A Note on the Exponential Stability of Nonlinear Difference Systems

Haci Civciv and Mehmet Akbulak
Department of Mathematics
Faculty of Art and Science
Selcuk University, 42031 Konya, Turkey

Abstract

One of the directions arising from applications of difference equations is linked with qualitative investigation of their solutions. The analysis of numerical methods applied to autonomous linear problems is well-developed. The direct analysis of nonlinear and nonautonomous problems is less well understood and is dependent on the availability of suitable general theorems on the behavior of solutions to difference equations. In this study, we show that under conditions relating A and B, if the zero solution of the system $x_{n+1}=\left(I+A_{n}\right) x_{n}+f_{n}, x_{n_{0}}=x_{0}$, $n_{0} \leq n<\infty$ is exponentially stable, then the zero solution of the system $y_{n+1}=\left(I+B_{n}\right) y_{n}+g_{n}, y_{n_{0}}=y_{0}, n_{0} \leq n<\infty$ has the same property.

Mathematics Subject Classification: 39A10, 39A11
Keywords: difference equations, exponential stability

1 Introduction

The idea of using difference equations to approximate solutions of differential equations originated in 1769 with Euler's polygonal method, for which the proof of convergence was given by Cauchy around 1840. During the 1950's, several ecologists used simple nonlinear difference equations, including the logistic equation, to study the change in populations from one year (or season) to the next with the emphasis on the stability of the iteration. The excitement of these discoveries attracted the attention of researchers who attempted to apply the results to fields from economics to medicine.

Conti [2] defined two $n \times n$ matrix functions A and B on [$0, \infty$] to be t_{∞}-similar if there is $n \times n$ matrix function S defined on $[0, \infty]$ such that S^{\prime}
is continious, S and S^{-1} are bounded on $[0, \infty]$, and

$$
\int_{0}^{\infty}\left\|S^{\prime}+S B-A S\right\| d t<\infty
$$

Conti has shown that t_{∞}-similarity preserves exponential stability; that is, if the system $x^{\prime}=A(t) x$ has exponential stability property and B is t_{∞}-similar to A, then so does the system $y^{\prime}=B(t) y$.

In this paper, we give an analogy of this result in [2] for systems of difference equations.

For convenience, we first list all special notation used throughout the rest of this note:
\mathbf{F} : the set of all nonnegative integer;
$\mathcal{F}^{k \times k}$: the set of all $k \times k$ matrix functions(with real or complex entries) defined on \mathbf{F};
$I: k \times k$ identity matrix
$A_{n}, I+A_{n}, B$ and $B+I_{n}: k \times k$ nonsingular matrix functions(with real or complex entries) defined on \mathbf{F};
$x(n)=x_{n}, y(n)=y_{n}, f\left(n, x_{n}\right)=f_{n}$ and $g\left(n, y_{n}\right)=g_{n}: k \times 1$ vector functions (with real or complex entries) defined on \mathbf{F};
\mathcal{L} : the set of all $k \times k$ bounded matrices in $\mathcal{F}^{k \times k}$;
$\Im:$ the set of all $k \times k$ matrix functions F_{m} in $\mathcal{F}^{k \times k}$ such that $\sum_{m=0}^{\infty} F_{m}$ exists;
\Re : the set of all $k \times k$ matrix functions F_{m} in $\mathcal{F}^{k \times k}$ such that $\sum_{m=0}^{\infty}\left\|F_{m}\right\|<$ ∞.

This paper is organized as follows. Section 2 introduces basic concepts and principal results needed in this paper. We are interested in relating exponential stability properties of two $k \times k$ systems of difference equations

$$
\begin{equation*}
x_{n+1}=\left(I+A_{n}\right) x_{n}+f_{n}, x_{n_{0}}=x_{0}, n_{0} \leq m \leq n<\infty, \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
y_{n+1}=\left(I+B_{n}\right) y_{n}+g_{n}, y_{n_{0}}=y_{0}, n_{0} \leq m \leq n<\infty, \tag{2}
\end{equation*}
$$

without actually computing solutions of them in Section 3 .

2 Preliminary Notes

Definition 1 The system

$$
\begin{equation*}
x_{n+1}=A_{n} x_{n}, x_{n_{0}}=x_{0}, n \geq n_{0} \geq 0 \tag{3}
\end{equation*}
$$

is homogeneous linear difference system which is nonautonomous or timevariant. The corresponding nonhomogeneous system is given by

$$
\begin{equation*}
y_{n+1}=A_{n} y_{n}+g_{n}, \quad y_{n_{0}}=y_{0}, \quad n \geq n_{0} \geq 0 \tag{4}
\end{equation*}
$$

([1, p.120])
Theorem 1 There exists a uniqe solution x_{n} of Eq. (3), with $x_{n_{0}}=x_{0}$ such that

$$
x_{n}=\left[\prod_{i=n_{0}}^{n-1} A_{i}\right] x_{0}
$$

where

$$
\prod_{i=n_{0}}^{n-1} A_{i}=\left\{\begin{array}{cl}
A_{n-1} A_{n-2} \ldots A_{n_{0}} & n>n_{0} \\
I & n=n_{0}
\end{array} .\right.
$$

([1, p.120])
Let X_{n} be $k \times k$ matrix whose columns are solutions of Eq. (3). Hence, X_{n} satisfies the matrix difference equation

$$
\begin{equation*}
X_{n+1}=A_{n} X_{n}, \quad X_{n_{0}}=X_{0}, n \geq n_{0} \geq 0 \tag{5}
\end{equation*}
$$

([1, p.121])
Definition 2 If X_{n} is a solution of Eq. (5), then it is said to be a fundamental matrix for the system (3). ([1, p.121])

Note that if X_{n} is a fundamental matrix of the system (3) and C is any nonsingular matrix, then $X_{n} C$ is also a fundamental matrix of the system (3). Thus there are infinitely many fundamental matrices for the system (3). However, there is one fundamental matrix that we already know, namely,

$$
\begin{equation*}
X_{0}=I, \quad X_{n}=A_{n-1} A_{n-2} \ldots A_{n_{0}}, n \geq n_{0} \geq 0 \tag{6}
\end{equation*}
$$

Theorem 2 (Variation of Constants Formula) Let X_{n} as in (6). Then, the uniqe solution of the system (4) is given by

$$
\begin{equation*}
y_{n}=X_{n} X_{0}^{-1} y_{0}+\sum_{r=n_{0}}^{n-1} X_{n} X_{r+1}^{-1} g_{r} \tag{7}
\end{equation*}
$$

([1, p.124])

While the fundamental idea of exponential stability is widely understood, there remains some latitude in definitions among authors and so for the sake of clarity, we give definition of exponential satability of the system (1) here.

Definition 3 For all x_{n} solutions of the system (4), if there exist $\delta>0$, $\mu_{A}>0, \eta \in(0,1)$ such that $\left\|x_{n}\right\| \leq \mu_{A}\left\|x_{0}\right\| \eta^{n-n_{0}}$, whenever $\left\|x_{0}\right\| \leq \delta_{0}$, then the zero solution of nonlinear System (4) is exponentially stable.

Assumption There is an $S_{n} \in \mathcal{L}$ such that

$$
F_{n}^{(0)}=\Delta S_{n}+S_{n+1} B_{n}-A_{n} S_{n}
$$

defines an element of \Im. Either $F_{n}^{(0)} \in \Re$ or there is a positive integer p such that the $n \times n$ matrix functions $F_{n}^{(1)}, \ldots, F_{n}^{(p)}$ defined by

$$
Q_{n}^{(r)}=\sum_{k=n}^{\infty} F_{k}^{(r-1)}
$$

and

$$
F_{n}^{(r)}=Q_{n+1}^{(r)} B_{n}-A_{n} Q_{n}^{(r)}
$$

are in \Im, and $F_{n}^{(p)} \in \Re$.
Theorem 3 Suppose that Assumption holds. Define

$$
\Gamma_{n}^{(0)}=I, \Gamma_{n}^{(r)}=I+S_{n}^{(-1)} \sum_{l=1}^{r} Q_{n}^{(l)}, 1 \leq r \leq p
$$

Then

$$
\begin{equation*}
\Gamma_{j}^{(p)} Y_{j}=S_{j}^{-1} X_{j}\left[X_{i}^{-1} S_{i} \Gamma_{i}^{(p)} Y_{i}+\sum_{m=i}^{j-1} X_{m+1}^{-1} F_{m}^{(p)} Y_{m}\right], 0 \leq i \leq j \tag{8}
\end{equation*}
$$

(Trench [3])
The symbol o (small oh) is one of the main tools of approximating functions and is widely used in all branches of science. Now, we shall give definition of the symbol o (small oh) for functions defined on the real or complex numbers.

Definition 4 Let $f(t)$ and $g(t)$ be two functions defined on the real or complex numbers. If $\lim _{t \rightarrow \infty} \frac{f(t)}{g(t)}=0$, then we say that

$$
f(t)=o(g(t)), \quad(t \rightarrow \infty)
$$

([1, p.305])

A series usually is defined as a pair of sequences: the sequence of terms of the series: $a_{0}, a_{1}, a_{2}, \ldots$; and the sequence of partial sums $S_{0}, S_{1}, S_{2}, \ldots$ where $S_{N}=\sum_{n=0}^{N} a_{n}$. The notation $\sum_{n=0}^{\infty} a_{n}$ represents then a priori this pair of sequences, which is always well defined, but which may or may not converge. In the case of convergence, i.e., if the sequence of partial sums S_{N} has a limit, the notation is also used to denote the limit of this sequence. A series $\sum_{n=0}^{\infty} a_{n}$ is said to converge absolutely if the series of absolute values $\sum_{n=0}^{\infty}\left|a_{n}\right|$ converges. In this case, the original series, and all reorderings of it, converge, and converge towards the same sum. For a sequence of numbers $a_{1}, a_{2}, a_{3}, \ldots$, the infinite product $\prod_{n=1}^{\infty} a_{n}$ is defined to be the limit of the partial products $a_{1} a_{2} \ldots a_{n}$ as n goes to infinity. The product is said to converge when the limit exists and is not zero. Otherwise the product is said to diverge. A series $\prod_{n=1}^{\infty} a_{n}$ is said to converge absolutely if the series of absolute values $\prod_{n=1}^{\infty}\left|a_{n}\right|$ converges.

Theorem 4 The product $\prod_{n=1}^{\infty}\left(1+a_{n}\right)$ with positive terms a_{n} is convergent if and only if the series $\sum_{n=0}^{\infty} a_{n}$ converges.([5, p.219])

3 Main Results

Theorem 5 Let Assumption holds and assume that $g_{n}=o(\|y\|)$ as $\|y\| \rightarrow 0$. If the zero solution of nonlinear System (1) is exponentially stable, then the zero solution of nonlinear System (2) is also.

Proof. Since $I+A_{n}$ and $I+B_{n}$ are invertible for every $n \geq n_{0}$, this guarantees that $X, Y \in M^{k \times k}$ defined by

$$
\begin{gathered}
X_{o}=I, X_{n}=\left(I+A_{n-1}\right)\left(I+A_{n-2}\right) \ldots\left(I+A_{0}\right) \\
Y_{o}=I, Y_{n}=\left(I+B_{n-1}\right)\left(I+B_{n-2}\right) \ldots\left(I+B_{0}\right)
\end{gathered}
$$

are fundamental matrices for the systems

$$
x_{n+1}=\left(I+A_{n}\right) x_{n}, x_{n_{0}}=x_{0}, n_{0} \leq n<\infty,
$$

and

$$
y_{n+1}=\left(I+B_{n}\right) y_{n}, y_{n_{0}}=y_{0}, n_{0} \leq n<\infty
$$

, respectively. If m is a fixed nonnegative integer, then the solutions of the systems (1) and (2) satisfy

$$
x_{n}=X_{n} X_{m}^{-1} x_{m}, \quad \text { and } \quad y_{n}=Y_{n} Y_{m}^{-1} y_{m}, \quad n \geq 0
$$

respectively. By the Variation of Constants Formula (7), the solution of Eq. (2) is given by

$$
\begin{equation*}
y_{n}=Y_{n} Y_{n_{0}}^{-1} y_{0}+\sum_{r=n_{0}}^{n-1} Y_{n} Y_{r+1}^{-1} g_{r} \tag{9}
\end{equation*}
$$

From Definition 5 and our hypothesis on the system (1), there exist $\delta>0$, $\mu_{A}>0, \eta \in(0,1)$ such that $\left\|x_{n}\right\| \leq \mu_{A}\left\|x_{0}\right\| \eta^{n-n_{0}}$, whenever $\left\|x_{0}\right\| \leq \delta_{0}$. This guarantees that there exist a fixed noninteger m integer such that $\left\|x_{m}\right\| \leq \delta_{1}$, $n_{0} \leq m \leq n<\infty$. Thus we have

$$
\begin{gather*}
\left\|X_{n} X_{m}^{-1}\right\|=\sup _{\|\xi\| \leq 1}\left\|X_{n} X_{m}^{-1} \xi\right\| \\
=\frac{1}{\delta_{1}} \sup _{\left\|x_{m}\right\| \leq 1}\left\|X_{n} X_{m}^{-1} x_{m}\right\| \\
\leq \frac{1}{\delta_{1}} \mu_{A}\left\|x_{0}\right\| \eta^{n-n_{0}} \\
\leq \frac{\delta_{0}}{\delta_{1}} \mu_{A} \eta^{n-n_{0}} . \tag{10}
\end{gather*}
$$

Letting $\kappa_{A}=\frac{\delta_{0}}{\delta_{1}} \mu_{A}$, then from (10) we get

$$
\begin{equation*}
\left\|X_{n} X_{m}^{-1}\right\| \leq \kappa_{A} \eta^{n-n_{0}}, n_{0} \leq m \leq n<\infty . \tag{11}
\end{equation*}
$$

Now, we will show that there are positive constants μ_{B} and η such that

$$
\begin{equation*}
\left\|Y_{n} Y_{m}^{-1}\right\| \leq \mu_{B} \eta^{n-n_{0}}, n_{0} \leq m \leq n<\infty \tag{12}
\end{equation*}
$$

Since $\lim _{m \rightarrow \infty} Q_{m}^{(r)}=0,1 \leq r \leq p$, it follows that $\left(\Gamma_{n}^{(p)}\right)^{-1}$ exists and is bounded for i sufficiently large, say $n \geq n_{0} \geq 0$. Hence, we apply matrix norm to either sides of the Eq.(8) to get

$$
\begin{align*}
& \left\|Y_{n} Y_{m}^{-1}\right\| \leq\left\|\left(\Gamma_{n}^{(p)}\right)^{-1}\right\|\left[\left\|S_{n}^{-1}\right\|\left\|X_{n} X_{m}^{-1}\right\|\left\|S_{m}\right\|\left\|\Gamma_{m}^{(p)}\right\|\right. \tag{13}\\
& \left.\quad+\sum_{k=m}^{n-1}\left\|S_{n}^{-1}\right\|\left\|X_{n} X_{k+1}^{-1}\right\|\left\|F_{k}^{(p)}\right\|\left\|Y_{k} Y_{m}^{-1}\right\|\right]
\end{align*}
$$

, with $n_{0} \leq m \leq n<\infty$. Since $S_{n}, S_{n}^{-1}, \Gamma_{n}^{(p)}$ and $\left(\Gamma_{n}^{(p)}\right)^{-1}$ are bounded, so (11) and (13) implies that there are constants α and β such that

$$
\begin{equation*}
\eta^{m-n}\left\|Y_{n} Y_{m}^{-1}\right\| \leq \alpha+\beta \sum_{k=m}^{n-1} \eta^{m-k-1}\left\|F_{k}^{(p)}\right\|\left\|Y_{k} Y_{m}^{-1}\right\|, \quad n_{0} \leq m \leq n<\infty \tag{14}
\end{equation*}
$$

Let $u_{m, n}=\alpha+\beta \sum_{k=m}^{n-1} \eta^{m-k-1}\left\|F_{k}^{(p)}\right\|\left\|Y_{k} Y_{m}^{-1}\right\|, n_{0} \leq m \leq n<\infty$. Thus we have

$$
u_{m, n+1}-u_{m, n} \leq \beta \eta^{-1}\left\|F_{n}^{(p)}\right\| u_{m, n}, n \geq m
$$

or

$$
u_{m, n+1} \leq\left(1+\beta \eta^{-1}\left\|F_{n}^{(p)}\right\|\right) u_{m, n}, n \geq m
$$

By a simple iteration, it is easy to see that

$$
\begin{equation*}
u_{m, n} \leq \alpha \prod_{k=m}^{n-1}\left(1+\beta \eta^{-1}\left\|F_{k}^{(p)}\right\|\right) \tag{15}
\end{equation*}
$$

or

$$
\begin{equation*}
u_{m, n} \leq \alpha \prod_{k=0}^{\infty}\left(1+\beta \eta^{-1}\left\|F_{k}^{(p)}\right\|\right) \tag{16}
\end{equation*}
$$

Since $F_{n}^{(p)} \in \Re$, from Theorem 8, we say that the product $\prod_{k=0}^{\infty}\left(1+\beta \eta^{-1}\left\|F_{k}^{(p)}\right\|\right)$ converges. Thus, (14) and (16) imply (12) with

$$
\mu_{B}=\alpha \prod_{k=0}^{\infty}\left(1+\beta \eta^{-1}\left\|F_{k}^{(p)}\right\|\right)
$$

Note that μ_{B} is independent of n_{0}. From (9), we obtain

$$
\begin{equation*}
\left\|y_{n}\right\| \leq \mu_{B} \eta^{n-n_{0}}\left\|y_{o}\right\|+\mu_{B} \eta^{-1} \sum_{j=n_{0}}^{n-1} \eta^{(n-j)}\left\|g\left(n, y_{j}\right)\right\|, \quad n_{0} \leq m \leq n<\infty \tag{17}
\end{equation*}
$$

We say that $g\left(n, y_{j}\right)=o\left(y_{j}\right)\left(\right.$ "small oh of y_{j} ") as $\left\|y_{j}\right\| \rightarrow 0$ if, given $\varepsilon>0$, there is $\delta>0$ such that $\left\|g\left(n, y_{j}\right)\right\| \leq \varepsilon\left\|y_{j}\right\|$ whenever $\left\|y_{j}\right\|<\delta$.So as long as $\left\|y_{j}\right\|<\delta$, Equation (17) becomes

$$
\begin{equation*}
\eta^{-n}\left\|y_{n}\right\| \leq \mu_{B}\left[\eta^{-n_{0}}\left\|y_{o}\right\|+\sum_{j=n_{0}}^{n-1} \varepsilon \eta^{-j-1}\left\|y_{j}\right\|\right], \quad n_{0} \leq m \leq n<\infty \tag{18}
\end{equation*}
$$

Thus, from (18) we have

$$
\eta^{-n-1}\left\|y_{n+1}\right\|-\eta^{-n}\left\|y_{n}\right\| \leq \mu_{B} \varepsilon \eta^{-1} \eta^{-n}\left\|y_{n}\right\|, \quad n_{0} \leq m \leq n<\infty .
$$

or

$$
\begin{equation*}
\eta^{-n-1}\left\|y_{n+1}\right\| \leq \eta^{-n}\left[1+\mu_{B} \varepsilon \eta^{-1}\right]\left\|y_{n}\right\|, \quad n_{0} \leq m \leq n<\infty . \tag{19}
\end{equation*}
$$

By a simple iteration, from (19) we deduce that

$$
\begin{equation*}
\eta^{-n}\left\|y_{n}\right\| \leq \prod_{j=n_{0}}^{n-1}\left[1+\mu_{B} \varepsilon \eta^{-1}\right] \eta^{-n_{0}}\left\|y_{0}\right\|, \quad n_{0} \leq m \leq n<\infty \tag{20}
\end{equation*}
$$

Thus, from (20), we obtain

$$
\left\|y_{n}\right\| \leq \eta^{n-n_{0}}\left\|y_{0}\right\|\left[1+\mu_{B} \varepsilon \eta^{-1}\right]^{n-n_{0}}, \quad n_{0} \leq m \leq n<\infty
$$

or

$$
\begin{equation*}
\left\|y_{n}\right\| \leq\left\|y_{0}\right\|\left(\eta+\mu_{B} \varepsilon\right)^{n-n_{0}}, \quad n_{0} \leq m \leq n<\infty \tag{21}
\end{equation*}
$$

If we choose $\varepsilon<\frac{1-\eta}{\mu_{B}}$, then $\eta+\mu_{B} \varepsilon<1$. Thus $\left\|y_{n}\right\|<\left\|y_{0}\right\|<\delta$ for all $n_{0} \leq m \leq n<\infty$. Thereby, (18) holds and consequently, by virtue of the Ineq. (21), we obtain that the zero solution of the nonlinear System (2) is exponentially stable.

Acknowledgements. The authors thank Professor Emil Minchev for his suggestions and the referee for his helpful comments and suggestions to improve our manuscript.

References

[1] S. N. Elaydi, An introduction to difference equations, ISBN: 0-387-94582-2, Springer-Verlag, New York, 1996.
[2] R. Conti, Sulla t-similitudine tra matrici e la stabilita dei sistemi differenziale linari, Atti. Acc. Naz. Lincei, Rend. Cl. Fis. Mat. Nat., 49, pp. 247250, 1995.
[3] W. F. Trench, Linear asymptotic equilibrium and uniform, exponential and strict stability of linear difference systems, Computers Math. Applic., 36 (10/12), 261-267, 1998.
[4] K. Knopp, Theory and application of infinite series, ISBN: 74-166185, Hafner Publishing Company, New York, 1971.

Received: January 11, 2007

