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Abstract

One of the directions arising from applications of difference equa-
tions is linked with qualitative investigation of their solutions. The
analysis of numerical methods applied to autonomous linear problems
is well-developed. The direct analysis of nonlinear and nonautonomous
problems is less well understood and is dependent on the availability
of suitable general theorems on the behavior of solutions to difference
equations. In this study, we show that under conditions relating A and
B, if the zero solution of the system xn+1 = (I + An)xn + fn, xn0 = x0,
n0 ≤ n < ∞ is exponentially stable, then the zero solution of the system
yn+1 = (I + Bn)yn + gn, yn0 = y0, n0 ≤ n < ∞ has the same property.
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1 Introduction

The idea of using difference equations to approximate solutions of differential
equations originated in 1769 with Euler’s polygonal method, for which the
proof of convergence was given by Cauchy around 1840. During the 1950’s,
several ecologists used simple nonlinear difference equations, including the lo-
gistic equation, to study the change in populations from one year (or season)
to the next with the emphasis on the stability of the iteration. The excitement
of these discoveries attracted the attention of researchers who attempted to
apply the results to fields from economics to medicine.

Conti [2] defined two n × n matrix functions A and B on [0,∞] to be
t∞−similar if there is n × n matrix function S defined on [0,∞] such that S ′
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is continious, S and S−1 are bounded on [0,∞], and

∞∫
0

‖S ′ + SB − AS‖ dt < ∞.

Conti has shown that t∞−similarity preserves exponential stability; that is, if
the system x′ = A(t)x has exponential stability property and B is t∞−similar
to A, then so does the system y′ = B(t)y.

In this paper, we give an analogy of this result in [2] for systems of difference
equations.

For convenience, we first list all special notation used throughout the rest
of this note:

F : the set of all nonnegative integer;
Fk×k : the set of all k × k matrix functions(with real or complex entries)

defined on F;
I : k × k identity matrix
An, I + An, B and B + In : k × k nonsingular matrix functions(with real or

complex entries) defined on F;
x(n) = xn, y(n) = yn, f(n, xn) = fn and g(n, yn) = gn : k × 1 vector

functions (with real or complex entries) defined on F;
L : the set of all k × k bounded matrices in Fk×k;

� : the set of all k × k matrix functions Fm in Fk×k such that
∞∑

m=0

Fm

exists;

� : the set of all k× k matrix functions Fm in Fk×k such that
∞∑

m=0

‖Fm‖ <

∞.
This paper is organized as follows. Section 2 introduces basic concepts and

principal results needed in this paper. We are interested in relating exponential
stability properties of two k × k systems of difference equations

xn+1 = (I + An)xn + fn, xn0 = x0, n0 ≤ m ≤ n < ∞, (1)

and

yn+1 = (I + Bn)yn + gn, yn0 = y0, n0 ≤ m ≤ n < ∞, (2)

without actually computing solutions of them in Section 3.

2 Preliminary Notes

Definition 1 The system

xn+1 = Anxn, xn0 = x0, n ≥ n0 ≥ 0 (3)
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is homogeneous linear difference system which is nonautonomous or time-
variant. The corresponding nonhomogeneous system is given by

yn+1 = Anyn + gn, yn0 = y0, n ≥ n0 ≥ 0. (4)

( [ 1, p.120] )

Theorem 1 There exists a uniqe solution xn of Eq. (3), with xn0 = x0 such
that

xn =

[
n−1∏
i=n0

Ai

]
x0

where

n−1∏
i=n0

Ai =

{
An−1An−2 . . . An0 n > n0

I n = n0
.

( [ 1, p.120] )

Let Xn be k × k matrix whose columns are solutions of Eq. (3). Hence,
Xn satisfies the matrix difference equation

Xn+1 = AnXn, Xn0 = X0, n ≥ n0 ≥ 0. (5)

( [ 1, p.121] )

Definition 2 If Xn is a solution of Eq. (5), then it is said to be a fundamental
matrix for the system (3). ( [ 1, p.121] )

Note that if Xn is a fundamental matrix of the system (3) and C is any
nonsingular matrix, then XnC is also a fundamental matrix of the system
(3). Thus there are infinitely many fundamental matrices for the system (3).
However, there is one fundamental matrix that we already know, namely,

X0 = I, Xn = An−1An−2 . . . An0, n ≥ n0 ≥ 0. (6)

Theorem 2 (Variation of Constants Formula) Let Xn as in (6). Then, the
uniqe solution of the system (4) is given by

yn = XnX−1
0 y0 +

n−1∑
r=n0

XnX−1
r+1gr. (7)

( [ 1, p.124] )
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While the fundamental idea of exponential stability is widely understood,
there remains some latitude in definitions among authors and so for the sake
of clarity, we give definition of exponential satability of the system (1) here.

Definition 3 For all xn solutions of the system (4), if there exist δ > 0,
μA > 0, η ∈ (0, 1) such that ‖xn‖ ≤ μA ‖x0‖ ηn−n0, whenever ‖x0‖ ≤ δ0, then
the zero solution of nonlinear System (4) is exponentially stable.

Assumption There is an Sn ∈ L such that

F (0)
n = ΔSn + Sn+1Bn − AnSn

defines an element of �. Either F
(0)
n ∈ � or there is a positive integer p such

that the n × n matrix functions F
(1)
n , . . . , F

(p)
n defined by

Q(r)
n =

∞∑
k=n

F
(r−1)
k

and

F (r)
n = Q

(r)
n+1Bn − AnQ(r)

n

are in �, and F
(p)
n ∈ �.

Theorem 3 Suppose that Assumption holds. Define

Γ(0)
n = I, Γ(r)

n = I + S(−1)
n

r∑
l=1

Q(l)
n , 1 ≤ r ≤ p.

Then

Γ
(p)
j Yj = S−1

j Xj

[
X−1

i SiΓ
(p)
i Yi +

j−1∑
m=i

X−1
m+1F

(p)
m Ym

]
, 0 ≤ i ≤ j. (8)

(Trench [3])

The symbol o (small oh) is one of the main tools of approximating functions
and is widely used in all branches of science. Now, we shall give definition of
the symbol o (small oh) for functions defined on the real or complex numbers.

Definition 4 Let f(t) and g(t) be two functions defined on the real or complex

numbers. If lim
t→∞

f(t)
g(t)

= 0, then we say that

f(t) = o(g(t)), (t → ∞).

( [ 1, p.305] )



Exponential stability of difference systems 1627

A series usually is defined as a pair of sequences: the sequence of terms
of the series: a0, a1, a2, ...; and the sequence of partial sums S0, S1, S2, ...

where SN =
N∑

n=0

an. The notation
∞∑

n=0

an represents then a priori this pair of

sequences, which is always well defined, but which may or may not converge.
In the case of convergence, i.e., if the sequence of partial sums SN has a limit,

the notation is also used to denote the limit of this sequence. A series
∞∑

n=0

an is

said to converge absolutely if the series of absolute values
∞∑

n=0

|an| converges. In

this case, the original series, and all reorderings of it, converge, and converge
towards the same sum. For a sequence of numbers a1, a2, a3, ..., the infinite

product
∞∏

n=1

an is defined to be the limit of the partial products a1a2...an as n

goes to infinity. The product is said to converge when the limit exists and is

not zero. Otherwise the product is said to diverge. A series
∞∏

n=1

an is said to

converge absolutely if the series of absolute values
∞∏

n=1

|an| converges.

Theorem 4 The product
∞∏

n=1

(1 + an) with positive terms an is convergent if

and only if the series
∞∑

n=0

an converges.( [5, p.219] )

3 Main Results

Theorem 5 Let Assumption holds and assume that gn = o(‖y‖) as ‖y‖ → 0.
If the zero solution of nonlinear System (1) is exponentially stable, then the
zero solution of nonlinear System (2) is also.

Proof. Since I+An and I+Bn are invertible for every n ≥ n0, this guarantees
that X, Y ∈ Mk×k defined by

Xo = I, Xn = (I + An−1)(I + An−2)...(I + A0)

Yo = I, Yn = (I + Bn−1)(I + Bn−2)...(I + B0)

are fundamental matrices for the systems

xn+1 = (I + An)xn, xn0 = x0, n0 ≤ n < ∞,

and

yn+1 = (I + Bn)yn, yn0 = y0, n0 ≤ n < ∞
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, respectively. If m is a fixed nonnegative integer, then the solutions of the
systems (1) and (2) satisfy

xn = XnX−1
m xm, and yn = YnY

−1
m ym , n ≥ 0

respectively. By the Variation of Constants Formula (7), the solution of Eq.
(2) is given by

yn = YnY
−1
n0

y0 +

n−1∑
r=n0

YnY
−1
r+1gr. (9)

From Definition 5 and our hypothesis on the system (1), there exist δ > 0,
μA > 0, η ∈ (0, 1) such that ‖xn‖ ≤ μA ‖x0‖ ηn−n0, whenever ‖x0‖ ≤ δ0. This
guarantees that there exist a fixed noninteger m integer such that ‖xm‖ ≤ δ1,
n0 ≤ m ≤ n < ∞. Thus we have∥∥XnX−1

m

∥∥ = sup
‖ξ‖≤1

∥∥XnX−1
m ξ

∥∥

=
1

δ1
sup

‖xm‖≤1

∥∥XnX−1
m xm

∥∥
≤ 1

δ1
μA ‖x0‖ ηn−n0

≤ δ0

δ1
μAηn−n0. (10)

Letting κA = δ0
δ1

μA, then from (10) we get

∥∥XnX
−1
m

∥∥ ≤ κAηn−n0, n0 ≤ m ≤ n < ∞. (11)

Now, we will show that there are positive constants μB and η such that∥∥YnY
−1
m

∥∥ ≤ μBηn−n0, n0 ≤ m ≤ n < ∞. (12)

Since lim
m→∞

Q
(r)
m = 0, 1 ≤ r ≤ p, it follows that (Γ

(p)
n )−1 exists and is bounded

for i sufficiently large, say n ≥ n0 ≥ 0. Hence, we apply matrix norm to either
sides of the Eq.(8) to get∥∥YnY −1

m

∥∥ ≤ ∥∥(Γ(p)
n )−1

∥∥ [∥∥S−1
n

∥∥ ∥∥XnX−1
m

∥∥ ‖Sm‖
∥∥Γ(p)

m

∥∥ (13)

+

n−1∑
k=m

∥∥S−1
n

∥∥ ∥∥XnX−1
k+1

∥∥ ∥∥∥F
(p)
k

∥∥∥ ∥∥YkY
−1
m

∥∥]
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, with n0 ≤ m ≤ n < ∞. Since Sn, S−1
n , Γ

(p)
n and (Γ

(p)
n )−1 are bounded, so (11)

and (13) implies that there are constants α and β such that

ηm−n
∥∥YnY −1

m

∥∥ ≤ α + β
n−1∑
k=m

ηm−k−1
∥∥∥F

(p)
k

∥∥∥ ∥∥YkY
−1
m

∥∥ , n0 ≤ m ≤ n < ∞.

(14)

Let um,n = α+β
n−1∑
k=m

ηm−k−1
∥∥∥F

(p)
k

∥∥∥ ‖YkY
−1
m ‖, n0 ≤ m ≤ n < ∞. Thus we have

um,n+1 − um,n ≤ βη−1
∥∥F (p)

n

∥∥ um,n, n ≥ m

or

um,n+1 ≤ (1 + βη−1
∥∥F (p)

n

∥∥)um,n, n ≥ m .

By a simple iteration, it is easy to see that

um,n ≤ α
n−1∏
k=m

(1 + βη−1
∥∥∥F

(p)
k

∥∥∥). (15)

or

um,n ≤ α

∞∏
k=0

(1 + βη−1
∥∥∥F

(p)
k

∥∥∥). (16)

Since F
(p)
n ∈ �, from Theorem 8, we say that the product

∞∏
k=0

(1+βη−1
∥∥∥F

(p)
k

∥∥∥)

converges. Thus, (14) and (16) imply (12) with

μB = α

∞∏
k=0

(1 + βη−1
∥∥∥F

(p)
k

∥∥∥).

Note that μB is independent of n0. From (9), we obtain

‖yn‖ ≤ μBηn−n0 ‖yo‖ + μBη−1
n−1∑
j=n0

η(n−j) ‖g(n, yj)‖ , n0 ≤ m ≤ n < ∞. (17)

We say that g(n, yj) = o(yj) (”small oh of yj”) as ‖yj‖ → 0 if, given ε > 0,
there is δ > 0 such that ‖g(n, yj)‖ ≤ ε ‖yj‖ whenever ‖yj‖ < δ.So as long as
‖yj‖ < δ, Equation (17) becomes

η−n ‖yn‖ ≤ μB

[
η−n0 ‖yo‖ +

n−1∑
j=n0

εη−j−1 ‖yj‖
]

, n0 ≤ m ≤ n < ∞. (18)
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Thus, from (18) we have

η−n−1 ‖yn+1‖ − η−n ‖yn‖ ≤ μBεη−1η−n ‖yn‖ , n0 ≤ m ≤ n < ∞.

or

η−n−1 ‖yn+1‖ ≤ η−n
[
1 + μBεη−1

] ‖yn‖ , n0 ≤ m ≤ n < ∞. (19)

By a simple iteration, from (19) we deduce that

η−n ‖yn‖ ≤
n−1∏
j=n0

[
1 + μBεη−1

]
η−n0 ‖y0‖ , n0 ≤ m ≤ n < ∞. (20)

Thus, from (20), we obtain

‖yn‖ ≤ ηn−n0 ‖y0‖
[
1 + μBεη−1

]n−n0 , n0 ≤ m ≤ n < ∞.

or

‖yn‖ ≤ ‖y0‖ (η + μBε)n−n0 , n0 ≤ m ≤ n < ∞. (21)

If we choose ε < 1−η
μB

, then η + μBε < 1. Thus ‖yn‖ < ‖y0‖ < δ for all

n0 ≤ m ≤ n < ∞. Thereby, (18) holds and consequently, by virtue of the
Ineq. (21), we obtain that the zero solution of the nonlinear System (2) is
exponentially stable.
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