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1. Introduction 

 

  Recently, progress is made in the study of biomembranes. Either for closed 

biomembranes or for open ones with free edges, the equilibrium differential 

equations in the normal directions of membranes have the unified form (Y.J. Yin 

et al., 2005, Y.J. Yin, J. Yin and D. Ni, 2005) 

 

  2 2 0fϕ ψ∇ +∇ + =  or ( ) 0fϕ ψ∇ ∇ +∇ + =      (1) 

 

In Eq.(1), ( ),H Kϕ ϕ= , ( ),H Kψ ψ=  and ( ),f f H K=  are three scalar 

functions derived from the free energy density of the biomembrane. H  and K  

are respectively the mean curvature and Gauss curvature. 2∇ =∇ ∇  is the 

conventional Laplace-Beltrami operator and 2∇ =∇ ∇  is another scalar 

differential operator on curved surfaces. It is found that two differential operators 

control the equilibrium configurations and topological structures of biomembranes: 

One is the classical 2D gradient operator ∇  (K.Z. Huang, M.D. Xue and M.W. 

Lu, 2003), and another is a new 2D gradient operator ∇  (Y.J Yin et al., 2005, Y.J. 

Yin, J. Yin and D. Ni, 2005). In previous researches (Y.J. Yin, 2005), ∇  and ∇  

are termed “the first and the second gradient operators” respectively, because they 

are dominated respectively by the first and second fundamental tensors. 

  The mathematical characteristics of the second gradient operator ∇  are 

worthy to be explored systematically. The reasons are as follows: 
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  First, gradient is an important concept in science and technology. A gradient is 

physically a “force” that drives various dynamics in macro or micro scales. 

Without pressure gradient, deformation gradient, temperature gradient and 

electromagnetic gradient, there would be no fluid dynamics, solid mechanics, 

thermal dynamics and electromagnetism. Now that there are two gradients, they 

may be of equal importance. As a conventional gradient operator, ∇  and its 

mathematical characteristics are well known to scientists and engineers. 

Nevertheless as a new gradient operator, ∇  and its mathematical characteristics 

are still very unfamiliar to researchers. 

  Second, similar to ∇ , ∇  may also be a fundamental and universal 

differential invariant. ∇  has “appeared” in various soft matters with curved 

surfaces. It plays dominant roles in biomembranes as well as in liquid crystals. 

For example, when the smectic-A phase liquid crystal grows from the isotropic 

one (H. Naito, O. Okuda and Z.C. Ou-Yang, 1993), its equilibrium differential 

equation (H. Naito, O. Okuda and Z.C. Ou-Yang, 1995) may be transformed into 

be same form as Eq.(1). Hence ∇  may be universally applicable to various soft 

matters with curved structures. Besides, the applicable scope of ∇  is far beyond 

soft matters. For some condensed matters with curved surfaces such as shells in 

mechanics, ∇  may also be very useful. 

  In short, ∇  may be widespread used in various matters or structures with 

curved surfaces. It’s necessary to reveal the operator’s general mathematical 

characteristics. 
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  This paper will concentrate on the operator’s integral characteristics. In the 

past, various classical integral theorems called “the first category of integral 

theorems” can be derived from ∇ . Similarly, various new integral theorems 

named “the second category of integral theorems” may also be obtained from ∇  

(Y.J Yin, 2005). Nevertheless, these integral theorems are just applicable to vector 

or scalar fields on curved surfaces. In physics and mechanics, tensor fields are 

very popular. For example, once the displacement vector v  in a deformed shell 

or cell membrane is given, many important physical quantities will be definable 

through the displacement gradient ∇v  or ∇v . Therefore, the integral theorems 

for tensor fields will be focused in this paper. 

 

 
2. The Gradient Operators 

 

  The first and second gradient operators are defined respectively by (Y.J. Yin 

et al., 2005, Y.J. Yin, J. Yin and D. Ni, 2005) 

 

  ij
i jg

u
∂

∇ =
∂

g   ( ), 1, 2i j =          (2) 

 

  îj
i jL

u
∂

∇ =
∂

g   ( ), 1, 2i j =          (3) 

 

In Eq.(2) and Eq.(3), iu  is the Gauss parameter coordinate. ig  is the covariant  
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base vector. ijg  is the contravariant component of the first fundamental tensor 

G . îjL  is the contravariant component of the tensor 1ˆ K −=L L  with L  the 

second fundamental tensor. 

  ∇  may be of special importance in small-scale curved structures. Because 

∇  is constructed from the second fundamental tensor, it may be influenced 

intensively by the curvatures of curved surfaces. For example, on a spherical 

surface with radius R , there is the relation 1
R

∇ = − ∇ . Thus the smaller is the 

radius, the larger is the effect of ∇ . This viewpoint should draw the attentions of 

researchers. It’s well known that the physics on nano-scale curved surfaces are 

very different from those on macro-scale ones. To understand better the physics 

on small-scale surfaces, the roles played by ∇  should not be neglected. 

 

 
3. The Second Category of Integral Theorems for Tensor Fields 

 

  Various theorems connecting line integrals round a closed curve drawn on the 

surface, with surface integrals taken over the enclosed region, will be proven. Let 

n  be the outward unit normal of the surface and C  be a smooth and closed 

curve drawn on the surface. At any point of this curve, let m  be the unit vector 

tangential to the surface and normal to the curve, drawn outward from the region 

enclosed by C . Let t  be the unit tangent to the curve, in that sense for which 

m , t , n  form a right-handed system of unit vectors (Fig.1), so that = ×m t n ,  
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= ×t n m  and = ×n m t . The sense of t  is the positive sense for a description 

of the curve. With the aid of the unit vectors, three element vectors may be 

formulated as d ds=s m , d ds=r t  and d dA=A n . Here ds  is the length of an 

element of the curve. dr  is the displacement along the curve in the positive 

sense. A  is the area enclosed by C . 

 

3.1 The second divergence theorem 

  Without losing universality, any tensor T  with rank k  on a curved surface 

can be expressed as 

 

  i
i= +T g R nS   ( )1, 2i =          (4) 

 

where i i=R g T  and =S n T  are tensors with rank 1k − . The second 

divergence of the tensor T  can be proven to be: 

 

  
( )ˆ1 2

ij
i

j

gL
K

ug

∂
∇ = −

∂

R
T S           (5) 

 

Here ijg g=  is the determinant of the first fundamental tensor. The surface 

integral is taken over the region enclosed by C  
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( ) 1 2

ˆ
2

ij
i

j
A A A

gL
dA du du K dA

u

∂
∇ = −

∂∫∫ ∫∫ ∫∫
R

T S       (6) 

 

The right-hand side may be further written as 

 

  
( ) 1 2

ˆ
ˆ

ij
i

j
A C

gL
du du d

u

∂
=

∂∫∫ ∫
R

s L T , 2 2
A A

K dA Kd=∫∫ ∫∫S A T    (7) 

 

Then Eq.(6) becomes 

 

  ˆ 2
A C A

dA d Kd∇ = −∫∫ ∫ ∫∫T s L T A T          (8) 

 

Eq.(8) is the second divergence theorem for a tensor field. This theorem reveals 

the conservation between a tensor field and its second divergence on curved 

surfaces. 

 

3.2 The second gradient theorem 

  Consider tensor 0c T . Here 0c  is a constant vector and 0c T  is a tensor with 

rank 1k + . By substituting T  for 0c T  and making use of the relation 

( )0 0∇ = ∇c T c T , one may change Eq.(8) into 
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  0 0 0
ˆ 2

A C A

dA d Kd∇ = −∫∫ ∫ ∫∫c T s L c T A c T        (9) 

 

Note ( )0 0
ˆ ˆd ds L c = c s L . Thus Eq.(9) may be rewritten as 

 

  0
ˆ 2

A C A

dA d Kd
⎛ ⎞

∇ − + =⎜ ⎟
⎝ ⎠
∫∫ ∫ ∫∫ 0c T s LT AT        (10) 

 

Let mc  ( )1, 2,...m k=  be a series of constant vectors. One may define a multiple 

dot product ( ){ }1 2 ... ...k =⎡ ⎤⎣ ⎦T c c c T c . Here 1 2... k=c c c c  is a constant tensor 

with rank k  and ...T c  is a scalar. If T  in Eq.(10) is replaced by ...T c , 

then one has ( ) ( )... ...∇ = ∇T c T c . At last Eq.(10) becomes 

 

  0
ˆ 2 ... 0

A C A

dA d Kd
⎛ ⎞

∇ − + =⎜ ⎟
⎝ ⎠
∫∫ ∫ ∫∫c T s LT AT c       (11) 

 

Since this is true for all constant 0c  and c , it follows 

 

  ˆ 2
A C A

dA d Kd∇ = −∫∫ ∫ ∫∫T s LT AT          (12) 

 

Here ∇T  is the second gradient of tensor T . Eq.(12) is the second gradient  
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theorem for a tensor field. This theorem displays the conservation between a 

tensor field and its second gradient on curved surfaces. 

 

3.3 The second curl theorem 

  Apply Eq.(8) to tensor 0 ×c T . For constant 0c  one has 

( ) ( )0 0∇ × = − ∇×c T c T . Thus Eq.(8) may be reconstructed as 

 

  ( ) ( ) ( )0 0 0
ˆ 2

A C A

dA d Kd− ∇× = × − ×∫∫ ∫ ∫∫c T s L c T A c T     (13) 

 

Note ( ) ( )0 0
ˆ ˆd d× = − ×s L c T c s L T  and ( ) ( )0 0d d× = − ×A c T c A T . Eq.(13) 

may be rewritten as 

 

  0
ˆ 2

A C A

dA d Kd
⎛ ⎞

∇× − × + × =⎜ ⎟
⎝ ⎠
∫∫ ∫ ∫∫ 0c T s L T A T       (14) 

 

For a series of constant vectors mc  ( )1, 2,..., 1m k= − , a multiple dot product 

( ){ }1 2 1... ...k− =⎡ ⎤⎣ ⎦T c c c T c  may be defined. Here 1 2 1... k−=c c c c  is a constant 

tensor with rank 1k −  and ...T c  is vector. If T  in Eq.(14) is replaced by 

...T c , then one has ( ) ( )... ...∇× = ∇×T c T c . At last Eq.(14) becomes 
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  0
ˆ 2 ... 0

A C A

dA d Kd
⎛ ⎞

∇× − × + × =⎜ ⎟
⎝ ⎠
∫∫ ∫ ∫∫c T s L T A T c      (15) 

 

Since this is true for all constant 0c  and c , it follows 

 

  ˆ 2
A C A

dA d Kd∇× = × − ×∫∫ ∫ ∫∫T s L T A T         (16) 

 

Here ∇×T  is the second curl of the tensor T . Eq.(16) is the second curl 

theorem for a tensor field. This theorem shows the conservation between a tensor 

field and its second curl on curved surfaces. 

 

3.4 The generalized second circulation theorems 

  Apply Eq.(8) to tensor ×n T . Note ∇× = 0n , ( ) ( )∇ × = ∇×n T n T  and 

( ) 0d =×A n T . Thus Eq.(8) may be transformed into 

 

  ( ) ( )ˆ
A C

d d∇× = ×∫∫ ∫A T s L n T          (17) 

 

Because of the relation ( )ˆd d× =s L n T r L T , the following integral 

transformation may keep valid 
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  ( )
A C

d d∇× =∫∫ ∫A T r L T            (18) 

 

If 
C

d∫ r T  is called the first circulation of the tensor T , then 
C

d∫ r L T  may be 

named the second circulation of the tensor T . Eq.(18) is the second circulation 

theorem for a tensor field. This theorem reveals the conservation between the 

second curl and the second circulation of a tensor field on curved surfaces. 

  One can prove the relation ( ) ( )∇× = ×∇n T n T . Thus Eq.(18) may be 

rewritten as 

 

  ( )
A C

d d×∇ =∫∫ ∫A T r L T            (19) 

 

In sections 3.2 and 3.3, Eq.(12) and Eq.(16) are derived on the basis of the second 

divergence theorem in Eq.(8). Similarly, the same procedures may also be used 

here, and the following two equations may be derived on the basis of the second 

circulation theorem in Eq.(19): 

 

  ( )
A C

d d×∇ =∫∫ ∫A T r LT            (20) 

 

  ( )
A C

d d×∇ × = ×∫∫ ∫A T r L T           (21) 

 



1476                                  Yajun YIN, Jie YIN and Jiye WU 

 

Eq.(19) ~ Eq.(21) may be termed the “generalized second circulation theorems”. 

 

3.5 Unified formulations of the above theorems 

  For convenience, Eq.(8), Eq.(12) and Eq.(16) may be unified as follows 

 

  ˆ 2
A C A

dA d Kd∇⊗ = ⊗ − ⊗∫∫ ∫ ∫∫T s L T A T        (22) 

 

If the symbol “⊗ ” is replaced by “ ”, then Eq.(8) will be deduced. If “⊗ ” is 

eliminated, Eq.(12) will be derived. If “⊗ ” is replaced by “×”, Eq.(16) will be 

obtained. In short, Eq.(22) is the unified expression of the second divergence 

theorem, the second gradient theorem and the second curl theorem for a tensor on 

curved surfaces. 

  Similarly, the generalized second circulation theorems in Eq.(19) ~ Eq.(21) 

may be unified as 

 

  ( )
A C

d d×∇ ⊗ = ⊗∫∫ ∫A T r L T           (23) 

 

 
4. Comparisons between Two Categories of Integral Theorems for Tensor 

Fields 

 

  The first divergence of the tensor T  can be demonstrated to be 



The second gradient operator and integral theorems                   1477 

 

  
( )1 2

ij
i

j

g g
H

ug

∂
∇ = −

∂

R
T S          (24) 

 

Similar to section 3, the first category of integral theorems for the tensor field may 

be expressed as: 

 

  2
A C A

dA d Hd∇⊗ = ⊗ − ⊗∫∫ ∫ ∫∫T s T A T         (25) 

 

  ( )
A C

d d×∇ ⊗ = ⊗∫∫ ∫A T r T           (26) 

 

It’s interesting to note that the analytical structures of the two categories of 

integral theorems are completely symmetric. If ∇ , ˆds L , K  and dr L  are 

substituted by ∇ , ds , H  and dr  respectively, then the second category in 

Eq.(22) and Eq.(23) will degenerate to the first one in Eq.(25) and Eq.(26) 

respectively, and vise versa. 

  If the tensor T  is replaced by vector v  or scalar ϕ , then Eq.(25), Eq.(26) 

will degenerate to the first category of integral theorems for vector or scalar field 

in conventional geometry; and Eq.(22), Eq.(23) will degenerate to the second 

category of integral theorems for vector or scalar field (Y.J. Yin, 2005). 

  The concepts related to the right-hand sides of Eq.(23) and Eq.(26), i.e. the 

second circulation and the first one, need to be further explored and compared. In  
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fluid mechanics, it has been proven that the lift efficiency of a large-scale wing is 

mainly attributed to the first circulation 
C

d∫ r v  generated by the flow on the 

wing’s surface. The larger the first circulation is, the larger the lift force is. Now 

an interesting idea may be stimulated: The first circulation 
C

d∫ r v  is the origin 

for lift force under large-scale flow. Similarly, is it possible that the second 

circulation 
C

d∫ r L v  is the origin for a new lift force under small-scale flow? If 

this is true, the existence of new lift force mechanism for insects may become 

possible. 

 

 

5. Conservation Laws about the Mean Curvature and Gauss Curvature 

 

  From Eq.(25) and Eq.(22), some interesting results may be deduced. Replace 

“⊗ ” by “ ” and T  by r , where r  is the position vector of a point on the 

curved surface. Because 2∇ =r  and 2H∇ =r , one has 

 

  2 2
A C A

dA d Hd= −∫∫ ∫ ∫∫s r A r           (27) 

 

  ˆ2 2
A C A

HdA d Kd= −∫∫ ∫ ∫∫s L r A r          (28) 

 

Eq.(28) has appeared in . If the curve C  converges to a point, then on the smooth  
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and closed surface Eq.(27) and Eq.(28) will become 

 

  
A A

dA Hd= −∫∫ ∫∫ A r             (29) 

 

  
A A

HdA Kd= −∫∫ ∫∫ A r            (30) 

 

Eq.(29) and Eq.(30) are exactly the Minkowski integral formulas in differential 

geometry. 

  Let =T G  in Eq.(25). Note 2H∇ =G n , d d=s G s  and d = 0A G . One 

has 

 

  2
C A

d Hd=∫ ∫∫s A              (31) 

 

Eq.(31) is an important integral theorem about the mean curvature in conventional 

geometry. Similarly, let =T G  in Eq.(22). Note 2K∇ =G n , ˆ ˆd d=s L G s L  

and d = 0A G . Eq.(22) becomes 

 

  ˆ 2
C A

d Kd=∫ ∫∫s L A             (32) 

 

Eq.(32) is an important integral theorem about the Gauss curvature (Y.J. Yin,  
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2005). This equation can also be obtained from Eq.(25) if one lets ˆ=T L  and 

replaces “⊗ ” by “ ”. Because of the relation ( )ˆ
n gd k dsτs L = m + t  on curve C , 

Eq.(32) may be further expressed as: 

 

  ( ) 2n g
C A

k ds Kdτ =∫ ∫∫m + t A           (33) 

 

Here n
dk
ds

=
t n  and g

d
ds

τ =
n m  are respectively the normal curvature and 

geodesic torsion of the curve C . 

  In differential geometry, there is another integral theorem about Gauss 

curvature K , i.e. the famous Gauss-Bonnet (local) integral theorem (M.P. Carmo, 

1976): 

 

  2 g
C A

k ds KdAπ − =∫ ∫∫             (34) 

 

Here g
dk
ds

=
t m  is the geodesic curvature of the curve C . Although Eq.(33) 

and Eq.(34) are all related to K , they are very different: The former is a vector 

integral theorem, while the latter is a scalar one. The former represents the 

conserved characteristics of vector Kn , while the latter reflects the conserved 

properties of scalar K . The former is concerned in the normal curvature nk  and 

the geodesic torsion gτ , while the latter is connected with the geodesic curvature  
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gk . 

  There are many applications of the Gauss-Bonnet integral theorem, both in 

mathematics and in other scientific disciplines. Fortunately, the new integral 

theorem in Eq.(33) also shows its powers in bionano sciences and carbon nano 

sciences (Y.J. Yin and J. Yin, 2006, Y.J. Yin et al., 2006). Here a simple example is 

displayed. For a smooth and closed surface, the left-hand sides of Eq.(31) and 

Eq.(33) will vanish (Y.J. Yin, 2005): 

 

  
A

Hd =∫∫ 0A               (35) 

 

  
A

Kd =∫∫ 0A               (36) 

 

Eq.(35) and Eq.(36) are also Minkowski integral formulas. In cell biology, smooth 

and closed cell membranes or vesicles will obey Eq.(35) and Eq.(36). 

  If one lets the curve C  converge smoothly and tangentially to a point 

outside the surface, then a closed surface with a singular point may be formed 

(Fig.2a). In this case Eq.(33) may be deduced as 

 

  
A

Kd π= −∫∫ A m              (37) 

 

Here m  characterizes the direction of the singular point. If the number of 

singular points on the surface is n  ( 2n =  in Fig.2b), then Eq.(37) may be  
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further extended as: 

 

  
1

n

i
iA

Kd π
=

= − ∑∫∫ A m             (38) 

 

In cell biology, cells or vesicles with sharp protuberances always occur. 

Geometrically such cells or vesicles may be idealized as closed surfaces with 

singular points and Eq.(38) should be satisfied. 

 

 

6. Conclusions 

 

  For tensor fields there are the second category of integral theorems on curved 

surfaces, including the second divergence theorem, the second gradient theorem, 

the second curl theorem and the second circulation theorem. Analytically the first 

and second categories of integral theorems have symmetric structures. 

Geometrically, the first category is mainly controlled by the first fundamental 

tensor, while the second category is mainly dominated by the second fundamental 

tensor. This implies that the former specially is applicable to structures with large 

scale, while the latter may play dominant roles in structures with small scale such 

as cell membranes whose spaces are intensively bended. Besides, from these 

integral theorems the Minkowski integral formulas are deduced easily and cells 

with singular points are depicted perfectly. 
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Fig.1 Schematic of the curved surface with unit vectors m , t  and n  at its 

boundary 

 

       
           (a) One singular point         (b) Two singular points 

Fig.2. Cells or vesicles with one or two singular points 
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