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1. Introduction

In this work we extend our model in the linear case to account for the
case of a time varying environment. In particular, we will deal with the cases
of cyclically varying environment and of an environment in process of stabi-
lization.

Periodic environment models are relevant because of the pronounced sea-
sonal periodicities in many environments[6, 7]. If environmental differences
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between years are negligible in comparaison with difference between seasons,
projection models with a time step shorter than the annual cycle naturally
appear to vary in a period fashion [14, 15, 22]. The literature offers different
approaches to the study of these models. The classical one (Skellam see, [20]),
which is the one we will follow, is based in transforming the original system
into a time invariant one considering the lenght of a cycle as the projection
interval.

The case of environmental variation tending to stabilization has not been
adressed with profusion in literature, but it reponds to important biological
considerations. Indeed, environments do not constantly maintain its char-
acteristics, but are frequently subjected to perturbations caused by different
incidental climatological conditions such as prolonged drought or rains, ex-
treme temperatures, etc., which induce perturbations in the vital rates of the
population. If we suppose that these perturbations do not alter the equilib-
rium, we might wonder whether, in the long run, the system is independent
of those incidental perturbations and depends only of the equilibrium vital
rates. Because of the resemblance with the time invariant case, we could also
think that under certain conditions the system is strongly ergodic, i.e., it has
a fixed asymptotic population structure independent of initial conditions, and
its growth is asymptotically exponential. Moreover, we could like to known
when that population structure and asymptotic exponential growth are those
corresponding to the case when the environment constantly has the equilib-
rium characteristics. Most of the mathematical results behind this subject are
proposed by Senata [20].

Section 2 proposes a linear time discrete model in the general case of varying
environment, We build a model with age structure which contains a simple
count of the sort of migration effects widely observed in bio-populations such
as fish and bird population, we classify individuals by spatial patch, age and
time spent in a given patch. This idea has been mainly inspired from the work
by O.Arino and W.V.Smith [3].These authors presented a linear continuous
model for age structured populations which migrate between several locations,
taking into consideration the time spent in a given area. they illustrate how
this model may be applied to a certain fishery problem by considering the
species pollachius virens. This fish is better known as the saithe.

Section 3 presents an introduction to the general treatment for cyclical lin-
ear system. We show that under wide conditions, the asymptotic population
structure of system is cyclical.

Section 4 has the same structure as section 3, but in this occasion we address
the case of an stabilizing environment.We give sufficient conditions for a gen-
eral system to exhibit strong ergodicity (tendency towards a fixed population
structure independent of the initial conditions) and an exponential asymptotic
growth.
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2. Spatial-model construction

The model we propose is a generalization of the linear discrete model con-
sidering in [19] in wich we want to allow the parameters of the model to be
time dependent.

We consider a population of N (≥ 2) individuals divided among two patches.
Patches may be thought of as distinct but spatial overlap is not excluded in
general. Population segments are further distinguished in terms of migration
status. For the modeled fish population, the annual cycle of reproduction and
overwintering is indexed by t. In this sense, we classify individuals by spatial
patch they are in, the age and the time spent in the patch, and we allow
migration, survival and fertility rates to depend on these three factors. The
models include two processes, demography detemines the moments of birth of
each individual as well as the transition between different age groups, while
migration characterizes the change of spatial patch. Migration is supposed
to take place after growth, thus, the only changes in the overall number of
individuals take place during the growth phase ( no individual can be lost
during the dispersal phase). We assume that the length of time spent in each
age class is the same is equal to the interval between two measurements of
population. We will denote by:
Xa,b

t,i : the number of individuals at time t in patch i with age in the interval
[a − 1, a[ which are migrants from the other patches, having lived in patch i
for time b, a = 1, ..., q, b = 1, ..., a − 1, i = 1, 2, t = 0, 1, 2, ....

Xa,a
t,i : the number of those individuals who were born at time t in patch i and

have remained up to age class a in the patch. a = 1, · · · , q, t = 0, 1, 2, · · · , i =
1, 2.

Individuals are assumed to have a maximum possible age class q.

2.1. The total population. The total population in patch i is given by:

Pi(t) =

q∑
a=1

a∑
b=1

Xa,b
t,i i = 1, 2

2.2. The dynamics of migrants. Using Sa,a
i (t) the survival rate for natives

in patch i during interval [t, t + 1[ and Sa,b
i (t) the survival rate for migrants

in patch i during interval [t, t + 1[, possibly different from that of natives in
patch i, i = 1, 2 .

For the migration rate, we use the migration rate during interval [t, t + 1[
(from patch j to patch i for individuals of age class a and having lived in patch

j for time b), pa,b
ij (t) ≥ 0. t, j = 1, 2.
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Xa+1,1
t+1,1 =

a∑
b=1

pa+1,b+1
12 (t)Sa,b

2 (t) Xa,b
t,2

a = 1, ..., q − 1,

Xa+1,1
t+1,2 =

a∑
b=1

pa+1,b+1
21 (t)Sa,b

1 (t)Xa,b
t,1

a = 1, ..., q − 1,

Xa+1,b+1
t+1,i = pa+1,b+1

ii (t)Sa,b
i (t)Xa,b

t,i

i = 1, 2 , a = 1, ..., q − 1, b = 1, ..., a

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
2.3. The production of eggs. We denote by: fa,a

i (t) the fertility coefficients

for natives of patch i during interval [t, t + 1[, while fa,b
i (t) is the possibly

different fertility rate for migrants of patch i during interval [t, t+1[ , i = 1, 2.
The abundance of the young of the year at time t + 1 is:

X1,1
t+1,i =

2∑
j=1

q∑
a=1

a∑
b=1

p11
ij (t)fa,b

j (t)Xa,b
t,j i = 1, 2

To simplify the presentation of the system, we introduce some notations
(as usual, AT means the transpose of A).The variables corresponding to age
a and time spent b are given by vector Xa,b

t = (Xa,b
t,1 , Xa,b

t,2 )T and therefore,
the composition of the population in age a is discribed by the column vector

Xa
t =

(
Xa,1

t , Xa,2
t , · · · , Xa,a

t

)T
with 2a components, and the whole pop-

ulation is discribed by the column vector Xt = (X1
t , X

2
t , · · · , Xq

t )
T which

therefore has q2 + q components.
The demography for the whole population will be given by a generalized

Leslie matrix

M(t) =

⎛
⎜⎜⎜⎜⎜⎝

f 1(t) f 2(t) f 3(t) · · · f q(t)
s1(t) 0 0 · · · 0

0 s2(t) 0
. . .

...
... 0

. . . 0 0
0 · · · 0 sq−1(t) 0

⎞
⎟⎟⎟⎟⎟⎠

where we have for a = 1, · · · , q and b = 1, · · · , a
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fa(t) = (fa,1(t), fa,2(t), · · · , fa,a(t)) ∈ R2×2a

fa,b(t) = diag(fa,b
1 (t), fa,b

2 (t)) ∈ R2×2

sa(t) = (0, · · ·0, ca(t))T ∈ R2(a+1)×2a

ca(t) = diag(ca,1(t), · · · , ca,a(t)) ∈ R2a×2a

ca,b(t) = diag(Sa,b
1 (t), Sa,b

2 (t)) ∈ R2×2

P a,1(t) =

(
pa1

11(t) pa1
12(t)

pa1
21(t) pa1

22(t)

)
∈ R2×2

for a = 2, · · · , q and b = 2, · · · , a

P a,b(t) =

(
0 pa,b

12 (t)

pa,b
21 (t) 0

)
∈ R2×2

La,b(t) =

(
pa,b

11 (t) 0

0 pa,b
22 (t)

)
∈ R2×2

Therefore, if we consider a fixed projection interval, the migratory processus
for group a will be represented, during the time interval [t, t + 1[ , by a regular
stochastic matrix (i.e., a primitive stochastic matrix) [2, 4, 5, 8, 9, 10, 11, 12,
13, 16, 21] of dimension 2a × 2a

P a(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

P a,1(t) P a,2(t) P a,3(t) · · · · · · P a,a(t)
0 La,2(t) 0 · · · · · · 0

0 0 La,3(t) 0 · · · ...
...

... 0
. . . 0

...
...

...
... 0

. . . 0
0 0 0 0 0 La,a(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

The matrix P (t) which represents the migration for the whole population
during that interval is then

P (t) =

⎛
⎜⎜⎜⎜⎜⎝

P 1,1(t) 0 · · · · · · 0
0 P 2(t) 0 · · · 0
... 0 P 3(t)

. . .
...

...
. . .

. . . 0
0 · · · · · · 0 P q(t)

⎞
⎟⎟⎟⎟⎟⎠
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The global model describing the rate of change for the whole population X
consists of the following system of q2 + q difference equations

Xt+1 = P (t)M(t)Xt

= L(t)Xt(2.1)

where L(t) is given by

L(t) =

⎛
⎜⎜⎜⎜⎜⎝

F 1(t) F 2(t) F 3(t) · · · F q(t)
G1(t) 0 0 · · · 0

0 G2(t) 0
. . .

...
... 0

. . . 0 0
0 · · · 0 Gq−1(t) 0

⎞
⎟⎟⎟⎟⎟⎠

and

F i(t) = P 1,1(t) f i(t) i = 1, ..., q
Gi(t) = P i(t) si−1(t) i = 2, ..., q

3. All rates independent on the time of
residence

In this section, we will suppose that the migration, survival and fertility
rates depend only on the spatial patch and the age of the individuals (i.e.:

fa,b
i (t) = fa

i (t) , Sa,b
i (t) = Sa

i (t), pa,b
i (t) = pa

i (t) a = 1, · · · , q, b = 1, · · · , a,
i = 1, 2, t = 1, 2, . . . ). Under these conditions, the model is similar to classical
models for which we may refer for example to [17, 18].

We denote by

ya
t,i =

a∑
b=1

Xa,b
t,i i = 1, 2

then; for i = 1, 2

y1
t+1,i = X1,1

t+1,i

=

2∑
j=1

q∑
a=1

a∑
b=1

p1
ij(t)f

a
j (t)Xa,b

t,j

=

2∑
j=1

p1
ij(t)

q∑
a=1

fa
j (t)

a∑
b=1

Xa,b
t,j

=

2∑
j=1

p1
ij(t)

q∑
a=1

fa
j (t)ya

t,j
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for a = 1, ..., q − 1

ya+1
t+1,i =

a+1∑
b=1

Xa+1,b
t+1,i

= Xa+1,1
t+1,i +

a∑
b=1

Xa+1,b+1
t+1,i

=
2∑

j=1
j �=i

pa+1
ij (t)

a∑
b=1

Sa
j (t)Xa,b

t,j +
a∑

b=1

pa+1
ii (t)Sa

i (t)Xa,b
t,i

=
2∑

j=1
j �=i

pa+1
ij (t)Sa

j (t)
a∑

b=1

Xa,b
t,j + pa+1

ii (t)Sa
i (t)

a∑
b=1

Xa,b
t,i

=
2∑

j=1

pa+1
ij (t)Sa

j (t)ya
t,j

For a = 1, · · · , q we define

Pa(t) =

(
pa

11(t) pa
12(t)

pa
21(t) pa

22(t)

)

Sa(t) = diag (Sa
1 (t), Sa

2 (t))

Fa(t) = diag (fa
1 (t), fa

2 (t))

ya
t =

(
ya

t,1, y
a
t,2

)T

yt = (y1
t , y

2
t , · · · , yq

t )
T

the matrix characterizing the migration is

D(t) =

⎛
⎜⎜⎜⎜⎜⎜⎝

P1(t) 0 0 · · · 0

0 P2(t) 0
. . .

...

0 0 P3(t)
. . . 0

...
. . .

. . .
. . . 0

0 0 · · · 0 Pq(t)

⎞
⎟⎟⎟⎟⎟⎟⎠

and the demography for the whole population is modeled for each interval
[t, t + 1[ by the following generalized Leslie matrix
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G(t) =

⎛
⎜⎜⎜⎜⎜⎝

F1(t) F2(t) F3(t) · · · Fq(t)
S1(t) 0 0 · · · 0

0 S2(t) 0
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 Sq−1(t) 0

⎞
⎟⎟⎟⎟⎟⎠

The general system consists of the following system of 2q difference equations

yt+1 = D(t)G(t)yt

Thus, when assuming that the matrix does not depend on the time of res-
idence, one can aggregate the state vector in such a way that only the age-
structure remains. this is, indeed, the most usual type of model that can be
encountered in the literature.

4. Cyclically varying environment

in this section, we study the system proposed in the case of cyclical varying
environment, that is , in the case where we have matrices P (t) and M(t)
verifying P (t+τ) = P (t) and M(t+τ) = M(t) for all t where τ is the periodic
of cyclical variation.

4.1. The General Approach. The literature offers several techniques for
the study of discrete models

zt+1 = Atzt.(4.1)

with cyclical variability, the classical approach [20] which is to study the
system at times separed by τ units considering products of matrices of length
τ .

From Skellam [20], for each s ∈ {0, 1, ..., τ − 1} and all m = 1, 2, ... we have
from system 2

zs+(m+1)τ = As+τ−1...As+1Aszs+mτ(4.2)

and, if we define Bs = As+τ−1...As+1As, is

zs+(m+1)τ = Bszs+mτ(4.3)

so we can study the population at times s, s + τ, s + 2τ... considering ma-
trix Bs, which is independent of m, making use of the time invariant theory.
therefore, if we assume Bs has strictly dominant eigenvalue μs, then μs gives

the asymptotic growth rate per τ time steps of the population (and so (μs)
1
τ

is the asymptotic growth rate per time step). For this analysis to be consis-
tent, it must be μs ( and the rest of the eigenvalues of Bs) independent of the
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observation points, that is, μ0 = · · · = μτ−1 = μ independent of s. Concerning
the stable population vectors, if ws is a probabilty normed eigenvector of Bs

associated to μ the population at times s + mτ is asymptotically given by ws.
then for any s′ ( let say s′ > s) ws′ = As′−1...As+1Asws is eigenvector of Bs′

associad to μ and consequently, the population at time s′ +mτ asymptotically
has the direction of ws′. Notice that it is ws+τ = μws so we have that the
population structure is asymptotically cyclic with a period not greader than
τ.

It is important to take into account that even though B0, B1, . . . ,Bs−1 have
the same eigenvalues including multiplicities, the irreducibility or the primi-
tivity of one of the Bs does not imply the irreducibility or primitivity of the
rest.

As a result of the above discussions we can study system (3) without loss of
generality by just choosing s ∈ {0, 1, . . . , τ − 1} (for example s = 0) and then
dealing with system (4).

4.2. Cyclically varying demography and migration. We will now apply
the above technique to treat our system constructed in the last section for the
case of a cyclically varing environment.

We have then as an starting assumption:
H1:Matrices P (t) and M(t) are periodic with period τ.
In the first place we will set out the equations that govern these systems

taking as time step that corresponding to a cycle.
Let us consider s = 0 (for any other s the treatment would be absolutely

analogous).
The system (1) can be put in the form:

X(m+1)τ = CXmτ

Where C is given by

C = Pτ−1Mτ−1 . . . P1M1P0M0(4.4)

C = Lτ−1 . . . L1L0

where

Pt = P (t) , Mt = M(t) and Lt = Pt Mt for all t = 0, 1, 2, . . .(4.5)

The purpose for this construction is to chacacterize the asymptotic behavior
of the system 1 at times multiple of τ (i.e., at times of the form mτ with m
asymptotically large).

For our study we make the following assymption:
H2: C has a simple and strictly dominant eigenvalues μ ( necessarilly

positive), with associated right and left eigenvectors v and w, respectively.
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Recall that the incidence matrix of a non-negative matrix A is a matrix
F (A) of the same dimensions as A given by [20]

F (A)ij =

⎧⎨
⎩

1 if Aij > 0

0 if Aij = 0

Two non-negative matrices A and B of the same dimensions are then said
to have the same incidence matrix (and we will denote it A ∼ B) when both
matrices have their non-zero elements in corresponding positions. The prop-
erties of irreducibility , reducibility, primitivity, etc., of a non-negative matrix
A are functions only of the incidence matrix of A and not of the actual values
of its non-zero elements.

Of course, a sufficient condition for C to meet H2 is that C is primitive. In
the frequent case that all Pt and all Mt have the same incidence matrix (i.e.,
Pt ∼ Pt′ and Mt ∼ Mt for all t and t

′
), a necessary and sufficient condition for

C to be primitive is then any PtMt is primitive.
Then, if the system (1) has a non-negative initial condition X0, its asymp-

totic behavior at times multiple of τ will be given by

lim
m→∞

Xmτ

μm
= lim

m→∞

(
C

μ

)m

X0 =
〈w, X0〉
〈w, v〉 v

Where v and w are respectively, right and left eigenvectors of C associated
to dominant eigenvalues μ.

For simplicity we make the following assymptions that, as it is immediate
to check, will be sufficient conditions for H2 to hold:

1) The incidence matrix for the demography and the migration is constant
through time, i.e., Mt ∼ Mt′ , Pt ∼ Pt′ for all t and t

′
. Therefore, if a vital rate

is non-zero initially it remains non-zeros subsequently.
2) There is at least a non-zeros coefficient in the last age class, that is Fq(t)

�= 0 for all t and, besides, there exists j such that g.c.d(j, q) = 1 and there is
a at least a non-zero fertility coefficient in age class j (Fj(t) �= 0 for all t).

3) For all age classes there is at least a non-zero survival coefficient,i.e.,
Si(t) �= 0 for all i = 1, . . . , q − 1 and all t.

Thus, the results developed in this section are valid for our age and patch
structured model. therefore, the model will have an asymptotic cyclical
behavior with periode τ . Then the asymptotic growth rate for a cyclic in the
model is μ and that the population structure at times mτ (with m large) is
given by the direction of vector v.

5. Stabilizing environment

This section deals with the treatment of the systems (1) in the case which
the environment has a temporal vatiation that tends to stabilization.
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We have then as a starting assymption that Pt and Mt evolve in the way
that there exist matrices P and M such that

lim
t→∞

Pt = P ; lim
t→∞

Mt = M

Obviously, matrices P and M would represent the migration and demography
matrices in the stabilized environment, that is, for asymptotically large time.

5.1. The general approach. Let us consider a general system of the kind

zt+1 = Atzt.(5.1)

where zt ∈ RN , (t = 0, 1, 2, ...) and At ∈ RN×N is a sequence of non-negative
(not necessarily convergening) N × N matrices. if zp �= 0 is the population
vector at time p ≥ 0, we obviously have for all t ≥ p, zt = At−1 . . . Ap+1Apzt,
and, therefore, in order to study the asymptotic behavior of (8) we have to
deal with infinite backwards products of non-negative matrices,

Let us denote by ‖∗‖ the l1 norm in RN , that is, if z = (z1, z2, . . . , zN)T we

have ‖z‖ =
N∑

i=1

|zi| . Then the total population of system (8) at time t is ‖zt‖
and the population structure at time t will be given by zt

‖zt‖ .
Let us define a mesure of asymptotic growth rate for system (8). in the time

invariant case with constant matrix A (where we suppose that A is primitive)
we use as mesure of growth rate the dominant eigenvalue λ of A, since we have

for that for any non-zero initial condition z0 is limt→∞
‖zt+1‖
‖zt‖ = limt→∞ ‖zt‖

1
t =

λ. Similarly, in the time varing case we might wonder whether there exists a

positive number μ such that for all z0 �= 0 is limt→∞ ‖zt‖
1
t = μ and then define

the asymptotic growth rate as μ.
Another interesting situation appears when the environment tends to sta-

bilization, i.e. there exists a matrix A which represents the environment at
equilibrium, such that limt→∞At = A. in that case it can be shown that under
some very general conditions, the system behaves asymptotically as if the envi-
ronment were constant and defined by matrix A. In particular, the population
grows asymptotically in an exponential fashion and the population structure
converges to a certain vector which is independent of initial condition, i.e. for
all z(0) �= 0, z(0) ≥ 0, it follows limt→∞ zt

‖zt‖ = v for certain v. Mereover, we

could think that (8) might asymptotically behave as the following system

zt+1 = Azt(5.2)

i.e., (8) would asymptotically behave as if the environment were constant
and equal to the equilibrium environment and so we could ignore the devi-
ations from this equilibrium. In that case, if we suppose that A is primitive
with dominant eigenvalue λ and probability normed associated eigenvector v,
system (8) would have, for any non-zero population vector at time p an as-
ymptotic growth rate and population structure given by λ and v respectively.
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Notice that besides convergence, some restrictions on At are easily seen to
be necessary for the above results to hold. Inded, if sequence At were such
that at some time t0 the population vector became zeros, it would remain to be
zero for all subsequent times, not being therefore independent of the sequence
At.

As a matter of fact, we shall show that if sequence At is such that,
a) independently of the initial time p and the initial condition zp, the pop-

ulation vector can never become zero and
b) matrix A is primitive.
Then all of the above conjectures are true.
The property by which the structure of solutions of (8) tend to approach

a constant vector independently of the initial time and the (non-zero) initial
condition, is reffered to as strong ergodicity.

The study of a asymptotic growth rates in variable environments has been
adressed to by many authors in the context of stochastic environments (see
for example [23]). The case of deterministic varing environments has been
investigated by Artzrouni (see [1]) for age structured populations and not
necessarily converging vital rates.

Let use introduce some concepts that will be useful to deal with strong
ergodicity. A non- negative matrix A is said to be column-allowable (row-
allowable) if it has at least a non-zero element in each one of its columns (rows)
[20]. Notice that an irreducible matrix is both row and column allowable. It
is easy to verify the validity of the following propositions:

a) A is column -allowable if and only if for all non-negative x �= 0 is Ax �= 0.
b) for all p ≥ 0 and all t ≥ p is At . . . Ap+1Ap column -allowable if and only

if for all t ≥ 0 is At column allowable.
These propositions can be interpreted in the folowing way. It is a necessary

and sufficient condition for the population of (8) to be always different from
zero (independently of the initial time p and the non-zero population vector
zp at time p) that all the matrices At be column- allowable. Therefore, in the
following we restrict our attention to sequences of environmental conditions
represented by column -allowable matrices.

We are ready to introduce in the next theorem the two main results that
characterize the asymptotic behavior of (8). The first is due to Seneta (1981)[20]
and deals with the strong ergodicity of 8), while the second, which follows as
a corollary of the first, characterizes the asymptotic growth rate of (8).

Theorem 1. [20] let An n ≥ 0 be a sequence of N × N non-negative and
column-allowable matrices that converge to a primitive matrix A with dominant
eigenvalue λ and associated probability normed eigenvector v. then for all p �= 0
and all zp �= 0 is ‖zn‖ �= 0 and
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lim
t→∞

zt

‖zt‖ =
At · · ·Ap+1Apzp

‖At · · ·Ap+1ApXp‖ = v

lim
t→∞

‖zt+1‖
‖zt‖ = lim

n→∞
‖zt‖

1
n = lim

t→∞
‖At+1At · · ·Ap+1Apzp‖
‖At · · ·Ap+1Apzp‖ = λ

Proof. see [20].

5.2. Stabilizing demography and migration. In the remaining of this sec-
tion we study the property of strong ergodicity and the asymptotic growth rate
for the systems (1) defined in the proceding sections.

Our general assumptions for this section are:
H2. For each i = 1, . . . , q, the sequence of matrice M(t) corresponding to

the demography converge to a certain matrix M.
H3. For each i = 1, . . . , q, the sequence of matrice Pi(t) corresponding to

the migration of group i converges to a stochastic matrix Pi.
The above results garantee that the sequence of matrices L(t) converges to

matrix L, which obviously can be interpreted as the matrix that describes the
system for the stabilized environment.

We now introduce two hypothesis that will guarantee that the system meets
the conditions of theorem 1 and is therefore strongly ergodic.

H4. matrix L is primitive. let λ be the (algebrically simple) dominant eigen-
value of L and let v be the probability normed right eigenvector associated to
λ.

H5. For all t, L(t) is column-allowable. We have that this condition is
equivalent to the following one: For each t, the transition from any group
j to at least another group (possibly also group j) , recall that H5 assures
population never becomes zero if it is not initially zero.

It is easy to check that sufficient conditions for H4-H5 to be verified are:

H6. For all times, and also in the limit, the internal survival coefficients for
all patches and all ages and all time spent are non-zero, i.e., Sa,b

i (t) �= 0 and

Sa,b
i �= 0 for all t, a, b, i, j.
H7. For all times, and also in the limit, the internal survival coefficients for

all patches for the last age group are non-zero, i.e., fa,b
i (t) �= 0 and fa,b

i �= 0 for
all t, a, b, i, j.

H6. Asymptotically there exists at least a non-zeros fertility coefficient for
an age i (i.e., Fi �= 0) such that g.c.d(i, q) = 1.

The above assumption guarantee that all the results developed in this section
are valid for our demography-migration model. Then, independently of the
initial time p ≥ 0 where we consider our biological system starting to evolve
and independently of the the non-zeros initial population vector X (p), the
asymptotic behavior of the system is given by the following proposition.
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Proposition 2. [20] let suppose hypothesis H1 to H6, then for each non-zero
condition Xp at time p, we have for the system (1)

lim
t→∞

Xt

‖Xt‖ = v

lim
t→∞

‖Xn+1‖
‖Xn‖ = lim

t→∞
‖Xt‖

1
t = λ

where λ is the (algebraically simple) dominant eigenvalue of L and v is the
probability normed right eigenvector associated to λ

6. Conclusion

In this paper we extend our model in time discrete linear models to the
case of time varying environment, much of the theory of time-varying matrix
models is relatively new. The models presented here is a time varying system,
in the case of cyclical and stabilizing temporal variation explored, it only takes
into consideration the time of residence in a given area. Under some general
conditions, it has been shown that the population verifies the ergodic prop-
erty: all class tend to represente a strictly positive fixed fraction of the total
population.
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