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Abstract 

The flexible flow-shop group scheduling problem is investigated in this paper to 
minimize the makespan. Two algorithms have been proposed to solve the problem 
with two machine centers, which have the same number of parallel machines. The 
first one is a heuristic algorithm. It first determines the sequence of jobs in each 
group by Sriskandarajah and Sethi’s approach of solving the flexible flow-shop 
problems of two machine centers. It then determines the sequence of groups by 
the Johnson algorithm. The second one is a nearly optimal algorithm based on the 
search-and-prune technique, but can get better solutions. It can also be used to 
measure the performance of the first algorithm. Experimental results show that the  
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second approach can solve the problem with only a very limited size due to its 
high time complexity. The heuristic approach can, however, quickly obtain the 
approximate results, with much less computation time than that by the nearly 
optimal algorithm and with a similar quality of solutions. The proposed heuristic 
algorithm thus provides a feasible solution to large group scheduling problems 
that cannot be solved by the nearly optimal one. A trade-off can be easily 
achieved between accuracy and time complexity. 
 
Mathematics Subject Classification: 90B35 
 
Keywords: group scheduling, flexible flow shop, Johnson algorithm, machine 

center. 
 
 
1  Introduction 
 
Scheduling is an important process widely used in manufacturing, production, 
management, computer science, and so on. Appropriate scheduling can reduce 
material handling costs and time. Finding good schedules for given sets of jobs 
can thus help factory supervisors effectively control job flows and provide 
solutions for job sequencing.  
    In the past, Johnson first proposed an efficient algorithm which guaranteed 
optimality in a two-machine flow-shop problem [7]. Campbell, Dudek and Smith 
(CDS) then proposed a heuristic algorithm to solve the flow-shop problems of 
more than two machines [2]. Palmer also proposed an algorithm for achieving the 
same purpose [14]. Sriskandarajah and Sethi presented a heuristic algorithm based 
on the Johnson algorithm for solving flexible flow-shop problems of two machine 
centers with the same number of machines [18]. 

As to group scheduling, Yang and Chern considered the two-machine flow 
shop group scheduling problems with group removal time and job transportation 
time [19]. Dannenbring proposed a heuristic algorithm which combined the 
advantages of the Palmer and the CDS algorithms [4]. Allison compared the 
performance of single-pass and multiple-pass heuristics for solving group 
scheduling problems [1]. Schaller developed a new lower bound in a 
branch-and-bound procedure to evaluate partial sequences for the flow-shop 
group scheduling problem [16]. Logendran et al. investigated the group flexible 
flow-shop problems for minimizing makesapans [8]. Logendran et al. presented a 
two-machine group scheduling problem with sequence-dependent set-up time [10]. 
Yoshida and Hitomi developed an optimal algorithm for minimizing the total 
completion time in a two machine group scheduling problem with 
sequence-independent set-up time [20]. Many researches in this field are still in 
progress. 



Trade-off between time complexity and makespan                     1401 
 

The problem addressed in the paper is a special case of the flexible flow shop 
problem in group scheduling. This paper specifically focuses on minimizing the 
total completion time of flexible flow shop in group scheduling with two machine 
centers, which have the same number of parallel machines. Two algorithms have 
been developed to solve it. The first one is a heuristic algorithm. It first 
determines the sequence of jobs in each group by Sriskandarajah and Sethi’s 
approach of solving the flexible flow-shop problems with two machine centers. It 
then determines the sequence of groups by the Johnson algorithm. The second one 
is a nearly optimal algorithm, which uses the search-and-prune technique with an 
upper bound to determine the job sequence in each group and also uses the 
Johnson algorithm to determine the group sequence in the final schedule. 
Experimental results show that the proposed nearly optimal approach can solve 
the problem with only a very limited size due to its high time complexity. The 
proposed heuristic approach can, however, quickly obtain the approximate results, 
with much less computation time than that by the nearly optimal algorithm. The 
proposed heuristic algorithm can thus provide a feasible solution to large group 
scheduling problems that cannot be solved by the nearly optimal one. A trade-off 
can be easily achieved between accuracy and time complexity. 

 The remainder of this paper is organized as follows. Related scheduling 
algorithms are reviewed in Section 2. The assumptions and notation used in this 
paper are described in Section 3. The first algorithm for heuristically scheduling 
on a group flexible flow shop with two machine centers is proposed in Section 4. 
An example to illustrate the proposed heuristic scheduling algorithm is given in 
Section 5. The second algorithm for obtaining a nearly optimal makespan based 
on the search-and-prune technique is proposed in Section 6. Experiments for 
comparing the makespans and execution times of the two proposed algorithms are 
described in Section 7. Finally, conclusions are given in Section 8. 
 
 

2  Review of Related Scheduling Algorithms 
 
As mentioned above, flexible flow-shop problems are NP-hard. The flexible 
flow-shop group scheduling problems are also NP-hard since it is even more 
difficult than the traditional flexible flow-shop problems. No algorithms can find 
the optimal solutions in polynomial time. In the paper, we propose two algorithms 
to solve flexible flow-shop group scheduling problems with two machine centers. 
Some related scheduling algorithms are first introduced below. 
 
2.1   Review of the LPT Scheduling Algorithm 
 
The discovery of scheduling algorithms for a set of independent tasks with  
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arbitrary execution time and an arbitrary number of processors is a classic 
sequencing problem of wide interest and applications. Among the proposed 
scheduling algorithms, the LPT (Longest-Processing-Time-first) scheduling 
algorithm is the simplest and is widely used in many real-world situations. 

 
The scheduling problem for LPT is stated as follows. Given a set of n 

independent tasks (T1 to Tn), each with arbitrary execution time (t1 to tn), and a set 
of m parallel processors or machines (P1 to Pm), the LPT scheduling algorithm 
assigns the task with the longest execution time (among those not yet assigned) to 
a free processor whenever this processor becomes free. For cases when there is a 
tie, an arbitrary tie-breaking rule can be assumed. The algorithm is described as 
follows. 
 
The LPT scheduling algorithm: 
Input: A set of n tasks, each with arbitrary processing time, and a set of m 
processors. 
Output: A schedule and the final finishing time of all the tasks. 
Step 1: Sort the tasks in a descending order according to the processing time. 
Step 2: Initialize the current finishing time of each processor to zero. 
Step 3: Assign the first task in the task list to the processor with the minimum 

finishing time. 
Step 4: Set the new finishing time of the processor = the old finishing time of the 

processor + the execution time of the task. 
Step 5: Remove the task from the task list. 
Step 6: Repeat Steps 3 to 5 until the task list is empty. 
Step 7: Among the finishing time of the processors, choose the longest as the 

final finishing time. 
 

The finishing time by the LPT scheduling algorithm is in general not 
minimal. The computational time spent by the LPT scheduling algorithm is, 
however, much less than that by an optimal scheduling algorithm. 
 
2.2  Review of the Johnson Scheduling Algorithm 
 
The Johnson algorithm [7] was proposed to schedule job sequencing for a flow 
shop with two machines. Given a set of n independent jobs, each having two tasks 
(T11, T21, T12, T22, …, T1n, T2n) that must be executed in the same sequence on two 
machines (P1 and P2), the Johnson scheduling algorithm seeks a minimum 
completion time of the last job. The Johnson scheduling algorithm arranges the 
jobs which take less execution time on machine 1 than on machine 2 to be 
executed earlier, and the jobs which take less execution time on machine 2 than 
on machine 1 to be executed later. When a machine is free, the next unexecuted  
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job is then put on it for execution. Johnson proved that such scheduling achieved 
a minimum makespan. The detailed algorithm is stated as follows: 
 
The Johnson scheduling algorithm: 
Input: A set of n jobs, each having two tasks executed respectively on each of two 

machines. 
Output: A schedule with a minimum completion time of the last job. 
Step 1:  Form the group of jobs U that takes less time on the first machine than on 

the second such that, U = {j | t1j < t2j}. 
Step 2:  Form the group of jobs V that takes less time on the second machine than 

on the first such that, V = {j | t1j ≥  t2j}. 
Step 3:  Sort the jobs in U in ascending order of t1j's. 
Step 4:  Sort the jobs in V in descending order of t2j's. 
Step 5:  Schedule the jobs on the machines in the sorted order of U, then in the 

sorted order of V. 
 

After Step 5, scheduling is finished and a completion time has been found. 
 
2.3  Review of Sriskandarajah and Sethi’s Scheduling Algorithm 
 
Sriskandarajah and Sethi proposed a heuristic algorithm [18] for solving the 
flexible flow-shop problem of two machine centers. They also showed the 
completion time of the derived schedules was close to the optimum. 
Sriskandarajah and Sethi decomposed the problem into the following three 
sub-problems and solved each heuristically. 

 
Part 1: Form the machine groups, each of which contains a machine from 

each center; 
Part 2: Use the LPT method to assign jobs to each machine group (flow shop); 
Part 3: Deal with job sequencing and timing using the Johnson algorithm.  

 
In this paper, we will use the above approaches to solve the flexible 

flow-shop group scheduling problems with two machine centers. 
 
 

3  Assumptions and Notation 
 

Assumptions and notation used in this paper are described in this section. 
 

Assumptions: 
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‧Jobs are not preemptive. 
‧Each job has two tasks with processing times, executed respectively at 

each of two machine centers. 
‧Both the machine centers have the same number of parallel machines. 
‧Different groups of jobs cannot simultaneously be operated at the same 

machine center, but can simultaneously be operated at different machine 
centers. 

 
Notation: 

l: The number of groups. 
n: The number of jobs in a certain group. 
m: The number of tasks in each job. 

mci: The i-th machine center, i = 1 to 2. 
p: The number of machines in each machine center. 

Dji: The j-th machine in the i-th machine center, j = 1 to p and i = 1 to 2. 
dji: The completion time of the j-th machine in the i-th machine center. 
dj: The completion time of the j-th machine in a certain flowshop. 
cji: The completion time of the j-th machine center for the i-th job. 
Fi: The i-th allocated machine group (flow shop), i = 1 to p. 
Fji: The j-th machine of the flowshop Fi , j = 1 to 2. 

fi: The completion time of the i-th flowshop. 
fji: The completion time of the j-th machine in the i-th flowshop. 

Tjik: The j-th task of the i-th job in the k-th group, j = 1 to 2, i = 1 to n, and k = 
1 to l. 

tjik: The execution time of Tjik. 
ttik: The total execution time of the i-th job in the k-th group. 

mcijk: The completion time in the i-th flow-shop at the j-th machine center for the 
k-th group. 

mcjk: The completion time at the j-th machine center for the k-th group. 
ff: The final completion time of the whole schedule. 

 
 
 
4  A Heuristic Algorithm for Flexible Flow-shop 

Group Scheduling with Two Machine Centers 
 
A heuristic algorithm for solving the flexible flow-shop problem with two 
machine centers is proposed by Sriskandarajah and Sethi in 1989 [18]. In this 
paper, we extend it to solve flexible flow-shop group scheduling problems with 
two machine centers. The proposed flexible flow-shop group scheduling 
algorithm first determines the job sequence in each group by Sriskandarajah and  



Trade-off between time complexity and makespan                     1405 
 
Sethi’s approach. It then determines the group sequence by the Johnson algorithm. 
The proposed algorithm is stated below. 
 
The heuristic flexible flow-shop group scheduling algorithm: 
Input: l groups of jobs, each with two tasks to be executed respectively on each of 

two machine centers with p parallel machines. 
Output: A schedule with a near optimal completion time. 
 
Level 1: Determining the job sequence in each group 
Step 1: Set the variable k to one, where k is used to represent the number of the 

current group to be processed. 
Step 2: Repeat Steps 3 to 15 until k > l. 
 
Part 1: Forming the machine groups 
Step 3: Form p machine groups, F1, F2, …, Fp, each of which contains one 

machine from each machine center. Each machine group can be thought 
of as a simple flow shop. 

Step 4: Initialize the completion time f1, f2, …, fp of each flow shop F1, F2, …, Fp 
to zero. 

 
Part 2: Assigning the jobs in the k-th group to machine groups 
Step 5: For each job Jjk in the k-th group, find its total execution time ttjk = t1jk + 

t2jk (j = 1 to n, k = 1 to l). 
Step 6: Sort the jobs in descending order of processing time ttjk; if any two jobs 

have the same ttjk values, sort them in an arbitrary order. 
Step 7: Find the flow shop Fi with the minimum processing time fi among all the 

flow shops; if two flow-shops have the same minimum fi value, choose 
one arbitrarily. 

Step 8: Assign the first job Jjk in the sorted list to the chosen flow shop Fi which 
has the minimum completion time fi among all the p flow shops. 

Step 9: Add the total time ttjk of job Jjk to the completion time of the chosen flow 
shop, Fi; that is: 

fi = fi + ttjk. 
Step 10: Remove job Jjk from the job list. 
Step 11: Repeat Steps 7 to 10 until the job list is empty. 

 
After Step 11, jobs in each job group are clustered into p groups and are 

allocated to the p machine flow shops. 
 
Part 3: Dealing with the job sequence in each flow shop 
Step 12: For each flow shop Fi, set the initial completion time of the machines fji 

(j = 1 to 2, i =1 to p) to zero. 
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Step 13: Find the completion time of each flow shop if  by the Johnson 

algorithm stated in Section 2. 
Step 14: Save the corresponding job sequence. 
Step 15: Set k = k + 1. 
 
 

After Step 15, the individual job sequence for each group has been found. 
 
Level 2: Determining the group sequence in the whole schedule 
Step 16: Set the processing time mcjk needed for the n jobs in group k on machine 

center j ( j = 1 to 2, k = 1 to l) as: 

)(min)(max )1(11 ikj

p

iijk

p

ijk cfmc −==
−= , 

where fjik is the completion time in each flow-shop i at machine center j 
for group k and c(j-1)ik is the completion time of the first job in each 
flow-shop i at machine center j-1 for group k. 

Step 17: Find the group sequence by the Johnson algorithm stated in Section 2 
according to mcjk (j = 1 to 2, k = 1 to l). 

 
After Step 17, the group sequence for the entire schedule has been found. 

 
Step 18: Schedule the groups based on the group sequence and schedule the job 

sequence in each flow-shop of each group to find the final completion 
time. 

 
 

After Step 18, the entire scheduling is finished and the final total completion 
time has been found. 
 
 
 
5  An Example for the Proposed Heuristic Algorithm 

 
Assume there are three groups of jobs to be scheduled. Each group has five jobs, 
J1i to J5i (i = 1 to 3). Each job has two tasks to be executed by two operations. 
Each operation is run by a machine at its corresponding machine center. Assume 
each machine center includes only two parallel machines. Also assume the 
execution times of these jobs are listed in Table 1.  
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Table 1. Processing times for the three groups of jobs 
 G1 G2 G3 
 J11 J21 J31 J41 J51 J12 J22 J32 J42 J52 J13 J23 J33 J43 J53 

Task 1 3 9 6 8 6 9 2 6 4 6 7 3 8 6 3 
Task 2 2 4 7 2 5 3 3 5 7 1 1 7 8 4 4 

 
The algorithm first runs the steps on level 1 as follows. It first determines an 

appropriate job sequence in each of the three groups. Each group of jobs can then 
be scheduled independently. The processing steps are decomposed into three parts. 
Part 1 first forms two machine groups, F1 and F2, since each machine center has 
two machines. Each machine group can be thought of as a two-machine flow-shop. 
Part 2 then assigns the jobs in each group to the machine groups. Results for this 
example are shown in Table 2. 
 

Table 2. The jobs allocated to each flow shop for each group 
Groupj G1 G2 G3 

Flowshopi Jobs allocated 
F1 J31, J41, J11 J32, J42 J23, J43, J53 
F2 J21, J51 J12, J52, J22 J33, J13 

 

Part 3 then deals with the job sequence in each flow shop for each group. The 
results are shown in Table 3. 
 

Table 3. The job sequence in each flow shop for each group 
Group  G1 G2 G3 

F1 J31, J41, J11 J42, J32 J23, J53, J43 Job sequence F2 J51, J21 J22, J12, J52 J33, J13 
 

The steps on level 2 are then executed to determine the group sequence in the 
whole schedule. The finishing time of each group of jobs at each machine center 
is first calculated and shown in Table 4.  
 

Table 4. The processing time of each group of jobs at each machine center 
G1 G2 G3 Machine Center

Processing Time 
Machine Center 1 17 17 15 
Machine Center 2 13 16 15 

 
In Table 4, the processing time for processing the first tasks of all the jobs in  
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Group 1 at machine center 1 is 17 and for processing the second tasks at machine 
center 2 is 13. Similarly, the processing time evaluated for Group 2 is 17 and 16, 
respectively, and for Group 3 is 15 and 15, respectively. The Johnson procedure is 
then used to schedule the three groups according to the processing time at each 
machine center. The obtained group sequence for this example is G2, G3, G1. All 
the groups of jobs are then scheduled according to the above group sequence 
together with its job sequence in each flow shop. The final scheduling results are 
shown in Figure 1. The final completion time is 51. 
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 Figure 1: The final scheduling result in the example 
 
 

6  A Nearly Optimal Scheduling Algorithm Based on 
the Search-and-Prune Technique 

 
The completion time by the first algorithm is generally not minimal since it is a 
heuristic algorithm. For getting a more optimal schedule, the tasks in a set of jobs 
may need to be executed in different machine groups. In this section, we thus 
propose another scheduling algorithm based on the search-and-prune technique to 
get nearly optimal solutions, which can also be used to measure the performance 
of the first algorithm. It is not optimal because the Johnson algorithm used at the 
second level is not guaranteed to get the best group sequence since the calculated 
time used for scheduling is not exactly of the same meaning as in the conventional 
two-machine flow shops. The job sequence in each group from the first level is, 
however, optimal. The proposed nearly optimal algorithm is stated below. 
The proposed nearly optimal group scheduling algorithm for two machine centers: 
Input: l groups of jobs, each with two tasks to be executed respectively on each of 

two machine centers with p parallel machines. 
Output: A schedule with a nearly optimal completion time. 
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Level 1: Determining the job sequence in each group 
Step 1: Set the variable k to one, where k is used to represent the number of the 

current group to be processed. 
Step 2: Repeat Steps 3 to 12 until k > l. 
Step 3: Set the initial upper bound vmax of the final completion time in each 

group as∞ .  
Step 4: For each possible permutation of jobs in each machine center, do the 

following steps. 
Step 5: In each machine center, set the initial completion time of each machine 

to zero.  
Step 6: Schedule the first tasks of all the jobs in the machines of the first 

machine center according to the permutation generated. That is, for each 
task T1ik of the i-th job in the k-th group allocated to the j-th machine in 
the first machine center Dj1, do the following substeps: 
(a) Add the processing time t1ik to the completion time dj1 of the machine 

Dj1; That is:  
dj1 = dj1 + t1ik, and 
c1i  = dj1. 

(b) If dj1 is larger than vmax, neglect all the permutations with this 
sequence in the first machine center and go to Step 4 for trying 
another permutation. 

Step 7: Schedule the second tasks of all the jobs in the machines of the second 
machine centers according to the permutation generated. That is, for each 
task T2ik of the i-th job in the k-th group allocated to the j-th machine of 
the second machine center Dj2, do the following substeps:  
(a) Find the completion time dj2 of the machine Dj2 as: 

dj2 = max(dj2, c1i)+ t2ik, and 
c2i = dj2. 

(b) If dj2 is larger than vmax, neglect all the permutations with this 
sequence in these two machine centers and go to Step 4 for trying 
another permutation. 

Step 8: Set the completion time d2 of the current schedule = ( )21
max j

p

j
d

=
 among all 

the p machines in the second machine center. 
Step 9: If d2 is smaller than vmax, then set vmax = d2. 
Step 10: Repeat Steps 4 to 9 until all the possible permutations have been tested.  
Step 11: Save the corresponding job sequence for the k-th group. 
Step 12: Set k = k + 1. 
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After Step 12, the optimal individual job sequence in each group has been 

found. 
 

Level 2: Determining the group sequence in the whole schedule 
Step 13: Set the processing time mcjk needed for the n jobs in group k on machine 

center j ( j = 1 to m, k = 1 to l) as: 

)(min)(max )1(11 ikj

p

iijk

p

ijk cfmc −==
−= , 

where fjik is the completion time in each flow-shop i at machine center j 
for group k and c(j-1)ik is the completion time of the first job in each 
flow-shop i at machine center j-1 for group k. 

Step 14: Find the group sequence by the Johnson algorithm according to mcjk (j = 
1 to 2, k = 1 to l). 

Step 15: Schedule the groups based on the group sequence and schedule the job 
sequence in each flow-shop of each group to find the final completion 
time. 

 
After Step 15, the entire scheduling is finished and the final total completion 

time has been found. 
 
 
7  Experimental Results 
 
This section reports on experiments made to show the performance of the 
proposed scheduling algorithms. They were implemented by Visual C++ at an 
Intel Pentium IV with 2.40GHz CPU. Two parameters were considered, the group 
number l and the job number n of each group. In the first case, the group number l 
was fixed at 3 and the job number of each group varied from 3 to 8. In the second 
case, the group number l varied from 3 to 9, with the job number n of each group 
fixed at 7. Each job had two tasks and each machine center had two parallel 
machines. The execution time of each task was randomly generated in the range 
of 5 to 50. Each set of problems was executed for 20 tests and the makespans and 
computation times were measured. The proposed nearly optimal approach used a 
pruning technique to increase its efficiency. It could not, however, work for more 
than three groups with eight jobs for the first case and for more than nine groups 
with seven jobs for the second case in our environments due to its large amount of 
computation time. 

For the first case in which the group number is 3, the average makespans for 
problems of three to eight jobs in each group by the two proposed methods are 
shown in Figure 2. 
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Figure 2: The average makespans for the group number l = 3 with n = 3 to 8 

 
 
 
 

The deviation percentages of the average makespans by the proposed 
heuristic algorithm from those by the nearly optimal algorithm for different 
numbers of jobs in each group are shown in Table 5. The average deviation 
percentage is 4.59%. 

When the group number l is 3, the average CPU times for problems of three 
to eight jobs in each group are shown in Figure 3. The second algorithm proposed 
for nearly optimal solutions could not run over three groups of eight jobs in the 
limitation of eighty minutes due to its high time complexity. 

Next, in the second set of experiments, the job number n of each group was 
fixed at 7. The average makespans for problems of three to nine groups by the two 
proposed methods are shown in Figure 4. 
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Table 5. The distribution of deviation rates for different numbers of jobs 
when the group number is 3 and the run number is 20 

Run number with a 
deviation range n l Run 

Number
0% 0%< to≦ 5% >5%

Average 
Deviation 

(%) 

3 3 20 11 2 7 2.79 
4 3 20 9 7 4 2.51 
5 3 20 5 5 10 4.59 
6 3 20 5 6 9 4.98 
7 3 20 1 6 13 5.97 
8 3 20 0 6 14 6.71 
Total      120 31 32 57 Avg. 4.59 
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Figure 3: The average CPU times for different numbers of jobs with l = 3 

 
Table 6 gives the distribution of the deviation rates of the proposed heuristic 

algorithm from the nearly optimal one for different number of groups and n = 7. 
The average deviation percentage is 5.76%. 

When the job number n of each group is 7, the average CPU times for 
problems of three to nine groups are shown in Figure 5. The second algorithm 
proposed for nearly optimal solutions could not run over nine groups in this case  
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with the limitation of 25 hours due to its high time complexity. 

200

400

600

800

1000

1200

3 4 5 6 7 8 9

Group number

A
ve

ra
ge

 m
ak

es
pa

n

The Optimal Algorithm The Heuristic Algorithm

 
Figure 4: The average makespans for the job number n = 7 with l = 3 to 9 

 
 

Table 6. The distribution of deviation rates for different numbers of groups 
when the job number is 7 and the run number is 20 

Run number with a   
deviation range n l Run 

Number 
0% 0%< to≦ 5% >5%

Average 
Deviation 

(%) 

7 3 20 1 6 13 5.97 
7 4 20 0 7 13 5.61 
7 5 20 1 8 11 5.90 
7 6 20 0 9 11 5.42 
7 7 20 0 9 11 6.05 
7 8 20 1 10 9 5.55 
7 9 20 0 6 14 5.84 
Total      140 3 55 82 Avg. 5.76 

 
From the above figures and tables, it is easily seen that the first proposed 

algorithm got only a little larger makespans than the second one did. The 
computational time needed by the second algorithm was, however, much larger 
than that needed by the first approach, especially when the job or group number is  
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large. Actually, since the flexible flow-shop group scheduling problem is NP-hard, 
the second approach can work only for a small number of groups and jobs. The 
first proposed heuristic approach can solve this problem and is thus more suitable 
for real applications than the second proposed nearly optimal one. 
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Figure 5: The average CPU times for different numbers of groups with n = 7 

 
 
 
 

 At last, experiments for large job numbers and group numbers were made to 
show the performance of the heuristic algorithm. Experiments were made 
respectively for n from 1000 to 9000 with the group number l being 100 and for n 
being 100 with l from 1000 to 9000. The average CPU times for the above cases 
are shown respectively in Figures 6 and 7, both being within 50 seconds.  
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Figure 6: The average CPU times for l = 100 and n = 1000 to 9000 
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Figure 7: The average CPU times for n = 100 and l = 1000 to 9000 

 
Hence, the first proposed heuristic approach is feasible even for a large 

number of groups and jobs. It is thus more suitable than the second proposed 
approach for real applications. 
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8  Conclusion 

 
Scheduling jobs in group flexible flow shops is an NP-hard problem. In this paper, 
we have proposed two algorithms to solve this problem with two machine centers, 
which have the same number of parallel machines. The first proposed heuristic 
algorithm assigns jobs to flow shops, whereas the second proposed nearly optimal 
one allows jobs to be executed among flow shops. Since flow line arrangement 
may reduce the costs of material handling and production time, the heuristic 
approach may thus be advantageous in practice. Experimental results show that 
the second approach can solve the problem with only a very limited size. 
Although the proposed heuristic approach can not guarantee to get optimal 
solutions, its average deviation rates are quite low. Besides, it can quickly obtain 
the results, with much less computation time than the nearly optimal algorithm. 
The proposed heuristic approach can thus provide a feasible solution to flexible 
flow-shop group scheduling problems with large sizes, which cannot be solved by 
the optimal approach. A trade-off can thus easily be achieved between accuracy 
and time complexity. In the future, we will attempt to consider other constraints, 
such as setup times, due dates, and priorities. 
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