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1. Introduction

Recently, fractional calculus is used more and more in modern technology.
Phenomena in several domains are characterized to be anomalous. In the prob-
abilistic point of view, these phenomena can not be covered by the Gaussian
approach. For example, diffusions in disordered, fractal and chaotic mediums,
kinematics in viscoelastic medium, relaxation processes in complex systems,
propagation of seismic waves, pollution and transport of data across the inter-
net (see e.g. [1] [10] [12] [19] [20] [23] [24] [29] [31] [32] [37] [39] [40] [41] [42] and
the part II of [36] and the references therein). The fractional calculus allows
the modeling of these anomalies and describes precisely material properties.
In particular, fractional differential operators are introduced in the modeling.
It is known that different definitions of fractional differential operators, not
necessary equivalent, have been given. The Riemann-Liouville operator, the
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fractional power of the Laplacian and the operators given by Riesz-Bessel po-
tential are largely used. The fractional heat equation of order less than 2 is
connected with stable Lévy processes (see [4] [5] [7] [11][18]). The stable laws
associated to the Riemann-Liouville, or Nishimoto fractional differential oper-
ators are totally skewed, and the stable laws associated to the fractional power
of the Laplacian are symmetric. Feller idea was to introduce an operator for
which all stable laws will be covered. In [7], he gave the fractional derivative
operator as the infinitesimal generator of the stable semigroup. A representa-
tion of this operator via Fourier transform is given by Gorenflo and Mainardi
[11]. In [18], Komatsu, dealing with other problems, gave an explicit form
to the infinitesimal generator of the stable semigroup in the multidimensional
case. In [15], [16], Jacob introduced a class of pseudodifferential operators
which are connected with Lévy processes. In spite of the importance of these
results, the order of these operators is less than two. Furthermore, in practice
partial differential equations of high order are used (see the references above
and [9]).

We note that the question of establishing a link between high order partial
differential equations, even of integer order, and stochastic processes is not
obvious. Only few equations of high order have been treated in a probabilis-
tic context (see e.g. [2], [3]). Krylov has introduced a new approach, called
quasiprobabilistic [18]. This approach allowed the generalization of the sto-
chastic calculus of Brownian motion to pseudoprocesses (see e.g. [8] [13] [14]
[17] [18] [25] [26] [27] [28] and the references therein).

The aim of this work is to extend the definitions of the fractional differential
operators connected with stable laws to higher order and to study its func-
tional properties. The operator introduced in this paper is given via Fourier
transform on L2(Rd) and the second characteristic function of the stable law.
The formula of this function still makes sense when α > 2, but the function
is not negative definite anymore [15]. In particular, we prove that this oper-
ator is the infinitesimal generator of an analytic semigroup. A finite positive
measure on the unit sphere in R

d is used in the definition as an auxiliary
parameter. For special values of it, the defined operator coincides with the
fractional Laplacian given in [22] and [38]. Further, when the operator is of
order less than 2, it coincides with the operators given in [7] and [11] and with
the pseudodifferential operator, without Gaussian part, [15] [16]. We prove
also that the totally skewed case of this operator coincides with Liouville frac-
tional differential operator and it keeps most of the properties known for the
differentiation. Furthermore, it will allow in its turn to extend the stochastic
calculus of stable Lévy processes to pseudoprocesses. Only few works are done
in this direction. In [3], the authors are interested in the heat type equation of
order 4. They remarked that the subordination method remains valid when us-
ing stable pseudoprocesses with ”stability index” less than 4, but they did not
give any indication on the associated differential equations. In [5], the authors
represented the solutions of high order fractional heat type equations driven by
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Liouville or Nishimoto operators via Lévy motion. In [4], a probabilistic and
a quasiprobabilistic approach of high order fractional Fokker-Planck equations
are studied. The fractional differential operators used are the Liouville and
the Nishimoto operator and the onedimensional operator defined in this pa-
per. For some cases the solutions, are represented, in the probabilistic context,
as functionals of subordinators.

The paper is organized as follows. In the next section we introduce the
fractional differential operator on L2(Rd), d ≥ 1 and study its properties.
Some of them can not be applied when d = 1. Therefore, we devote section 3
to the study of the onedimensional case using a relevant representation for the
definition. Further, good illustrations of multidimensional results can be seen
through the onedimensional operator. At the end of the section, we discuss
the partial fractional differentiation. On one hand, it generalizes the entire
partial differentiation and on the other hand, it connects the multidimensional
and the onedimensional operator. We note that we can define in a similar way
fractional differential operators on L2(D) for bounded D ⊂ Rd.

2. The multidimensional Fractional Differential Operator

Let α ∈ R+\N and let Γ be a finite positive measure on the unit sphere in
Rd, d ≥ 1; Sd−1 = {s ∈ Rd \ |s|d = 1}. We define the function Γψα : Rd → C

by

Γψα(λ) = −
∫
Sd−1

|λ.s|α
(
1 − isgn(λ.s) tan

απ

2

)
Γ(ds),(1)

where λ.s denotes the scalar product in Rd.
It is known that when 0 < α < 2 and α �= 1, Γψα(.) is the second character-

istic function of an α−stable random vector. We recall that it is proved that
the characteristic function of a stable law is strictly positive, so its logarithm
exists, it is called the second characteristic function, see e.g. [21], [34], [35] and
[36]. First, we give some properties of this function for α ∈ R+\N. It is easy
to prove the following Lemma using the homogeneity property of the function

Γψα and the fact that the measure Γ is bounded on the sphere.

Lemma 1. The function Γψα is continuous on Rd and satisfies the inequality∣∣
Γψα(λ)

∣∣ ≤ Kα,Γ|λ|αd ,(2)

for all λ ∈ Rd, where Kα,Γ is a constant depending on α and Γ.

Lemma 2. If the measure Γ satisfies the assumption

There exists 0 �= m(.) ∈ Cd(Sd−1) such that Γ(ds) = m(s)σ(ds),(3)

then Γψα(.) ∈ Cd+1(Sd−1).

Proof. Similar to the proof of Lemma 1.1 in [18].

Corollary 1. The function Γψα(.) is d+ 1- differentiable on Rd\{0}.
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Lemma 3. If the measure Γ satisfies the assumption

There exists a constant cα,Γ > 0 such that

∫
Sd−1

|ξ.s|αΓ(ds) ≥ cα,Γ, ∀ξ ∈ Sd−1,

(4)

then Γhα(t, .) : Rd → C defined by Γhα(t, λ) = exp[tΓψα(λ)] belongs to Lp(Rd), ∀p ∈
(0,∞] and ∀t > 0.

Let us give the Fourier transform and its inverse on L2(Rd) by

F{ϕ(x); λ} = ϕ̂(λ) =
∫
�d exp(ix.λ)ϕ(x)dx,

F−1{ϕ(λ);x} = ϕ̆(x) = (2π)−d
∫
�d exp(−ix.λ)ϕ(λ)dλ,

(5)

where ϕ ∈ L2(Rd). It is known that the Fourier transform is an isometric on
L2(Rd).

Lemma 4. If the measure Γ satisfies (4), then the function Γpα(t, x) =
F−1{Γhα(t, λ);x} satisfies the following properties for all α ∈ R+\N and for
all t > 0

(i)
∫
�d Γpα(t, x)dx = 1,

(ii) Γpα(t, .) is real and symmetric relatively to x, when Γ is symmetric, i.e.
when Γ(B) = Γ(−B), for all Borel subsets of Sd−1,

(iii) Γpα(t, x) = t−
d
α Γpα(1, t

− 1
αx) (Scaling Property),

(iv) Γpα(t, .) ∈ {f ∈ C∞(Rd) and Dβf is bounded and tends to zero when
|x|d tends to ∞ , ∀ multi-index β },

(v) If Γ satisfies (3), then for α > 1, Γpα(t, .) ∈ Lp(Rd), ∀ p ∈ [1,∞],
(vi) If Γ satisfies (3), then Γpα(t, .) satisfies the semi-group property, or the

Chapman Kolmogorov Equation i.e. for s, t ≥ 0

Γpα(t + s, x) =

∫
�d

Γpα(t, ξ)Γpα(s, x− ξ)dξ.

Proof
It is easy to see (i) − (iv).
(v) Let ν = (ν1, ν2, ..., νd) ∈ Nd be a multi-index with |ν| ≤ d + 1. From

Lemma 2 and using the fact that Γψα(.) is homogeneous, we obtain (see e.g.[18])

|∂νλeΓψα(λ)| ≤ Ce−cα,Γ|λ|αd (|λ|α−dd + |λ|(d+1)α−d
d ),

where ∂νλ = ∂ν1λ1
∂ν2λ2

...∂νd
λd

. Consequently, ∂νλe
Γψα(λ) ∈ L1(Rd) for α > 1. But

|xνΓpα(1, x)| = |F−1{∂νλeΓψα(λ); x}|, hence |xνΓpα(1, x)| ≤ C . In particular,
taking ν = νk = (0, 0, .., d + 1, ..., 0), we obtain |Γpα(1, x)| ≤ C|xk|−d−1, so
|Γpα(1, x)| ≤ C min

1≤k≤d
|xk|−d−1. Thanks to the equivalence of norms in Rd, we

conclude that Γpα(1, x) = O(|x|−d−1
d ), as |x|d → ∞. By (iv), we get the result.

(vi) From (v) and (i), we have Γpα(t, .), Γp̂α(t, .) ∈ L1(Rd), so Γpα(t, .) ∗
Γpα(s, .) ∈ L1(Rd). Further, F(Γpα(t, .)∗Γpα(s, .)) = Γp̂α(t, .)Γp̂α(s, .) = Γhα(t+
s, .). By applying Fourier inverse, we obtain the result see [15] p 89. �
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In the sequel of this section, we suppose that, Γ satisfies assumptions (3)
and (4). We denote the norm respectively the scalar product in L2(Rd) by ||.||2
respectively 〈f, g〉L2 . Using the properties of the function Γpα(t, .), we get

Proposition 1. The family of operators {ΓTα(t), t ≥ 0} defined on L2(Rd) by

ΓTα(t)f(x) =

∫
�d

Γpα(t, x− y)f(y)dy,

is a uniformly strongly continuous semigroup.

Let us now define the fractional differential operator.

Definition 1. The fractional differential operator Dα
Γ , α ∈ R+\N, is defined

on L2(Rd) by

Dα
Γf(x) = F−1{Γψα(λ)F{f(x); λ};x},(6)

where Γψα(λ) is given by (1) and F (respectively F−1) is the Fourier (respec-
tively Fourier inverse) transform defined on L2(Rd) .

The domain of definition of Dα
Γ is given by

D(Dα
Γ) = {f ∈ L2(Rd)/Γψα(.)f̂ ∈ L2(Rd)}.(7)

It is easy to see that S∞ ⊂ D(Dα
Γ) and is invariant by Dα

Γ , where S∞ is the
set of rapidly decreasing infinitely differentiable functions on Rd, hence D(Dα

δ )

is dense in L2(Rd). Further {f ∈ L2(Rd)/|λ|αf̂ ∈ L2(Rd)} ⊂ D(Dα
Γ ). For

some measures Γ, the imaginary part of Γψα(.) can vanish. This allows to the
operator Dα

Γ to be symmetric. However, we can define selfadjoint fractional
differential operators without any supplementary condition on the measure Γ.

Definition 2. The fractional differential operator 0D
α
Γ , α ∈ R+, is defined on

L2(Rd) by

0D
α
Γf(x) = F−1{Γψ

0
α(λ)F{f(x); λ};x},(8)

where

Γψ
0
α(λ) = −

∫
Sd−1

|λ.s|αΓ(ds).

The domain of definition of 0D
α
Γ is given by (7) replacing Γψα(λ) by Γψ

0
α(λ).

Remark 1.

• It is clear that Definition 1 is also applicable when α = 2n. Then it
generalizes the notion of the classical differential operator. In this work,
we deal only with non entire orders.

• If Γ satisfies, under normalization, the identity:
∫
Sd−1 |ξ.s|αΓ(ds) = 1,∀ξ ∈

Sd−1, then 0D
α
Γ coincides with the fractional power of the Laplacian [22].

• We note that the study of the operator Dα
Γ is also applicable for 0D

α
Γ with

the expectation of the properties connected to the selfadjointness.
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Theorem 1. The operator Dα
Γ with α > 1

2
is the infinitesimal generator of the

semigroup of convolution {ΓTα(t), t ≥ 0}.
Proof
Let A and (Ra, a > 0) be the infinitesimal generator respectively the resol-

vent associated to the semigroup ΓTα(t), t ≥ 0, i.e. A is defined on D(A) =
{f ∈ L2(Rd)/ limt↓0 1

t
(ΓTα(t)f−f) exists}, by the formula Af = limt↓0 1

t
(ΓTα(t)f−

f) and Ra is the bounded operator (a − A)−1 : L2(Rd) → D(A). The resol-
vent determines uniquely the associated operator and is represented via the
semigroup by the formula

Ra =

∫ +∞

0

e−asΓTα(s)ds(9)

see e.g. [22], p.10, [38], p.240, [30], p8. Hence to prove that Dα
Γ is the in-

finitesimal generator of the semi group {ΓTα(t)}t≥0, it is sufficient to prove
that

Ra(a−Dα
Γ) = IdD(Dα

Γ) and (a−Dα
Γ)Ra = IdL2,(10)

where IdX is the identity on X. Let f ∈ D(Dα
Γ),

Ra((a−Dα
Γ)f) = aRa(f) − Ra(D

α
Γf).(11)

Using the representation of the resolvent, the definition ofDα
Γ , Fubini’s theorem

and the integration by parts to calculate the second term, we get

Ra(D
α
Γf)(x) =

∫ +∞
0

e−asΓTα(s)(Dα
Γf)(x)ds

=
∫ +∞

0
e−asF−1(exp[Γψα(.)s]Γψα(.)f̂)(x)ds

= (2π)−d
∫
�d e

−iλ.x
( ∫ +∞

0
e−as exp[Γψα(λ)s]Γψα(λ)ds

)
f̂(λ)dλ

= −F−1(f̂)(x) + a
∫ +∞
0

e−asF−1
(

exp[Γψα(λ)s]f̂(λ)
)
(x)ds

= −f(x) + a
∫ +∞

0
e−as(Γpα(s, .) ∗ f)(x)ds

= −f(x) + a(Raf)(x)

Inserting this in (11), we obtain the first identity in (10).
Now let f ∈ L2(Rd). First, we prove that Raf ∈ D(Dα

Γ), then we calculate
the term Dα

Γ(Raf) using the same tools as above.

Γψα(λ)F
(
Raf

)
(λ) = Γψα(λ)F

( ∫ +∞
0

e−asΓTα(s)f(x)ds
)
(λ)

=
( ∫ +∞

0 Γψα(λ)e−as exp[Γψα(λ)s]ds
)
(f̂)(λ)

=
(
− 1 + a

∫ +∞
0

e−as exp[Γψα(λ)s]ds
)
(f̂)(λ)

= −f̂(λ) + a
∫ +∞

0
e−as

(
exp[Γψα(λ)s]f̂ (λ)

)
ds

= −f̂(λ) + aF
( ∫ +∞

0
e−asΓTα(s)fds

)
(λ) ∈ L2(Rd)
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On the other hand using the result in the above equality, we get

Dα
Γ(Raf)(x) = F−1

(
Γψα(λ)F(

Raf
)
(λ)

)
(x)

= F−1
(
− f̂(λ) + aF

(∫ +∞
0

e−asΓTα(s)fds
)
(λ)

)
(x)

= −f(x) + a
∫ +∞

0
e−asΓTα(s)f(x)ds,

hence the result. We note that the Fubini’s Theorem is applicable thanks to
the inequalities∫ +∞

0 e−as
( ∫
�d | exp[Γψα(λ)s]||Γψα(λ)||f̂(λ)|dλ

)
ds

≤ K
∫ +∞
0 e−as

( ∫
�d exp[−cα,Γ|λ|αs)]|Γψα(λ)||f̂(λ)|dλ

)
ds

≤ K
( ∫
�d |Γψα(λ)|2α|f̂(λ)|2dλ

)1
2 ∫ +∞

0 e−as
( ∫
�d exp[−2cα,Γ|λ|αs)]dλ

)1
2
ds

≤ K
( ∫
�d exp[−2cα,Γ|λ|α)]dλ

)1
2
(∫ +∞

0 e−ass
−1
2α ds

)
,

∫
�d |Γψα(λ)|2α|f̂(λ)|2dλ <∞, because f ∈ D(Dα

Γ) and
∫ +∞
0 e−as

(∫
�d | exp[Γψα(λ)s]||Γψα(λ)||f̂(λ)|dλ

)
ds

≤ K
∫ +∞
0 e−as

( ∫
�d exp[−cα,Γ|λ|αs)]|f̂(λ)|dλ

)
ds

≤ K||f ||2
(∫
�d exp[−2cα,Γ|λ|α)]dλ

)1
2
( ∫ +∞

0 e−ass
−1
2α ds

)
.

The final bounds in these chains of inequalities are finite since α > 1
2
. �

Remark 2. We note that for α < 1
2
, we can prove, using other methods, that

the infinitesimal generator of the semigroup ΓTα is Dα
Γ , see e.g. [7], [11] and

[18]. In particular, in the last paper, an integral representation is also given to
this generator for the case 0 < α < 2, see also [4] and [6].

Corollary 2. The operator Dα
δ is closed with dense domain.

Proposition 2. Let Dα
Γ and 0D

α
Γ′ be the fractional differential operators de-

fined above where α ∈ R+\N and Γ,Γ′ satisfying assumptions (3) and (4).
Then

• Dα
Γ
∗ = Dα

Γ−, where Γ− is given by Γ−(B) = Γ(−B), for all Borel subsets

of Sd−1, and 0D
α
Γ′ is selfadjoint.

• 
(Dα
Γ) := 1

2
(Dα

Γ + Dα
Γ
∗) = 0D

α
Γ . 
(Dα

Γ) is called the real part of the
operator Dα

Γ .
• 〈−Dα

Γf, f〉L2 ≥ 0, ∀f ∈ D(Dα
Γ )

⋂
L2(Rd; R), where L2(Rd; R) is the sub-

space of square integrable real functions.
• Let f, g ∈ D(Dα

Γ )
⋂
L2(Rd; R), then the integration by parts formula holds;∫

�d

Dα
Γf(x)g(x)dx =

∫
�d

f(x)Dα
Γ−g(x)dx,

∫
�d

0D
α
Γ′f(x)g(x)dx =

∫
�d

f(x)0D
α
Γ′g(x)dx,
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• The associated sesquilinear form,

E : D(Dα
Γ ) ×D(Dα

Γ) → C

is given for all f, g ∈ D(Dα
Γ) by

E(f, g) := 〈Dα
Γf, g〉L2 =

∫
�d

Γψα(λ)f̂ (λ)ĝ(λ)dλ.

• The operator Dα
0 is self adjoint.

Proof
The proof follows from the equalities: Γψα(λ) = Γ−ψα(λ) and

�〈−Dα
Γf, f〉=tan

απ

2

[ ∫
�d

∫
{s∈Sd−1\λ.s<0}

|λ.s|αΓ(ds)|f̂ (λ)|2dλ

−
∫
�d

∫
{s∈Sd−1\λ.s>0}

|λ.s|αΓ(ds)|f̂ (λ)|2dλ
]

= tan
απ

2

∫
�d

∫
{s∈Sd−1\λ.s>0}

|λ.s|αΓ(ds)
(
|f̂ (−λ)|2 − |f̂(λ)|2

)
dλ = 0,

where � means the imaginary part. �

Remark 3. It is obvious that the sesquilinear E is not Markovian [22].

The operator Dα
Γ is not, in general, selfadjoint, so complex values in its spec-

trum σ(Dα
Γ) are expected. In the theorem below, we prove that the spectrum

of Dα
Γ is given by the values of the function Γψα.

Theorem 2. σ(Dα
Γ) = {Γψα(λ), λ ∈ Rd}.

Proof
Let ξ ∈ C, we solve the equation (ξ − Dα

Γ)f = g, in D(Dα
Γ) for all g ∈

L2(Rd) when Γψα(λ) �= ξ,∀λ ∈ Rd. Using Fourier transform, we get f̂ (λ) =
(ξ− Γψα(λ))−1ĝ(λ) and by the fact that |ξ− Γψα(λ)| ≥ minλ∈�d |ξ− Γψα(λ)| =
c(ξ) > 0, we conclude that (ξ−Γψα(λ))−1ĝ ∈ L2(Rd) and ||(ξ−Γψα(λ))−1ĝ||2 ≤
c−1(ξ)||ĝ||2. Further, Γψα(λ)

ξ−Γψα(λ)
is continuous and bounded on R

d, so (ξ −
Γψα(λ))−1ĝ ∈ D(Dα

Γ ). �

Corollary 3. The spectra of the operator Dα
Γ is situated inside the closed cone

Cδ′ := {z ∈ C : | arg z| ≥ π − δ′π
2
}, where δ′ = min{2 − α+ [α]2, α− [α]2} and

[α]2 is the largest integer less than α (even part).

Theorem 3. The semigroup ΓTα(t) associated to the operator Dα
Γ can be ex-

tended to an analytic semigroup on the sector Δδ′ = {z ∈ C : | arg z| <
π
2
(1− δ′)} and ||ΓTα(z)|| is uniformly bounded in every closed subsector Δθ of

Δδ′ (δ′ is given in Corollary 3) .
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Proof. It is sufficient to prove that for all f ∈ L2(Rd), t �→ ΓTα(t)f is differ-
entiable for all t > 0 and there exists a constant C such that ||Dα

ΓΓTα(t)|| ≤
ct−1(the bounded operator norm)(see [30]). In fact, ΓTα(t)f is differentiable

iff ΓTα(t)f ∈ D(Dα
Γ). But Γψα(λ) ˆ(ΓTα(t)f)(λ) = Γψα(λ)eΓψα(λ)tf̂ (λ) ∈ L2(Rd),

thanks to the fact that f ∈ L2(Rd) and |Γψα(λ)eΓψα(λ)t| is bounded for all
t > 0. Further

||Dα
ΓΓTα(t)f ||22 = ||Γψα(.)eΓψα(λ)tf̂ (.)||22 =

∫
�d

|Γψα(λ)eΓψα(λ)t|2|f̂(λ)|2dλ.

By scaling Property and change of variable, we get

||Dα
ΓΓTα(t)f ||22 = t−2− 1

α

∫
�d

|Γψα(λ)eΓψα(λ)|2|f̂(t−
1
αλ)|2dλ

≤ Ct−2

∫
�d

|f̂(λ)|2dλ. �

3. The Onedimensional Fractional Operator

It is clear that when d=1, the measure Γ used in section 2 is Dirac measure
concentrated on the points +1,−1. Consequently, it does not satisfy assump-
tion (3). In this section, we define the fractional differential operator via an
equivalent representation which is more relevant. Let f be a function in L2(R),

Definition 3. Let α ∈ R+. The α−fractional derivative of the function f in
the point x ∈ R, when it exists, is given by

Dα
δ f(x) = F−1{δψα(λ)F{f(x); λ};x},(12)

where

δψα(λ) = − |λ|α e−iδ π
2
sgnλ,(13)

|δ| ≤ min{α − [α]2, 2 + [α]2 − α}, [α]2 is the even part of α, and δ = 0 when
α ∈ 2N + 1 and F is the Fourier transform in L2(R).

The operator Dα
δ given by (12) and (13) is defined on

D(Dα
δ ) = {f ∈ L2/|λ|αf̂(λ) ∈ L2}.

It is easy to see that S∞ ⊂ D(Dα
δ ).

Let us introduce as in section 2, the function δhα(t, λ) = e−t|λ|
αe−i δπ

2 sgnλ

. It is
clear that δhα(t, .) ∈ Lp(R), ∀1 ≤ p ≤ ∞. Let δpα(t, x) its Fourier inverse. In
the same way as in Lemma 4, we can prove properties (i), (iii), (iv). Further,
we have

Lemma 5. ∀α ∈ R+\N, ∀t > 0,
(i) δpα(t, x) is real and is not symmetric relatively to x when δ �= 0,
(ii) −δpα(t, x) = δpα(t,−x),
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(iii) δp
(l)
α (1, x) =

1
π

∑n
j=1 |x|−αj−(l+1) (−1)j+l

j!
Γ(αj + l + 1) sin j (α+δ)

2
π + O(|x|−α(n+1)−(l+1)), when

|x| is large, where p
(l)
α (1, .) is the derivative of order l of pα(1, .),

(iv) limt→0 δpα(t, x) = δ0(x).

Proof
It is easy to see (i) and (ii).
(iii) It is sufficient to prove this property for the function δpα(1, x) when

x > 0. In fact, using property (ii), we get (iii) for x < 0. Moreover, using the
representation

δp
(l)
α (1, x) =

1

2π

∫ +∞

−∞
(−iλ)l exp

[
−iλx− |λ|α e−i δπ

2
sgnλ

]
dλ,

we can see that the proof for l > 0 is similar to the proof for the case l = 0.
The function δpα(1, x) can be written as

δpα(1, x) =
1

π

{

∫ +∞

0

exp
[
−iλx− λαe−i

δπ
2

]
dλ}.

Let 0 < r,R <∞ and let the curve Cδ: [r, R]∨{Reiδθ, 0 ≤ θ ≤ π
2α
}∨{λei δπ

2α , r ≤
λ ≤ R}∗ ∨ {reiδθ, 0 ≤ θ ≤ π

2α
}∗, where [r, R] designs the segment in the real

axis between r and R, the symbol ∨ means followed by and ∗ means that the
curve is taken in the opposite direction. By the Cauchy Theorem the integral

of the function exp
[
−izx− zαe−i

δπ
2

]
over Cδ vanishes, further the integrals

over the two arcs tend to zero when R tends to infinity and r tends to zero, so∫ +∞

0

exp
[
−iλx− λαe−i

δπ
2

]
dλ = ei

πδ
2α

∫ +∞

0

exp
[
−iλxeiπδ

2α − λα
]
dλ.

By integrating the function ei
πδ
2α exp

[
−izxeiπδ

2α − zα
]

over the curve C−1 when

δ is positive and over C1 when δ is negative, we get

δpα(1, x) =
1

π

{

∫ +∞

0

ei
π(δ−1)

2α exp
[
−λxeiπ(α+δ−1)

2α − λαe−i
π
2

]
dλ}.

Making the change of variable ξ = xλ, and then expanding the exponential
containing x in Taylor series, we find

δpα(1, x) =
1

πx

{eiπ(δ−1)

2α

∫ +∞

0

exp
[
−ξeiπ(α+δ−1)

2α − x−αξαe−i
π
2

]
dξ}

=
1

πx

{eiπ(δ−1)

2α

n∑
j=0

(−1)j

j!
x−αjei

jπ
2 Eα(j)}

+
1

πx

{eiπ(δ−1)

2α θ
(−1)n+1

(n + 1)!
x−α(n+1)ei

(n+1)π
2 Eα(n+ 1)},
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where Eα(j) =
∫ +∞

0
exp

[
−ξeiπ(α+δ−1)

2α

]
ξαjdξ and |θ| < 1. By the same tech-

nique we find Eα(j) = exp
[
−iπ(α+δ−1)j

2
− iπ(α+δ−1)

2α

]
Γ(αj + 1), j ∈ 1(n + 1).

Inserting in the formula above, we find the series in (iii) for l = 0.
(iv) We use the scaling property and property (iii), to prove that δpα(t, x)

tends to zero, when x �= 0, and to infinity when x = 0. �

Remark 4. The results in Lemma 5 generalize the properties of the density
of stable laws where 0 < α ≤ 2 (see [21] and [36]).

Corollary 4.

• δpα(t, .) ∈ Lp(R), ∀1 ≤ p ≤ ∞ and ∀t > 0.
• δpα(., .) satisfies the semigroup property.

As a result of these properties we can use the technique of section 2 to prove

Theorem 4. The operator Dα
δ is the infinitesimal generator of the analytic

semigroup {δTα(t), t ≥ 0} defined on L2(R) by

δTα(t)f(x) =

∫
�

δpα(t, x− y)f(y)dy.

Further, we get

Proposition 3. Let α, β ∈ R+\N, δ, δ′ ∈ R such that |δ| ≤ min{α − [α]2, 2 +
[α]2 − α} and |δ′| ≤ min{β − [β]2, 2 + [β]2 − β}. Then

• Dβ
δ′D

α
δ = Dα

δD
β
δ′ = Dα+β

δ+δ′ ,

• Let α ≥ β and f ∈ D(Dα
δ ). Then f ∈ D(Dβ

δ′), further Dα
δ f = Dα−β

δ−δ′D
β
δ′f

under the condition that |δ− δ′| = min{(α− β)− [α− β]2, 2 + [α− β]2 −
(α− β)}. In particular, the condition is satisfied for the interesting case
β = α

2
and δ′ = δ

2
,

• D(Dα
δ
∗) = D(Dα

δ ) and Dα
δ
∗ = Dα

−δ, (Dα
δ is not a selfadjoint operator),

• Dα
δD

α
δ
∗ = Dα

δ
∗Dα

δ = D2α
0 ,

• 
(Dα
δ ) = cos( δπ

2
)Dα

0 ,

�(Dα
δ )(ϕ) := 1

2i
(Dα

δ −Dα
δ
∗)(ϕ) = sin( δπ

2
)F−1(−sgnλ|λ|αϕ̂(λ)),

• 〈−Dα
δ f, f〉L2 ≥ 0, ∀f ∈ D(Dα

δ )
⋂
L2(R; R),

• Let f, g ∈ D(Dα
δ )

⋂
L2(R; R), then∫ +∞

−∞
Dα
δ f(x)g(x)dx =

∫ +∞

−∞
f(x)Dα

−δg(x)dx ( Integration by parts).

• the associated sesquilinear form E : D(Dα
δ ) ×D(Dα

δ ) → C is given by

E(f, g) = 〈Dα
2
δ
2

f,D
α
2

− δ
2

g〉L2 .

In particular, when f ∈ D(Dα
δ )

⋂
L2(R; R),

E(f, f) = −2 cos(
δπ

2
)

∫ +∞

0

|λ|α|f̂(λ)|2dλ.
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• σ(Dα
δ ) = {z ∈ C : arg z = π(1 − |δ|

2
)} ∪ {z ∈ C : arg z = π(1 + |δ|

2
)}.

Let us now compare the operator Dα
δ with the Liouville fractional differential

operator Dα, defined by:

(Dαf)(x) =
1

Γ([α] + 1 − α)

d[α]+1

dx[α]+1

∫ x

−∞
(x− t)[α]−αf(t)dt,

where Γ is the Gamma−function and [α] is the integer part of α. It is known
that Liouville fractional differential operator is applied on smooth functions.
In the following theorem, we prove the equality between Dα and Dα

δ on a class
of smooth functions, which is a dense subset in L2(R).

Theorem 5. Let the function f ∈ C
[α]+2
0 , where C

[α]+2
0 is the set of [α] +

2-continuously derivable functions on R with compact support. Then f ∈
D(Dα) ∩D(Dα

δ ), for all δ given in Definition 3. Further, Dαf = Dα
δ′f , where

δ′ = α− [α]2 when [α]2
2

is even and δ′ = α− [α]2 − 2 when [α]2
2

is odd.

Proof
It is easy to see that f ∈ L2(R) ∩ L1(R) and

I [α]−α+1f(x) =
1

([α] − α + 1)Γ([α] − α+ 1)

∫ +∞

0

τ [α]−α+1f ′(x− τ )dτ,

where f ′ is the first derivative of f . Further I [α]−α+1f(x) ∈ C [α]+1, hence
f ∈ D(Dα) and F{Dαf ;λ} = (−iλ)αF{f ;λ} [33](Theorem 7.1, p137–139).

On the other hand since f ∈ C
[α]+2
0 then |λ|αf̂(λ) ∈ L2 and consequently,

f ∈ D(Dα) ∩D(Dα
δ ), ∀δ. Let us suppose, [α]2

2
even. Then

F{Dαf ;λ} = |λ|αe−iαπ
2

sgnλf̂(λ)

= |λ|αe−iπ
2

([α]2+(α−[α]2))sgnλf̂(λ)

= |λ|αe−i
2

(α−[α]2)πsgnλf̂(λ).

If [α]2
2

is odd, we prove in the same way that

F{Dαf ;λ} = |λ|αe−i
2

(α−[α]2−2)πsgnλf̂(λ).

Further we have seen that |λ|αe−i
2

(α−[α]2−2)πsgnλf̂ (λ) ∈ L2, hence

(Dαf)(x) = F−1{|λ|αe−i
2
δ′πsgnλf̂ ; x} = (Dα

δ′f)(x). �

Remark 5.
This calculus can also be applied to the other representations of the Riemann-

Liouville fractional derivative operators.

Let us finally comment on mixed fractional derivatives.
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Definition 4. Let f be a function on Rd, such that fx1,..xj−1,xj+1...,xn(.) ∈ L2(R)
and let αj ∈ R+ and δj such that |δj| ≤ min{αj − [αj]2, 2 + [αj]2 − αj} and
equal to 0, when αj ∈ 2N + 1. The αj−fractional derivative of f with respect
to xj with parameter δj is defined by

xj∂
αj

δj
f(x1, .., xj..., xn) = F−1{δjψαj(λj)F{fx1,..xj−1,xj+1...,xn(xj);λj}; xj},

where δjψαj(λj) is given by (13).

This Definition coincides with Definition 1 when the support of the mea-
sure Γ is concentrated on the intersection points of Sd−1 and the j− axis.
The following Proposition gives sufficient condition for joint fractional partial
derivatives.

Proposition 4. Let αk, αj ∈ R+\N, 1 ≤ k, j ≤ d, and let δk, δj such that
|δk| ≤ min{αk− [αk]2, 2+ [αk]2−αk} and |δj| ≤ min{αj− [αj]2, 2+ [αj]2−αj},
and let the function f defined on Rd such that its restriction on the variables
xk, xj (1 ≤ k, j ≤ d) is such that

• |λk|αk |λj|αj f̂ (λk, λj) are square integrable on R2,

• ∫
�2 |λk|αk |f̂(λk, xj)|dλkdxj <∞,

• ∫
�2 |λj|αj |f̂(xk, λj)|dλjdxk <∞,

where f̂(λk, xj) and f̂(xk, λj) are respectively the Fourier transform of f(., xj)
in λk and the Fourier transform of f(xk, .) in λj . Then f is αk−differentiable
with respect to xk and its αk−derivative is αj−differentiable with respect to xj,
and we have

δj∂
αj
xj δk

∂αk
xk
f(x1, x2, .., xd) = δk∂

αk
xk δj

∂αj
xj
f(x1, x2, .., xd).

Proof. We can obtain the result using Definition 4 and Fubini’s Theorem.
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