
Applied Mathematical Sciences, Vol. 1, 2007, no. 29, 1399 - 1417

Trade-off between Time Complexity

and Makespan for Flexible Flow-Shop Group

Scheduling Problems with Two Machine Centers

Tzung-Pei Hong

Department of Computer Science and Information Engineering
National University of Kaohsiung
Kaohsiung, 811, Taiwan, R.O.C.

tphong@nuk.edu.tw

Pei-Ying Huang

Department of Computer Science and Information Engineering
National Taiwan University
Taipei, 106, Taiwan, R.O.C.

d93012@csie.ntu.edu.tw

Gwoboa Horng

Department of Computer Science
National Chung-Hsing University
Taichung, 40227, Taiwan, R.O.C.

gbhorng@cs.nchu.edu.tw

Abstract

The flexible flow-shop group scheduling problem is investigated in this paper to
minimize the makespan. Two algorithms have been proposed to solve the problem
with two machine centers, which have the same number of parallel machines. The
first one is a heuristic algorithm. It first determines the sequence of jobs in each
group by Sriskandarajah and Sethi’s approach of solving the flexible flow-shop
problems of two machine centers. It then determines the sequence of groups by
the Johnson algorithm. The second one is a nearly optimal algorithm based on the
search-and-prune technique, but can get better solutions. It can also be used to
measure the performance of the first algorithm. Experimental results show that the

1400 Tzung-Pei Hong, Pei-Ying Huang and Gwoboa Horng

second approach can solve the problem with only a very limited size due to its
high time complexity. The heuristic approach can, however, quickly obtain the
approximate results, with much less computation time than that by the nearly
optimal algorithm and with a similar quality of solutions. The proposed heuristic
algorithm thus provides a feasible solution to large group scheduling problems
that cannot be solved by the nearly optimal one. A trade-off can be easily
achieved between accuracy and time complexity.

Mathematics Subject Classification: 90B35

Keywords: group scheduling, flexible flow shop, Johnson algorithm, machine

center.

1 Introduction

Scheduling is an important process widely used in manufacturing, production,
management, computer science, and so on. Appropriate scheduling can reduce
material handling costs and time. Finding good schedules for given sets of jobs
can thus help factory supervisors effectively control job flows and provide
solutions for job sequencing.
 In the past, Johnson first proposed an efficient algorithm which guaranteed
optimality in a two-machine flow-shop problem [7]. Campbell, Dudek and Smith
(CDS) then proposed a heuristic algorithm to solve the flow-shop problems of
more than two machines [2]. Palmer also proposed an algorithm for achieving the
same purpose [14]. Sriskandarajah and Sethi presented a heuristic algorithm based
on the Johnson algorithm for solving flexible flow-shop problems of two machine
centers with the same number of machines [18].

As to group scheduling, Yang and Chern considered the two-machine flow
shop group scheduling problems with group removal time and job transportation
time [19]. Dannenbring proposed a heuristic algorithm which combined the
advantages of the Palmer and the CDS algorithms [4]. Allison compared the
performance of single-pass and multiple-pass heuristics for solving group
scheduling problems [1]. Schaller developed a new lower bound in a
branch-and-bound procedure to evaluate partial sequences for the flow-shop
group scheduling problem [16]. Logendran et al. investigated the group flexible
flow-shop problems for minimizing makesapans [8]. Logendran et al. presented a
two-machine group scheduling problem with sequence-dependent set-up time [10].
Yoshida and Hitomi developed an optimal algorithm for minimizing the total
completion time in a two machine group scheduling problem with
sequence-independent set-up time [20]. Many researches in this field are still in
progress.

Trade-off between time complexity and makespan 1401

The problem addressed in the paper is a special case of the flexible flow shop
problem in group scheduling. This paper specifically focuses on minimizing the
total completion time of flexible flow shop in group scheduling with two machine
centers, which have the same number of parallel machines. Two algorithms have
been developed to solve it. The first one is a heuristic algorithm. It first
determines the sequence of jobs in each group by Sriskandarajah and Sethi’s
approach of solving the flexible flow-shop problems with two machine centers. It
then determines the sequence of groups by the Johnson algorithm. The second one
is a nearly optimal algorithm, which uses the search-and-prune technique with an
upper bound to determine the job sequence in each group and also uses the
Johnson algorithm to determine the group sequence in the final schedule.
Experimental results show that the proposed nearly optimal approach can solve
the problem with only a very limited size due to its high time complexity. The
proposed heuristic approach can, however, quickly obtain the approximate results,
with much less computation time than that by the nearly optimal algorithm. The
proposed heuristic algorithm can thus provide a feasible solution to large group
scheduling problems that cannot be solved by the nearly optimal one. A trade-off
can be easily achieved between accuracy and time complexity.

 The remainder of this paper is organized as follows. Related scheduling
algorithms are reviewed in Section 2. The assumptions and notation used in this
paper are described in Section 3. The first algorithm for heuristically scheduling
on a group flexible flow shop with two machine centers is proposed in Section 4.
An example to illustrate the proposed heuristic scheduling algorithm is given in
Section 5. The second algorithm for obtaining a nearly optimal makespan based
on the search-and-prune technique is proposed in Section 6. Experiments for
comparing the makespans and execution times of the two proposed algorithms are
described in Section 7. Finally, conclusions are given in Section 8.

2 Review of Related Scheduling Algorithms

As mentioned above, flexible flow-shop problems are NP-hard. The flexible
flow-shop group scheduling problems are also NP-hard since it is even more
difficult than the traditional flexible flow-shop problems. No algorithms can find
the optimal solutions in polynomial time. In the paper, we propose two algorithms
to solve flexible flow-shop group scheduling problems with two machine centers.
Some related scheduling algorithms are first introduced below.

2.1 Review of the LPT Scheduling Algorithm

The discovery of scheduling algorithms for a set of independent tasks with

1402 Tzung-Pei Hong, Pei-Ying Huang and Gwoboa Horng

arbitrary execution time and an arbitrary number of processors is a classic
sequencing problem of wide interest and applications. Among the proposed
scheduling algorithms, the LPT (Longest-Processing-Time-first) scheduling
algorithm is the simplest and is widely used in many real-world situations.

The scheduling problem for LPT is stated as follows. Given a set of n

independent tasks (T1 to Tn), each with arbitrary execution time (t1 to tn), and a set
of m parallel processors or machines (P1 to Pm), the LPT scheduling algorithm
assigns the task with the longest execution time (among those not yet assigned) to
a free processor whenever this processor becomes free. For cases when there is a
tie, an arbitrary tie-breaking rule can be assumed. The algorithm is described as
follows.

The LPT scheduling algorithm:
Input: A set of n tasks, each with arbitrary processing time, and a set of m
processors.
Output: A schedule and the final finishing time of all the tasks.
Step 1: Sort the tasks in a descending order according to the processing time.
Step 2: Initialize the current finishing time of each processor to zero.
Step 3: Assign the first task in the task list to the processor with the minimum

finishing time.
Step 4: Set the new finishing time of the processor = the old finishing time of the

processor + the execution time of the task.
Step 5: Remove the task from the task list.
Step 6: Repeat Steps 3 to 5 until the task list is empty.
Step 7: Among the finishing time of the processors, choose the longest as the

final finishing time.

The finishing time by the LPT scheduling algorithm is in general not
minimal. The computational time spent by the LPT scheduling algorithm is,
however, much less than that by an optimal scheduling algorithm.

2.2 Review of the Johnson Scheduling Algorithm

The Johnson algorithm [7] was proposed to schedule job sequencing for a flow
shop with two machines. Given a set of n independent jobs, each having two tasks
(T11, T21, T12, T22, …, T1n, T2n) that must be executed in the same sequence on two
machines (P1 and P2), the Johnson scheduling algorithm seeks a minimum
completion time of the last job. The Johnson scheduling algorithm arranges the
jobs which take less execution time on machine 1 than on machine 2 to be
executed earlier, and the jobs which take less execution time on machine 2 than
on machine 1 to be executed later. When a machine is free, the next unexecuted

Trade-off between time complexity and makespan 1403

job is then put on it for execution. Johnson proved that such scheduling achieved
a minimum makespan. The detailed algorithm is stated as follows:

The Johnson scheduling algorithm:
Input: A set of n jobs, each having two tasks executed respectively on each of two

machines.
Output: A schedule with a minimum completion time of the last job.
Step 1: Form the group of jobs U that takes less time on the first machine than on

the second such that, U = {j | t1j < t2j}.
Step 2: Form the group of jobs V that takes less time on the second machine than

on the first such that, V = {j | t1j ≥ t2j}.
Step 3: Sort the jobs in U in ascending order of t1j's.
Step 4: Sort the jobs in V in descending order of t2j's.
Step 5: Schedule the jobs on the machines in the sorted order of U, then in the

sorted order of V.

After Step 5, scheduling is finished and a completion time has been found.

2.3 Review of Sriskandarajah and Sethi’s Scheduling Algorithm

Sriskandarajah and Sethi proposed a heuristic algorithm [18] for solving the
flexible flow-shop problem of two machine centers. They also showed the
completion time of the derived schedules was close to the optimum.
Sriskandarajah and Sethi decomposed the problem into the following three
sub-problems and solved each heuristically.

Part 1: Form the machine groups, each of which contains a machine from

each center;
Part 2: Use the LPT method to assign jobs to each machine group (flow shop);
Part 3: Deal with job sequencing and timing using the Johnson algorithm.

In this paper, we will use the above approaches to solve the flexible

flow-shop group scheduling problems with two machine centers.

3 Assumptions and Notation

Assumptions and notation used in this paper are described in this section.

Assumptions:

1404 Tzung-Pei Hong, Pei-Ying Huang and Gwoboa Horng

‧Jobs are not preemptive.
‧Each job has two tasks with processing times, executed respectively at

each of two machine centers.
‧Both the machine centers have the same number of parallel machines.
‧Different groups of jobs cannot simultaneously be operated at the same

machine center, but can simultaneously be operated at different machine
centers.

Notation:

l: The number of groups.
n: The number of jobs in a certain group.
m: The number of tasks in each job.

mci: The i-th machine center, i = 1 to 2.
p: The number of machines in each machine center.

Dji: The j-th machine in the i-th machine center, j = 1 to p and i = 1 to 2.
dji: The completion time of the j-th machine in the i-th machine center.
dj: The completion time of the j-th machine in a certain flowshop.
cji: The completion time of the j-th machine center for the i-th job.
Fi: The i-th allocated machine group (flow shop), i = 1 to p.
Fji: The j-th machine of the flowshop Fi , j = 1 to 2.

fi: The completion time of the i-th flowshop.
fji: The completion time of the j-th machine in the i-th flowshop.

Tjik: The j-th task of the i-th job in the k-th group, j = 1 to 2, i = 1 to n, and k =
1 to l.

tjik: The execution time of Tjik.
ttik: The total execution time of the i-th job in the k-th group.

mcijk: The completion time in the i-th flow-shop at the j-th machine center for the
k-th group.

mcjk: The completion time at the j-th machine center for the k-th group.
ff: The final completion time of the whole schedule.

4 A Heuristic Algorithm for Flexible Flow-shop

Group Scheduling with Two Machine Centers

A heuristic algorithm for solving the flexible flow-shop problem with two
machine centers is proposed by Sriskandarajah and Sethi in 1989 [18]. In this
paper, we extend it to solve flexible flow-shop group scheduling problems with
two machine centers. The proposed flexible flow-shop group scheduling
algorithm first determines the job sequence in each group by Sriskandarajah and

Trade-off between time complexity and makespan 1405

Sethi’s approach. It then determines the group sequence by the Johnson algorithm.
The proposed algorithm is stated below.

The heuristic flexible flow-shop group scheduling algorithm:
Input: l groups of jobs, each with two tasks to be executed respectively on each of

two machine centers with p parallel machines.
Output: A schedule with a near optimal completion time.

Level 1: Determining the job sequence in each group
Step 1: Set the variable k to one, where k is used to represent the number of the

current group to be processed.
Step 2: Repeat Steps 3 to 15 until k > l.

Part 1: Forming the machine groups
Step 3: Form p machine groups, F1, F2, …, Fp, each of which contains one

machine from each machine center. Each machine group can be thought
of as a simple flow shop.

Step 4: Initialize the completion time f1, f2, …, fp of each flow shop F1, F2, …, Fp
to zero.

Part 2: Assigning the jobs in the k-th group to machine groups
Step 5: For each job Jjk in the k-th group, find its total execution time ttjk = t1jk +

t2jk (j = 1 to n, k = 1 to l).
Step 6: Sort the jobs in descending order of processing time ttjk; if any two jobs

have the same ttjk values, sort them in an arbitrary order.
Step 7: Find the flow shop Fi with the minimum processing time fi among all the

flow shops; if two flow-shops have the same minimum fi value, choose
one arbitrarily.

Step 8: Assign the first job Jjk in the sorted list to the chosen flow shop Fi which
has the minimum completion time fi among all the p flow shops.

Step 9: Add the total time ttjk of job Jjk to the completion time of the chosen flow
shop, Fi; that is:

fi = fi + ttjk.
Step 10: Remove job Jjk from the job list.
Step 11: Repeat Steps 7 to 10 until the job list is empty.

After Step 11, jobs in each job group are clustered into p groups and are

allocated to the p machine flow shops.

Part 3: Dealing with the job sequence in each flow shop
Step 12: For each flow shop Fi, set the initial completion time of the machines fji

(j = 1 to 2, i =1 to p) to zero.

1406 Tzung-Pei Hong, Pei-Ying Huang and Gwoboa Horng

Step 13: Find the completion time of each flow shop if by the Johnson

algorithm stated in Section 2.
Step 14: Save the corresponding job sequence.
Step 15: Set k = k + 1.

After Step 15, the individual job sequence for each group has been found.

Level 2: Determining the group sequence in the whole schedule
Step 16: Set the processing time mcjk needed for the n jobs in group k on machine

center j (j = 1 to 2, k = 1 to l) as:

)(min)(max)1(11 ikj

p

iijk

p

ijk cfmc −==
−= ,

where fjik is the completion time in each flow-shop i at machine center j
for group k and c(j-1)ik is the completion time of the first job in each
flow-shop i at machine center j-1 for group k.

Step 17: Find the group sequence by the Johnson algorithm stated in Section 2
according to mcjk (j = 1 to 2, k = 1 to l).

After Step 17, the group sequence for the entire schedule has been found.

Step 18: Schedule the groups based on the group sequence and schedule the job

sequence in each flow-shop of each group to find the final completion
time.

After Step 18, the entire scheduling is finished and the final total completion
time has been found.

5 An Example for the Proposed Heuristic Algorithm

Assume there are three groups of jobs to be scheduled. Each group has five jobs,
J1i to J5i (i = 1 to 3). Each job has two tasks to be executed by two operations.
Each operation is run by a machine at its corresponding machine center. Assume
each machine center includes only two parallel machines. Also assume the
execution times of these jobs are listed in Table 1.

Trade-off between time complexity and makespan 1407

Table 1. Processing times for the three groups of jobs
 G1 G2 G3
 J11 J21 J31 J41 J51 J12 J22 J32 J42 J52 J13 J23 J33 J43 J53

Task 1 3 9 6 8 6 9 2 6 4 6 7 3 8 6 3
Task 2 2 4 7 2 5 3 3 5 7 1 1 7 8 4 4

The algorithm first runs the steps on level 1 as follows. It first determines an

appropriate job sequence in each of the three groups. Each group of jobs can then
be scheduled independently. The processing steps are decomposed into three parts.
Part 1 first forms two machine groups, F1 and F2, since each machine center has
two machines. Each machine group can be thought of as a two-machine flow-shop.
Part 2 then assigns the jobs in each group to the machine groups. Results for this
example are shown in Table 2.

Table 2. The jobs allocated to each flow shop for each group
Groupj G1 G2 G3

Flowshopi Jobs allocated
F1 J31, J41, J11 J32, J42 J23, J43, J53
F2 J21, J51 J12, J52, J22 J33, J13

Part 3 then deals with the job sequence in each flow shop for each group. The
results are shown in Table 3.

Table 3. The job sequence in each flow shop for each group
Group G1 G2 G3

F1 J31, J41, J11 J42, J32 J23, J53, J43 Job sequence F2 J51, J21 J22, J12, J52 J33, J13

The steps on level 2 are then executed to determine the group sequence in the
whole schedule. The finishing time of each group of jobs at each machine center
is first calculated and shown in Table 4.

Table 4. The processing time of each group of jobs at each machine center
G1 G2 G3 Machine Center

Processing Time
Machine Center 1 17 17 15
Machine Center 2 13 16 15

In Table 4, the processing time for processing the first tasks of all the jobs in

1408 Tzung-Pei Hong, Pei-Ying Huang and Gwoboa Horng

Group 1 at machine center 1 is 17 and for processing the second tasks at machine
center 2 is 13. Similarly, the processing time evaluated for Group 2 is 17 and 16,
respectively, and for Group 3 is 15 and 15, respectively. The Johnson procedure is
then used to schedule the three groups according to the processing time at each
machine center. The obtained group sequence for this example is G2, G3, G1. All
the groups of jobs are then scheduled according to the above group sequence
together with its job sequence in each flow shop. The final scheduling results are
shown in Figure 1. The final completion time is 51.

Machine Center 2

Machine Center 1

10 20 30

133t

223t

233t

153t

113t

253t
213t

143t

243t

21m
11m

12m

22m

5 15 25 4035 5045

123t

151t
141t

121t
111t131t

231t

251t
241t 211t

221t
242t

212t
232t

252t222t

142t

112t
132t

152t122t

 Figure 1: The final scheduling result in the example

6 A Nearly Optimal Scheduling Algorithm Based on
the Search-and-Prune Technique

The completion time by the first algorithm is generally not minimal since it is a
heuristic algorithm. For getting a more optimal schedule, the tasks in a set of jobs
may need to be executed in different machine groups. In this section, we thus
propose another scheduling algorithm based on the search-and-prune technique to
get nearly optimal solutions, which can also be used to measure the performance
of the first algorithm. It is not optimal because the Johnson algorithm used at the
second level is not guaranteed to get the best group sequence since the calculated
time used for scheduling is not exactly of the same meaning as in the conventional
two-machine flow shops. The job sequence in each group from the first level is,
however, optimal. The proposed nearly optimal algorithm is stated below.
The proposed nearly optimal group scheduling algorithm for two machine centers:
Input: l groups of jobs, each with two tasks to be executed respectively on each of

two machine centers with p parallel machines.
Output: A schedule with a nearly optimal completion time.

Trade-off between time complexity and makespan 1409

Level 1: Determining the job sequence in each group
Step 1: Set the variable k to one, where k is used to represent the number of the

current group to be processed.
Step 2: Repeat Steps 3 to 12 until k > l.
Step 3: Set the initial upper bound vmax of the final completion time in each

group as∞ .
Step 4: For each possible permutation of jobs in each machine center, do the

following steps.
Step 5: In each machine center, set the initial completion time of each machine

to zero.
Step 6: Schedule the first tasks of all the jobs in the machines of the first

machine center according to the permutation generated. That is, for each
task T1ik of the i-th job in the k-th group allocated to the j-th machine in
the first machine center Dj1, do the following substeps:
(a) Add the processing time t1ik to the completion time dj1 of the machine

Dj1; That is:
dj1 = dj1 + t1ik, and
c1i = dj1.

(b) If dj1 is larger than vmax, neglect all the permutations with this
sequence in the first machine center and go to Step 4 for trying
another permutation.

Step 7: Schedule the second tasks of all the jobs in the machines of the second
machine centers according to the permutation generated. That is, for each
task T2ik of the i-th job in the k-th group allocated to the j-th machine of
the second machine center Dj2, do the following substeps:
(a) Find the completion time dj2 of the machine Dj2 as:

dj2 = max(dj2, c1i)+ t2ik, and
c2i = dj2.

(b) If dj2 is larger than vmax, neglect all the permutations with this
sequence in these two machine centers and go to Step 4 for trying
another permutation.

Step 8: Set the completion time d2 of the current schedule = ()21
max j

p

j
d

=
 among all

the p machines in the second machine center.
Step 9: If d2 is smaller than vmax, then set vmax = d2.
Step 10: Repeat Steps 4 to 9 until all the possible permutations have been tested.
Step 11: Save the corresponding job sequence for the k-th group.
Step 12: Set k = k + 1.

1410 Tzung-Pei Hong, Pei-Ying Huang and Gwoboa Horng

After Step 12, the optimal individual job sequence in each group has been

found.

Level 2: Determining the group sequence in the whole schedule
Step 13: Set the processing time mcjk needed for the n jobs in group k on machine

center j (j = 1 to m, k = 1 to l) as:

)(min)(max)1(11 ikj

p

iijk

p

ijk cfmc −==
−= ,

where fjik is the completion time in each flow-shop i at machine center j
for group k and c(j-1)ik is the completion time of the first job in each
flow-shop i at machine center j-1 for group k.

Step 14: Find the group sequence by the Johnson algorithm according to mcjk (j =
1 to 2, k = 1 to l).

Step 15: Schedule the groups based on the group sequence and schedule the job
sequence in each flow-shop of each group to find the final completion
time.

After Step 15, the entire scheduling is finished and the final total completion

time has been found.

7 Experimental Results

This section reports on experiments made to show the performance of the
proposed scheduling algorithms. They were implemented by Visual C++ at an
Intel Pentium IV with 2.40GHz CPU. Two parameters were considered, the group
number l and the job number n of each group. In the first case, the group number l
was fixed at 3 and the job number of each group varied from 3 to 8. In the second
case, the group number l varied from 3 to 9, with the job number n of each group
fixed at 7. Each job had two tasks and each machine center had two parallel
machines. The execution time of each task was randomly generated in the range
of 5 to 50. Each set of problems was executed for 20 tests and the makespans and
computation times were measured. The proposed nearly optimal approach used a
pruning technique to increase its efficiency. It could not, however, work for more
than three groups with eight jobs for the first case and for more than nine groups
with seven jobs for the second case in our environments due to its large amount of
computation time.

For the first case in which the group number is 3, the average makespans for
problems of three to eight jobs in each group by the two proposed methods are
shown in Figure 2.

Trade-off between time complexity and makespan 1411

150

250

350

450

3 4 5 6 7 8

Job number

A
ve

ra
ge

 m
ak

es
pa

n

The Optimal Algorithm The Heuristic Algorithm

Figure 2: The average makespans for the group number l = 3 with n = 3 to 8

The deviation percentages of the average makespans by the proposed
heuristic algorithm from those by the nearly optimal algorithm for different
numbers of jobs in each group are shown in Table 5. The average deviation
percentage is 4.59%.

When the group number l is 3, the average CPU times for problems of three
to eight jobs in each group are shown in Figure 3. The second algorithm proposed
for nearly optimal solutions could not run over three groups of eight jobs in the
limitation of eighty minutes due to its high time complexity.

Next, in the second set of experiments, the job number n of each group was
fixed at 7. The average makespans for problems of three to nine groups by the two
proposed methods are shown in Figure 4.

1412 Tzung-Pei Hong, Pei-Ying Huang and Gwoboa Horng

Table 5. The distribution of deviation rates for different numbers of jobs
when the group number is 3 and the run number is 20

Run number with a
deviation range n l Run

Number
0% 0%< to≦ 5% >5%

Average
Deviation

(%)

3 3 20 11 2 7 2.79
4 3 20 9 7 4 2.51
5 3 20 5 5 10 4.59
6 3 20 5 6 9 4.98
7 3 20 1 6 13 5.97
8 3 20 0 6 14 6.71
Total 120 31 32 57 Avg. 4.59

0

20

40

60

80

3 4 5 6 7 8

Job number

C
PU

 ti
m

e
(m

in
)

The Optimal Algorithm The Heuristic Algorithm

Figure 3: The average CPU times for different numbers of jobs with l = 3

Table 6 gives the distribution of the deviation rates of the proposed heuristic

algorithm from the nearly optimal one for different number of groups and n = 7.
The average deviation percentage is 5.76%.

When the job number n of each group is 7, the average CPU times for
problems of three to nine groups are shown in Figure 5. The second algorithm
proposed for nearly optimal solutions could not run over nine groups in this case

Trade-off between time complexity and makespan 1413

with the limitation of 25 hours due to its high time complexity.

200

400

600

800

1000

1200

3 4 5 6 7 8 9

Group number

A
ve

ra
ge

 m
ak

es
pa

n

The Optimal Algorithm The Heuristic Algorithm

Figure 4: The average makespans for the job number n = 7 with l = 3 to 9

Table 6. The distribution of deviation rates for different numbers of groups
when the job number is 7 and the run number is 20

Run number with a
deviation range n l Run

Number
0% 0%< to≦ 5% >5%

Average
Deviation

(%)

7 3 20 1 6 13 5.97
7 4 20 0 7 13 5.61
7 5 20 1 8 11 5.90
7 6 20 0 9 11 5.42
7 7 20 0 9 11 6.05
7 8 20 1 10 9 5.55
7 9 20 0 6 14 5.84
Total 140 3 55 82 Avg. 5.76

From the above figures and tables, it is easily seen that the first proposed

algorithm got only a little larger makespans than the second one did. The
computational time needed by the second algorithm was, however, much larger
than that needed by the first approach, especially when the job or group number is

1414 Tzung-Pei Hong, Pei-Ying Huang and Gwoboa Horng

large. Actually, since the flexible flow-shop group scheduling problem is NP-hard,
the second approach can work only for a small number of groups and jobs. The
first proposed heuristic approach can solve this problem and is thus more suitable
for real applications than the second proposed nearly optimal one.

0

300

600

900

1200

1500

3 4 5 6 7 8 9

Group number

C
PU

 ti
m

e
(m

in
)

The Optimal Algorithm The Heuristic Algorithm

Figure 5: The average CPU times for different numbers of groups with n = 7

 At last, experiments for large job numbers and group numbers were made to
show the performance of the heuristic algorithm. Experiments were made
respectively for n from 1000 to 9000 with the group number l being 100 and for n
being 100 with l from 1000 to 9000. The average CPU times for the above cases
are shown respectively in Figures 6 and 7, both being within 50 seconds.

Trade-off between time complexity and makespan 1415

0

10

20

30

40

50

1000 2000 3000 4000 5000 6000 7000 8000 9000

Job number

C
PU

 ti
m

e
(s

ec
)

The Heuristic Algorithm

Figure 6: The average CPU times for l = 100 and n = 1000 to 9000

0

1

2

3

4

5

6

1000 2000 3000 4000 5000 6000 7000 8000 9000

Group number

C
PU

 ti
m

e(
se

c)

The Heuristic Algorithm

Figure 7: The average CPU times for n = 100 and l = 1000 to 9000

Hence, the first proposed heuristic approach is feasible even for a large

number of groups and jobs. It is thus more suitable than the second proposed
approach for real applications.

1416 Tzung-Pei Hong, Pei-Ying Huang and Gwoboa Horng

8 Conclusion

Scheduling jobs in group flexible flow shops is an NP-hard problem. In this paper,
we have proposed two algorithms to solve this problem with two machine centers,
which have the same number of parallel machines. The first proposed heuristic
algorithm assigns jobs to flow shops, whereas the second proposed nearly optimal
one allows jobs to be executed among flow shops. Since flow line arrangement
may reduce the costs of material handling and production time, the heuristic
approach may thus be advantageous in practice. Experimental results show that
the second approach can solve the problem with only a very limited size.
Although the proposed heuristic approach can not guarantee to get optimal
solutions, its average deviation rates are quite low. Besides, it can quickly obtain
the results, with much less computation time than the nearly optimal algorithm.
The proposed heuristic approach can thus provide a feasible solution to flexible
flow-shop group scheduling problems with large sizes, which cannot be solved by
the optimal approach. A trade-off can thus easily be achieved between accuracy
and time complexity. In the future, we will attempt to consider other constraints,
such as setup times, due dates, and priorities.

References

[1] J. D. Allison, Combining Petrov's heuristic and the CDS heuristic in group

scheduling problems, The 12th Annual Conference on Computers and
Industrial Engineering, 1990, 457-461.

[2] H. G. Campbell, R. A. Dudek and M. L. Smith, A heuristic algorithm for the
n job, m machine sequencing problem, Management Science, 16(1970),
B630-B637.

[3] S. C. Chung and D. Y. Liao, Scheduling flexible flow shops with no setup
effects, The 1992 IEEE International. Conference on Robotics and
Automation, 1992, 1179-1184.

[4] D. G. Dannenbring, An evaluation of flowshop sequencing heuristics,
Management Science, 23(1977), 1174-1182.

[5] R. A. Dudek, S. S. Panwalkar and M. L. Smith, The lessons of flowshop
scheduling research, Operations Research, 40(1992), 7-13.

[6] J. N. D. Gupta, A functional heuristic algorithm for the flowshop scheduling
problem, Operations Research, 40(1971), 7-13.

[7] S. M. Johnson, Optimal two- and three-stage production schedules with
set-up times included, Naval Research Logistics Quarterly, 1(1954), 61-68.

[8] R. Logendran, S. Carson and E. Hanson, Group scheduling in flexible flow
shops, International Journal of Production Economics, 96(2005), 143-155.

Trade-off between time complexity and makespan 1417

[9] R. Logendran and N. Nudtasomboon, Minimizing the makespan of a group

scheduling problem: a new heuristic, International Journal of Production
Economics, 22(1991), 217-230.

[10] R. Logendran, N. Salmasi and C. Sriskandarajah, Two-machine group
scheduling problems in discrete parts manufacturing with
sequence-dependent setups, Computers and Operations Research, 33(2006),
158-180.

[11] R. Logendran and C. Sriskandarajah, Two-machine group scheduling
problem with blocking and anticipatory setups, European Journal of
Operational Research, 69(1993), 467-481.

[12] T. E. Morton and D. W. Pentico, Heuristic Scheduling Systems with
Applications to Production Systems and Project Management, John Wiley &
Sons Inc., New York, 1993.

[13] M. Nawaz, J. E. E. Enscore and I. Ham, A heuristic algorithm for the
m-machine, n-job flow-shop sequencing problem, Omega, Vol. 11(1983),
91-95.

[14] D. S. Palmer, Sequencing jobs through a multi-stage process in the minimum
total time-a quick method of obtaining a near optimum, Operational
Research Quarterly, 16(1965), 101-107.

[15] V. A. Petrov, Flow Line Group Production Planning, Business Publications,
London, 1966.

[16] J. Schaller, A new lower bound for the flow shop group scheduling problem,
Computers and Industrial Engineering, 41(2001), 151-161.

[17] M. Solimanpur, P. Vrat and R. Shankar, A heuristic to minimize makespan
of cell scheduling problem, International Journal of Production Economics,
88(2004), 231-241.

[18] C. Sriskandarajah and S. P. Sethi, Scheduling algorithms for flexible flow
shops: worst and average case performance, European Journal of Operational
Research, 43(1989), 143-160.

[19] D. L. Yang and M. S. Chern, Two-machine flowshop group scheduling
problem, Computers & Operations Research, 27(2000), 975-985.

[20] T. Yoshida and K. Hitomi, Optimal two-stage production scheduling with
setup times separated, AIIE Transactions, 11(1979), 261-263.

Received: December 31, 2006

