contradiction

shows that the mass action incidence with γ > 1 (or β > N−1 for a population

of size N ) is not valid for discrete models. This situation is illustrated in

Fig. ?? where the exponential incidence and mass action are compared in a

discrete SIS model. It is shown that if the mass action is assumed then very

small differences in the initial values led to non- sensible biologically results.

3 The discrete SIS model

Herein we present a discrete SIS model based on the discrete principle men-

tioned in Section 2 with the incidence function 2. We consider a population

that has a constant size. For the stability analysis we introduce a perturbation

p(t, x, y, ...), which is a function that defines a proportion of new infectives that

appears due to some external process (e. g. random effects, preventive actions,

etc.) other than the regular contact process in the population. The perturba-

tion may have both positive and negative values. Of course, these values have

to be biologically reasonable, that is, the proportion of new infectives by the

perturbation cannot be greater than the proportion of susceptibles at the end

of the day t and cannot be less than the negation of the proportion of new

infectives, i.e., −g(x, y) ≤ pt ≤ xt − g(x, y).

If we assume a constant period of infectiousness, the difference equations

of the model are:

xt+1 = xt − [xt(1 − e−γyt) + pt] + [xt−σ(1 − e−γyt−σ) + pt−σ] (5)

yt+1 = yt + [xt(1 − e−γyt) + pt] − [xt−σ(1 − e−γyt) + pt−σ] (6)

xt+1 + yt+1 = 1. (7)
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Figure 1: Comparison of the discrete SIS model proposed here and the mass

action discrete SIS model with: γ = 1.31, σ = 5 days, y−5 = y−4 = ... = y0 = 0,

and p(t) = 0 for all time except p(0). A. p(0) = 5.8e − 7, B. p(0) = 5.9e − 7.

Using the mass action incidence, small differences in the perturbation initial

value change the solution towards absurd results.
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Because the population size remains constant, the model can be reduced

to a single delay-difference equation for the proportion of infectives. This

equation defines a dynamic process provided that the following initial values

are given:

y−σ, y−σ + 1, ..., y−1, y0, 0 ≤ yi ≤ 1, i = −σ, ..., 0. (8)

The initial values have to satisfy the following equation:

y0 =
σ−1∑
i=0

[
(1 − yi−σ)(1 − e−γyi−σ) + pi−σ

]
(9)

Equation 9 takes into account that the number of infectives at should be equal

to the cumulative sum of infectives that acquired the infection in anyone of the

previous days. In other words, every infective has its own infectious life history

related to the disease under investigation. This condition has to be valid not

only at the initial time, but also during all the process. Nevertheless, due to

the following lemma, we do not need to postulate this as a general assumption.

Lemma 1 The dynamic process defined by the equations 5, 6 and 7 with the

initial conditions 8 connected by 9 always satisfies the equality

yt =
σ−1∑
i=0

[
(1 − yt+i−σ)(1 − e−γyt+i−σ) + pt+i−σ

]
, (10)

that is, the number of infectives at time t equals the cumulative sum of infectives

that had acquired the infection in anyone of the previous days.

Proof. We only have to show that the equality 10 is preserved when t

increases by one. By 6 and 7 and using 10 we have

yt+1 =

σ−1∑
i=0

[
(1 − yt+i−σ)(1 − e−γyt+i−σ) + pt+i−σ

]
+

(1 − yt)(1 − e−γyt) + pt −
(1 − yt−σ)(1 − e−γyt−σ) − pt−σ

=
σ−1∑
i=0

[
(1 − yt+1+i−σ)(1 − e−γyt+1+i−σ) + pt+1+i−σ

]

The lemma is proved.

This lemma implies that if one starts with no infections, then y−σ =

y−σ+1 = ... = y0 = 0, p−σ = p−σ+1 = ... = p−1 = 0, and since t = 0,
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nothing would have to be said about the initial conditions, since (9) is clear

and, according to the lemma, 10 is fulfilled automatically.

Note that the proportion of new infectives g(xt, yt) will never be greater

than the proportion of susceptibles xt (this condition failed in the example

where the law of mass action was applied to a discrete process). Indeed,

since 0 ≤ 1 − e−γyt < 1 for arbitrary positive values of γ and yt, we have

g(xt, yt) = xt(1− e−γyt) ≤ xt. Therefore, the dynamical process 6, 7 will never

give contradictory results like the ones presented in Section 2.

4 Analysis of the model

4.1 Equilibrium states and threshold theorem

The computer simulation experiments show that if after some time the per-

turbation becomes zero then the solutions of 5, 6, 7 tend to a constant value

(Fig. 2). Our rigorous mathematical analysis proves that there is a threshold

quantity gauged by the relation γσ = 1 (or βNσ = 1). If γσ ≤ 1there is only

disease free equilibrium state. If γσ > 1 there is only one endemic equilibrium

state. The endemic equilibrium is globally asymptotically stable. The thresh-

old quantity γσ is the well-known basic reproductive number usually denoted

by R0 (e.g. [4, 20] ).

Theorem 2 If 0 < γ ≤ σ−1 then there is just disease free equilibrium state.

If γ > σ−1 then there is only one endemic equilibrium which never exceeds

1/(σ−1 + 1)100% of the total population.

Proof. Suppose that pt = 0 for all t > T . Then, if t > T + σ, the relation

10 acquires the form

yt =
σ−1∑
i=0

(1 − yt+i−σ)(1 − e−γyt+i−σ), (11)

therefore we have the following equation for the equilibrium y∗,

y∗ =
σ−1∑
i=0

(1 − y∗)(1 − e−γy∗
), (12)

that is

σ−1y∗ = (1 − y∗)(1 − e−γy∗
). (13)
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Figure 2: Solutions of the discrete SIS model with various initial values of

the perturbation p(0). Parameters values as in Fig. 1 except p(0) and γ as

indicated in the figure. From the period of infectiousness we get γ0 = 0.41

(see Section 4.3). If γ <γ0 the solution tends monotonically to the steady

state. While If t γ > γ0 the solution tends to the steady state through infinite

damped oscillations.
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For given γ and σ we can find a solution geometrically considering two curves,

g1(y) = σ−1y and g2(y) = (1 − y)(1 − e−γy). This is shown in Fig. 3. The

intersections of these lines define the solutions of 13. At this point we would

like to note that of the two parameters σ and γ, only the parameter σ, can be

estimated for a given real disease. At the same time the endemic equilibrium

y∗ is a parameter that can be measured and estimated. Thus equation 13 allows

us to calculate

γ = − 1

y∗ ln

(
1 − σ−1y∗

1 − y∗

)
. (14)

In particular, we have 1 ≥ σ−1y∗
1−y∗ or, equivalently

y∗ ≤ 1

σ−1 + 1
. (15)

Therefore every value between 0 and 1
σ−1+1

may be an equilibrium state for

some parameter γ, while y∗ = 0 is an equilibrium state for all of them. This

proves the second part of the theorem.

Finally, since the second derivative of g(y) = (1 − y)(1 − e−γy) is always

negative,

g′′(y) = −(2 + (1 − y)γ)γe−γy < 0, (16)

the function g(y) is convex, and therefore equation 13 cannot have more than

one nonzero solution y = y∗. Alternatively, one may multiply 13 by σ/y∗ and

note that the right hand side is a monotonically decreasing function from γσ

to 0. The theorem is proved.

4.2 Stability analysis

In the following theorem we are going to prove that the endemic equilibrium

is globally asymptotically stable.

Theorem 3 If the perturbation in 5-7 becomes zero since time T then the

solution tends to y∗, where y∗ is the endemic equilibrium , provided that γσ > 1

, and y∗ = 0 otherwise.

Proof. For all t > T + σ equation 14 has the form

yt =
σ−1∑
i=0

g(yt+i−σ), (17)
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Figure 3: The endemic equilibrium state is given by the intersection of the

curves a) g1(y) = σ−1y and and b) g2(y) = (1− y)(1− exp(−γy)). A. y∗ ≤ y+.

B. y∗ > y+, the curve c) is given by g3(y) = hy, where h = g(y+)/y+. See

explanations in Theorem 3.
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where g(y) = (1 − y)(1 − e−γy). Denote by y+ a point where g(y) takes its

maximal value. Evidently this point is a solution of the equation g′(y+) = 0.

This equation is

1 − e−γy = γ(1 + y+)e−γy+

. (18)

Consider the following two essentially different cases:

A). y∗ < y+. In this case g(y+) ≤ σ−1y+ (see Fig. 3A). The function g(u)

is increasing for u ≤ y+, so that u < w ≤ y+ implies g(u) < g(w). We define

two recurrent sequences,v1, v2, ... and u1, u2, ... by the same recurrent relation,

vk+1 = σg(vk);

uk+1 = σg(uk),

but with different initial values,

v1 = y+;

u1 = min {yt+σ+1,yt+σ+2, ..., yT+2σ, y
∗} .

Both of these sequences are monotones and they have the same limit y∗(see
Fig. 3A). Let us show by induction on k that for each t > T +kσ the following

inequalities are valid:

uk ≤ yt ≤ vk. (19)

if k = 1, then t > T + σ, therefore 17 is satisfied. Since by definition g(y) ≤
g(y+), we may write

yt =

σ−1∑
i=0

g(yt−σ±i) ≤ σg(y+) ≤ σσ−1y+ = v1,

which proves the right hand side of 19 with k = 1. The left hand side of 19 is

satisfied for T +σ < t ≤ T +2σ by definition of u1. Let k > 1 and suppose that

19 is satisfied for a given value k, provided that T + kσ < t ≤ T + (k + 1)σ.

Then for t = T + (k + 1)σ + 1 we have

uk+1 = σg(uk.) ≤
σ−1∑
i=0

g(yt−σ+i) ≤ σg(vk) = vk+1. (20)

In particular for t = T + (k + 1)σ + 1 both 19 and

uk+1 ≤ yt ≤ vk+1, (21)
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are satisfied. Again by 20 with t = T + (k + 1)σ + 1 we get 19 and 20 for

t = T + (k + 1)σ + 2. Continuing with this process until t = T + (k + 1)σ + σ

we will get 21 for all t, T + (k + 1)σ < t ≤ T + (k + 2)σ. Thus by induction

19 is proved.

Denote by k the integer part of the number t−T
σ

.That is T + kσ ≤ t <

T +(k+1)σ. If t tends to infinity then k does as well. Therefore we may write

y∗ = lim
k→∞

uk ≤ lim
t→∞

yt ≤ lim
k→∞

vk = y∗,

which proves the theorem in the case A).

B) y∗ > y+. In this case g(y∗) > σ−1y+, or, equivalently h > σ−1, (see

Fig. 3B) , where by h we mean g(y+)
y+ . Let us describe firstly some important

properties of the dynamics in this case.

B1) If for some time t0 > T + σ we have yt0 > y+, then yt > y+ for all

t ≥ t0. It suffices to show that yt > y+ implies yt+1 > y+. By means of 6 we

have

yt+1 = yt + g(yt) − g(yt−σ) ≥ yt + g(yt) − g(y+). (22)

By 16 the function g(y) is convex. Therefore in the interval [y+, 1] we have

0 = g′(y+) > g′(y) > g′(1) = e−γ − 1 > −1. (23)

In particular

yt − y+ ≥ g(y+) − g(yt). (24)

This relation and 22 imply

yt+1 ≥ yt + g(yt) − g(y+) ≥ yt + (y+ − yt) = y+.

Thus B1 is proved.

B2). If the values yt−σ, yt−σ+1, ..., yt−1 are greater than or equal to y∗ then

yt is less than y∗.
Indeed, in this case we have g(yt−σ+i) ≤ σ−1y∗, 0 ≤ i ≤ σ − 1, and

yt =

σ−1∑
i=0

g(yt−σ+i) ≤
σ−1∑
i=0

σ−1y∗ = y∗.

B3). If all values yt−σ, yt−σ+1, ..., yt−1 belong to the interval [y+, y∗], then

yt ≥ y∗.
Indeed, in this case g(yt−σ+i) ≥ σ−1y∗(see Fig. 3B), and

yt =
σ−1∑
i=0

g(yt−σ+i) ≥ σσ−1y∗.



1290 A. V. Lara-Sagahón, V. Kharchenko and M. V. José

B4) The inequality yt < y+ may not be valid for a long time after the

perturbation disappears. Consider a sequence

mt = min{yt−σ+1, yt−σ+2, ..., yt}, (25)

Since the function g is convex, we may write

g(y)−g(0)
y−0

> g(y+)−g(0)
y+−0

, y < y+.

In particular, the inequalities yt−σ+i < y+, 1 ≤ i ≤ σ, imply g(yt−σ+i) ≥
hyt−σ+i (see Fig 3B), where by definition h = g(y+)

y+ . If at the day t there is no

perturbation we get

yt+1 =

σ∑
i=1

g(yt−σ−i) ≥ h

σ∑
i=1

yt−σ+i ≥ hσmt.

In this formula hσ > 1 (see the beginning of the case B). In particular yt+1 >

mt, and mt+1 ≥ mt. By means of the same arguments we have

yt+2 = hσmt, ..., yt+σ ≥ hσmt. (26)

This implies, in particular, that mt+σ ≥ (hσ)mt. The iteration of this inequal-

ity shows that mt+sσ ≥ (hσ)smt. If the perturbation disappears at day t = T ,

we may write

yT+sσ ≥ mT+sσ ≥ (hσ)smT .

Since hσ > 1, the number (hσ)smT soon becomes greater than y+. More

precisely, (hσ)smT > y+ if s > loghσ
y+

mT
. Therefore the inequality yt < y+may

not be valid for a period longer than σ loghσ
y+

mT
days.

According to B1 and B4 we may suppose that yt > y+ for all t > T (increas-

ing T , if necessary). Under this supposition the following property is valid.

B5) The value yt+1 is located between yt and yt−σ. Indeed, by means of 6

we get

yt+1 = yt + g(yt) − g(yt − σ) = yt + g′(ξ)(yt − yt−σ), (27)

where ξ is a point between yt and yt−σ. Since g(y) is a convex function (see

equation 16) we have

0 > g′(ξ) ≥ g′(1) = e−γ − 1 > −1.

Therefore we may rewrite 27 in the form

yt+1 = yt + r(yt−σ − yt), (28)



Delay-difference SIS epidemiological model 1291

where, r = −g(ξ), 0 < r ≤ 1 − e−γ < 1.

If yt−σ ≥ yt, then yt−σ − yt ≥ 0 and 28 implies, yt+1 = yt + r(yt−σ − yt) ≤
yt + (yt−σ − yt) = yt−σ, while certainly, yt + r(yt−σ − yt) ≥ yt.

If yt−σ ≤ yt, then yt − yt−σ ≥ 0 and yt+1 = yt + r(yt − yt−σ) ≥ yt−σ, while

yt − r(yt − yt−σ) ≤ yt. Thus B5 is satisfied.

Now we are ready to show that the dynamic is globally stable, that is

limt→∞ y t = y∗. To this end consider the sequence:

mt = min{yt−σ, yt−σ+1, ..., yt}. (29)

Since the value yt+1 is located between yt and yt−σ, this sequence is mono-

tone. Therefore it has a limit, m∞ = limt→∞ mt. According to B2 this limit is

less than or equal to y∗. We claim that m∞ = y∗.
Suppose on the contrary that y∗ − m∞ = d > 0. Since m∞ is a limit of

the monotone sequence, we have m∞ = limt→∞ mt for all large enough t, say

t > T (ε). Therefore we have that first

yt ≥ m∞ − εd, (30)

for all t > T (ε), then each collection of values

yt−σ, yt−σ+1, ..., yt, (31)

with t > T (ε) + σ contains at least one element yi, such that yi ≤ m∞, and

next the property B3 shows that the collection 31 contains at least one element

yj, such that yj ≥ y∗. We will show that these three conditions lead to a

contradiction, provided that ε is a small enough amount. Let us consider a

collection,

yj, yj+1, ..., yj+σ, (32)

where yj ≥ y∗ and j > T (ε) + σ. By means of 28 and 30 we have

yj+1 = yj(1 − r) + ryj−σ ≥ y∗(1 − r) + r(m∞ − εd)

= (m∞ + d)(1 − r) + r(m∞ − εd)

= (m∞ − εd) + (1 + ε)(1 − r)d

≥ (m∞ − εd) + (1 + ε)e−γd, (33)

since 1 − r ≥ e−γ. In strict analogy, using (33), we have

yj+2 = yj+1(1 − r) + ryj−σ+1 (34)

≥ [(m∞ − εd) + (1 + ε)e−γd](1 − r) + r(m∞ − εd) (35)

≥ (m∞ − εd) + (1 + ε)e−2γd. (36)
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Continuing with this process we get

yj+s ≥ (m∞ − εd) + (1 + ε)e−sγd, (37)

for all s,0 ≤ s ≤ σ. If ε is small enough, ε < e−γσ, then ε < (1 + ε)e−γs for

all s, 0 ≤ s ≤ σ. Therefore

yj+s ≥ m∞ + [(1 + ε)e−sγd − ε]d > m∞.

This is a contradiction, since 32 according to 31 has to contain at least one

element yi, j ≤ i ≤ j + σ, such that yi ≤ m∞.

Thus, we have shown that m∞ = y∗. This equality and the definition 29

imply

yt ≥ y∗ − ε,

for all large enough t, t > T (ε). Since the function g(y) is monotone for

y > y+, we get g(yt) ≤ g(y∗ − ε) = g(y∗) + δ, where δ = g(y∗ − ε) −g(y∗) is

small enough, provided that ε does. Now, for t > T (ε) + σ, we have

yt+1 =

σ−1∑
i=0

g(yt−σ+i) ≤
σ−1∑
i=0

(g(y∗) + δ)

= σg(y∗) + σδ = y∗ + σδ.

Therefore yt+1 ∈ [y∗ − ε, y∗ + σδ] for t > T (ε) + σ. This means exactly that

limt→∞ yt = y∗. The theorem is proved.

We also observe that the limit when γ tends to infinity is the only bifurca-

tion point. In consequence, increasing the value of γ increases the amplitude

and the frequency of the damped oscillations. The return map of the solution

obtained with very large values of γ, where the dynamic is near the limiting

bifurcation point is illustrated in Fig. 4.

4.3 The critical value γ0

According to Theorem 3, the condition y∗ = y+ is critical for the dynamics.

If y∗ ≤ y+, the dynamics is almost monotonic (it is included between two

close monotonic processes, see 19), while if y∗ > y+ the dynamic has infinite

damped oscillations (see B2 and B3). The critical value γ0 is a function of the

period of infectiousness. In Table 1 we give values of γ0 for some periods of

infectiousness. Note that γ0 ≈ 2/σ if σ >> 1. The numerical solution of the
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Figure 4: Return map of the discrete SIS model. Initial conditions as Fig. 1

except γ = 5 and p(0) = 1e−5. Due to the large value of γ, the solution reaches

the steady state through infinite damped oscillations with large amplitude.

The map shows only 300 points where the steady state is not yet reached.
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σ γ0 σ γ0 σ γ0

1 2.46 5 0.41 15 0.13

2 1.12 7 0.29 20 0.10

3 0.72 9 0.22 30 0.07

4 0.53 10 0.20 40 0.04

Table 1:

equation y∗ = y+ can be found as follows. We need to find the intersection of

the curves g1(y) = (1 − y)(1 − e−γy) and g2(y) = σ−1y under the additional

condition g′
1(y) = 0. We have g′

1(y) = −(1 − e−γy) + (1 − y)γe−γy = 0, that

is 1 − e−γy + γye−γy = γe−γy. Multiplying by eγy and rearranging, we get

(1 − y)γ = eγy − 1. Thus we need to solve the system of equations

(1 − y)(1 − e−γ0y = σ−1y; (38)

(1 − y)γ0 = eγ0y − 1. (39)

Multiplying 38 by γ0 and substituting 39 in 38 we get (eγ0y − 1)(1 − e−γ0y) =

σ−1γ0y, that is eγ0y + e−γ0y = σ−1γ0y + 2. Transforming the variable t = γ0y,

the equation et + e−t = σ−1t + 2 can be solved by a numerical method of

successive substitutions.

5 Discussion

First, we note that in line with our approach the traditional stability proved

in Theorem 3 has less importance than the dynamical properties of an active

infection, γ > γ0. Indeed, the properties B2, B3 and B5 mean that the dynamic

has infinite damped oscillations, while B1 and B4 state that the proportion of

infectives, after a small initial period, will be greater than a critical quantity

y+ (provided that the spread occurs without interventions, pt = 0). The

stability may be considered just like a general tendency for the dynamics.

More precisely, if we do not accept infinitesimal values for the time step, why

should we accept an infinite number of steps? Our proof of stability uses non-

constructive “on the contrary” arguments, that is, the stabilisation process

may be very slow. Admittedly, the proofs of the global stability in the discrete

models considered by Castillo-Chavez et al. [11] and Allen et al. [3], also have

non-constructive elements. More concisely, firstly they had proved the non-

existence of any m-cycles for m > 1, and then applied a result of Cull, that

implies stability, (see [11], result 1, p. 157 and [3], Theorem 1. p. 5). Hence

the stabilisation, in general, may be a very slow process as well.
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Damped oscillations were found in 1929 by H. E. Soper [29] in his classic

endemic model [20]. A classic alternative was advanced by Bartlett [7], namely,

that undamped oscillations can be understood as a stochastic phenomenon (see

detailed discussion in [6], chapter 7). Even though our model is deterministic,

it admits stochastic external elements via random perturbation. For example,

a relatively small closed organized group (a military unit or a group of workers

or tourists) while located in a new place and has random contacts with locals

may be considered as a homogeneous and uniformly mixed population with

stochastic external perturbation.

The deterministic discrete model described here is different from the for-

mulation of Allen et al. [1]. They used a relative recovery rate to deal with

the restrictions imposed by the mass action, and then their time step has to

be very small, and it has nothing to do with the population life cycles.

Cooke et al. [12] formulated a discrete model with exponential incidence.

However, they analysed exclusively the case in which the time step is equal to

the period of infectivity.

The parameters β or γ of the incidences 1 and 2, respectively, have the

advantage of an explicit expression in terms of population and disease char-

acteristics. These parameters can be approximated by γ = kc or β = kc/N

if is small enough. The incidence function 2 clearly discriminates the role of

infectives and susceptibles, whereas the symmetry of the mass action incidence

theoretically allows that susceptibles can transmit susceptibility.

Next, if we compare our model with the continuous mass action SIS model,

it can be noted that in both models the threshold quantity, usually called

the basic reproductive number and denoted by R0, is given by the relation

R0 = βNσ. However, the SIS continuous counterpart is always monotonic

??. In our model, active infections (with γ > γ0) have more complicated

dynamics, which are characterized by the properties B1, B2, B3, B4, B5 and

by the important restriction on the endemic equilibrium given in Theorem 2.

The mass action discrete SIS model requires γ < 1 in order to obtain non-

absurd results (see [3], Lemma 2 and also Fig. 4). Nevertheless, if γ is less but

close to one, then the fact that the mass action does not lead to absurd results

neither means that it may render correct ones. It is likely that in the latter

situation the mass action conclusions are far from being reasonable. Only if

γ << 1 we have enough arguments to use this law.

Albeit several infections elicit an immune response, not always this response

confers protective immunity against reinfection and, when this happens the

infection have a SIS-type spread in human populations. Examples of these

disease are: acute respiratory infection caused by influenza virus that do not

confer immunity mainly due to the high antigenic variability of the virus; the
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streptococcal sore throat that can produce epidemics in small closed commu-

nities like military camps or small rural populations, whose etiological agent is

the bacteria Streptococcus pneumoniae which has more than 55 serologic types

and it is very unlikely that an individual acquires immunity after infection; and

gonorrhoea caused by Neisseria gonorrhoea [15]. Our model is also suitable

for epidemiological studies of a cohort of individuals infected and reinfected

during relatively short periods of time until the individuals acquire protective

immunity. An example of this situation are the continued reinfections with

rotavirus occurring in young children (from 0.5 up to 3 years of age).
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