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Abstract

In this paper a numerical method for solving ”fuzzy partial differen-
tial equation” (FPDE) is considered. We present difference method to
solve the FPDEs such as fuzzy hyperbolic equation and fuzzy parabolic
equation , then see if stability of this method exist, and conditions for
stability are given. Examples are presented showing the Hausdorff dis-
tance between exact solution and approximate solution is too small.
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1 Introduction

Knowledge about dynamical systems modeled by differential equations is of-
ten incomplete or vague. For example, for parametric quantities, functional
relationships, or initial conditions, the well-known methods of solving Fuzzy
Partial Differential Equations (FPDE) analytically or numerically can only be
used for finding the selected system behavior, e.g., by fixing unknown param-
eters to some plausible values. Here, we are going to ”operationalize” our
approach, i.e., we are going to propose a method for computing approximate
of the solution for a fuzzy partial differential equation using numerical meth-
ods. Since finding this set of solutions analytically does only work with trivial
examples, a numerical approach seems to be the only way of ”solving” such
problems. In [4], J. Buckley and T. Feuring proposed a method to solutions of
elementary fuzzy partial differential equations. In [5] T. Allahviranloo used a
numerical method to solve FPDE, that was based on the Seikala derivative.
The method proposed here is to use a difference method for solving the fuzzy
parabolic equations. The paper is organized as follows:
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In section 2 we bring some basic definitions of fuzzy numbers and fuzzy deriva-
tive which have been discussed by S. Seikkala and we will use in the paper.
In section 3 we define a FPDE, in particular cases, the fuzzy heat equation
and also use difference methods for it. The necessary conditions for stability
of proposed method will discuss in section 4. The difference methods are il-
lustrated by solving one example in section 5 and conclusions are drown in
section 6.

2 Preliminaries

We begin this section with defining the notation we will use in the paper. We
place a ˜ sign over a letter to denote a fuzzy subset of the real numbers. We
write Ã(x), a number in [0, 1], for the membership function of Ã evaluated at
x. An α−cut of Ã, written Ã[α], is defined as {x|Ã(x) ≥ α}, for 0 < α ≤ 1.

We represent an arbitrary fuzzy number by an ordered pair of functions
(u(r), u(r)), 0 ≤ r ≤ 1, which satisfies the following requirements:

1. u(r) is a bounded left continuous non decreasing function over [0, 1].

2. u(r) is a bounded left continuous non increasing function over [0, 1].

3. u(r) ≤ u(r), 0 ≤ r ≤ 1.

A crisp number α is simply represented by u(r) = u(r) = α, 0 ≤ r ≤ 1. For
arbitrary fuzzy numbers x = (x, x) , y = (y, y) and real number k,

1. x = y if and only if x(r) = y(r) and x(r) = y(r).

2. x + y = (x(r) + y(r), x(r) + y(r))

3.

(2.1)
kx =

⎧⎪⎨⎪⎩
(kx, kx) k ≥ 0,

(kx, kx) k < 0.

Let E be the set of all upper semicontinuous normal convex fuzzy numbers
with bounded α−level sets. Since the α−cuts of fuzzy numbers are always
closed and bounded, the intervals we write Ñ [α] = [N(α), N(α)], for all α.
Consider the FPDE

ϕ(Dx, Dy)Ũ(x, y) = F̃ (x, y, K̃), (2.2)

subject to certain boundary conditions where the operator ϕ(Dx, Dy) will be
a polynomial, with a constant coefficient, in Dx and Dy, where Dx(Dy) stands
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for the partial differential with respect to x(y). The boundary conditions can
be of the form Ũ(0, y) = C̃1, Ũ(x, 0) = C̃2, Ũ(M1, y) = C̃3, . . . , Ũ(0, y) = C̃1,
Ũ(0, y) = g̃1(y; C̃4), Ũ(x, 0) = f̃1(x; C̃5), . . . . F̃ (x, y, K̃) is the fuzzy function
which has K̃ = (k̃1, . . . , k̃n) for k̃i a triangular fuzzy number in Ji, 1 ≤ i ≤ n.
Let I1 = [0, M1] , I2 = [0, M2]. The fuzzy function Ũ maps I1 × I2 into fuzzy
numbers. Also let C̃ = (c̃1, . . . , c̃m) with c̃i being triangular fuzzy numbers in
the intervals Li, 1 ≤ i ≤ m. Let

K̃[α] =
n∏

i=1

k̃i[α], C̃[α] =
m∏

i=1

c̃i[α].

Let Ũ(x, y)[α] = [U(x, y; α), U(x, y; α)]. We assume that the U(x, y; α) and
U(x, y; α) have continuous partial so that ϕ(Dx, Dy)U(x, y; α) and
ϕ(Dx, Dy)U(x, y; α) are continuous for all (x, y) ∈ I1 × I2, all α. Define

Γ(x, y; α) = ϕ(Dx, Dy)Ũ(x, y)[α] = [ϕ(Dx, Dy)U(x, y; α), ϕ(Dx, Dy)U(x, y; α)],
(2.3)

for all (x, y) ∈ I1 × I2, and all α.

Definition 2.1 If for each fixed (x, y) ∈ I1 × I2, Γ(x, y; α) defines the α−cut
of a fuzzy number, then we will say that Ũ(x, y) is differentiable.

Sufficient conditions for Γ(x, y; α) to define α−cuts of a fuzzy number are:

1. ϕ(Dx, Dy)U(x, y; α) is an increasing function of α for each (x, y) ∈ I1×I2;

2. ϕ(Dx, Dy)U(x, y; α) is an decreasing function of α for each (x, y) ∈ I1×I2;
and

3. ϕ(Dx, Dy)U(x, y; 1) ≤ ϕ(Dx, Dy)U(x, y; 1) for all (x, y) ∈ I1 × I2.

Consider the system of partial differential equations

ϕ(Dx, Dy)U(x, y; α) = F (x, y; α), (2.4)

ϕ(Dx, Dy)U(x, y; α) = F (x, y; α), (2.5)

for all (x, y) ∈ I1 × I2 and all α ∈ [0, 1], where

F (x, y; α) = min{F (x, y, k)|k ∈ K̃[α]}, (2.6)

F (x, y; α) = max{F (x, y, k)|k ∈ K̃[α]}. (2.7)

We append to equations (2.4) and (2.5) any boundary conditions, for example,
if they were Ũ(0, y) = C̃1 and Ũ(M1, y) = C̃2, then we add

U(0, y; α) = C1(α), U(M1, y; α) = C2(α) (2.8)



1302 M. Afshar Kermani and F. Saburi

to equation (2.4) and

U(0, y; α) = C1(α), U(M1, y; α) = C2(α) (2.9)

to equation (2.5) where C̃i[α] = [Ci(α), Ci(α)], i = 1, 2. Let U(x, y; α) and
U(x, y; α) solves equations (2.4) and (2.5), plus the boundary equations, re-
spectively.

Definition 2.2 If Ũ(x, y)[α] = [U(x, y; α), U(x, y; α)], defines the α−cut of a
fuzzy number, for all (x, y) ∈ I1×I2, then Ũ(x, y) is the solution for (2.2), See
[4].

3 A fuzzy partial differential equation

In this section we solve the two types of FPDE as numerically. Fuzzy parabolic
equation
Consider the fuzzy heat equation which is illustrated below with the parabolic
equation:

(Dt − β2DxDx)Ũ(x, t) = 0, 0 < x < l, t > 0, (3.10)

where

Ũ(0, t) = K̃1, Ũ(l, t) = K̃2, t > 0,

Ũ(x, 0) = f̃(x), 0 < x < l.

If (∂2Ũ
∂x2 ) ∈ E and (∂Ũ

∂t
) ∈ E then by (2.4) and (2.5) we have

(Dt − β2DxDx)U(x, t; α) = 0,

(Dt − β2DxDx)U(x, t; α) = 0, 0 < x < l, t > 0, α ∈ [0.1]
(3.11)

where

U(0, t; α) = K1(α), U(l, t; α) = K2(α), t > 0, α ∈ [0.1],

U(0, t; α) = K1(α), U(l, t; α) = K2(α), t > 0, α ∈ [0.1],

U(x, 0; α) = f(x; α), U(x, 0; α) = f(x; α) 0 < x < l, α ∈ [0.1].
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Assume Ũ is a fuzzy function of the independent crisp variables x and t.
Subdivide the x-t plane into sets of equal rectangles of sides δx = h, δt = k,
by equally spaced grid lines parallel to Oy, defined by xi = ih, i = 0, 1, 2, . . .
and equally spaced grid lines parallel to Ox, defined by yj = jk, j = 0, 1, 2, . . .
as shown in (fig 1).
Denote the value of Ũ at the representative mesh point p(ih, jk) by

Ũp = Ũ(ih, jk) = Ũi,j (3.12)

and also denote the parametric form of fuzzy number, Ũi,j as follow

Ũi,j = (ui,j, ui,j). (3.13)

Then by Taylor’s theorem and definition of standard difference

(DxDx)Ũi,j = ((DxDx)Ũi,j, (DxDx)Ũi,j),

where

(DxDx)Ũi,j � u{(i + 1)h, jk} − 2u{ih, jk} + u{(i − 1)h, jk}
h2

,

(DxDx)Ũi,j � u{(i + 1)h, jk} − 2u{ih, jk} + u{(i − 1)h, jk}
h2

.

By (3.12) and (3.13) we have

(DxDx)Ũi,j � ui+1,j−2ui,j+ui−1,j

h2 ,

(DxDx)Ũi,j � ui+1,j−2ui,j+ui−1,j

h2 ,

(3.14)
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with a leading error of order h2. With this notation the forward - difference
approximation for (Dt)Ũ at P is

(Dt)Ũi,j � ui,j+1−ui,j

k
,

(Dt)Ũi,j � ui,j+1−ui,j

k
,

(3.15)

with a leading error of O(k). By (3.14) and (3.15) and definition of standard
difference one finite-difference approximation to

(Dt)Ũ − β2(DxDx)Ũ = 0̃ (3.16)

is

(Dt)Ũ − β2(DxDx)Ũ = ε(r − 1) ,

(Dt)Ũ − β2(DxDx)Ũ = ε(1 − r) ,

or the following equations must be hold:

ui,j+1 − ui,j

k
=

β2(ui+1,j − 2ui,j + ui−1,j)

h2
(3.17)

ui,j+1 − ui,j

k
=

β2(ui+1,j − 2ui,j + ui−1,j)

h2
(3.18)

where Ũ = (u, u) is the exact solution of the approximating difference equa-
tions, xi = ih, (i = 0, 1, 2, . . .) and tj = jk, (j = 0, 1, 2, . . .). This can be
written as

ui,j+1 = rui−1,j + (−2r)ui,j + rui+1,j + ui,j (3.19)

ui,j+1 = rui−1,j + (−2r)ui,j + rui+1,j + ui,j (3.20)

where r = β2k
h2 . Hence we can calculate the unknown pivotal values of u along

the first time-row, t = k, in terms of known boundary and initial values along
t = 0, then the unknown pivotal values along the second time-row in terms of
the calculated pivotal values along the first, and so on.

4 A necessary condition for stability

Now we are going to consider the stability of the classical explicit equations
(3.19), (3.20). If the boundary values at i = 0 and N, j > 0 are known, then
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2(N − 1) equations can be written in matrix as

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1,j+1

u2,j+1
...

uN−1,j+1

u1,j+1

u2,j+1
...

uN−1,j+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2r 1 r
. r 1 r

.
. . .

. . .
. . .

. r 1 r
−2r r 1

1 r 0 −2r
r 1 r .

. . .
. . .

. . . .
r 1 r .

r 1 −2r

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1,j

u2,j
...

uN−1,j

u1,j

u2,j
...

uN−1,j

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.21)

i.e. [
wj+1

wj+1

]
= P

[
wj

wj

]
(4.22)

where

P =

[
A B
B A

]
, A = (−2r)I, B = I + r

⎡⎢⎢⎢⎢⎢⎣
0 1

1 .
. . .

. . . . 1
1 0

⎤⎥⎥⎥⎥⎥⎦ . (4.23)

Before proving the stability of the method, below lemmas should be considered
:

Lemma 4.1 Let x be an eigenvector of the matrix A corresponding to the
eigenvalue λ . Then Ax = λx. Hence A(Ax) = A2x = λAx = λ2x showing
that the matrix A2 has an eigenvalue λ2 corresponding to the eigenvector x.
Similarly Apx = λpx p = 3, 4, . . . . [?]

Lemma 4.2 If f(A) = apA
p + ap−1A

p−1 + . . . + a0I is a polynomial then
F (A)x = (apλ

p + . . .+a0)x = f(λ)x, showing that f(A)has an eigenvalue f(λ)
corresponding to the eigenvector x. [?]

Lemma 4.3 The eigenvalues of a common tridiagonal matrix the eigenvalue
of the N × N matrix ⎡⎢⎢⎢⎢⎢⎢⎢⎣

a b
c a b

. . .
. . .

. . .

c a b
c a

⎤⎥⎥⎥⎥⎥⎥⎥⎦
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are

λk = a + 2{
√

bc} cos
kπ

N + 1
k = 1, 2, . . . , N

where a, b and c may be real or complex.[6]

Theorem 4.1 Let matrix P has special structure as follow[
A B
B A

]

then the eigenvalues of P are union of eigenvalues of A + B and eigenvalues
of A − B.[7]

Now we prove the stability of this method in the following theorem.

Theorem 4.2 If r = k
h2 < 1

2
difference equations (3.19) and (3.20) are stable.

Proof:
It is sufficient to show in (4.22) ρ(P ) < 1, thus by theorem (4.1) it is enough
to find eigenvalues of

A + B =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 − 2r r
r 1 − 2r r

. . .
. . .

. . .

r 1 − 2r r
r 1 − 2r

⎤⎥⎥⎥⎥⎥⎥⎥⎦
and

A − B =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−2r − 1 −r
−r −2r − 1 −r

. . .
. . .

. . .

−r −2r − 1 −r
−r −2r − 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦ .

Let matrices (N − 1) × (N − 1) T and T ′ as follow

T =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎦ , T ′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2 1
1 2 1

. . .
. . .

. . .

1 2 1
1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
thus

A + B = I − rT,
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A − B = −rT ′ − I,

where I2(N−1) is the unit matrix of order 2(N−1) and TN−1 an (N−1)×(N−1)
matrix whose eigenvalues λT are given by

λT = λT ′ = 4 cos2 kπ

2(N + 1)
k = 1, 2, . . . , N − 1.

Hence the eigenvalues of A − B and A + B as shown later in Lemma 4.2 are

λA−B = −1 − 4r cos2 kπ

2(N + 1)
,

λA+B = 1 − 4r cos2 kπ

2(N + 1)
.

Therefore the equations will be stable when

ρ(A − B) = max
k

| − 4r cos2 kπ

2(N + 1)
− 1| < 1 k = 1, 2, . . . , N − 1

ρ(A + B) = max
k

|1 − 4r cos2 kπ

2(N + 1)
| < 1 k = 1, 2, . . . , N − 1

i.e.

−1 < −1 − 4r cos2 kπ

2(N + 1)
< 1 k = 1, 2, . . . , N − 1,

−1 < 1 − 4r cos2 kπ

2(N + 1)
< 1 k = 1, 2, . . . , N − 1.

As h → 0 , N → ∞ and cos2 kπ
2(N+1)

→ 1 hence |r| < 1
2
.

This is the necessary and sufficient condition for the difference equations to be
stable when the solution of the FPDE dose not increase as t increases.

5 Examples

Example 5.1 Consider the fuzzy parabolic equation

∂Ũ

∂t
(x, t) − ∂2Ũ

∂x2
(x, t) = 0, 0 < x < l, t > 0, (5.24)

with the boundary conditions
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Ũ(0, t) = Ũ(l, t) = 0, t > 0,

and

Ũ(x, 0) = f̃(x) = k̃cos(πx − π/2), 0 ≤ x ≤ 1.

and k̃[α] = [k(α), k(α)] = [α − 1, 1 − α].

The exact solution for

∂U
∂t

(x, t; α) − ∂2U
∂x2 (x, t; α) = 0, (5.25)

∂U
∂t

(x, t; α) − ∂2U
∂x2 (x, t; α) = 0, (5.26)

for 0 < x < l, t > 0 are U(x, y; α) = k(α)e−π2tcos(πx−π/2) and U(x, y; α) =
k(α)e−π2tcos(πx−π/2). We use the equations (3.19) and (3.20) to approximate
the exact solution with h = 0.1 and k = 0.00001, therefore r = 0.001. Fig. 3
shows the exact and approximate solution at the point (0.1, 0.000001) for each
α ∈ (0, 1]. The Hausdorff distance between the solutions is 1.2363e − 004.

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

figure 2. h=0.1, l=0.0001 

exact
approx.

6 Conclusions

We presented difference methods for solving fuzzy partial differential equations.
This numerical method based on the seikkala derivative. If all terms of FPDE
belong to E then solutions of FPDE , would exist, which have been concluded
from the numerical values. We presented necessary conditions for stability of
this method.
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