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Abstract

Using the SCRPA, we study the intersite interaction effect on the
dynamics of N electrons system. We have considered an extended Hub-
bard model including intrasite and intersite interactions, and we have
applied this model to a system of two neighbouring atoms containing a
free electron. The application of SCRPA to this model allows us to study
the intersite interaction effect on the ground state and the excitation
energies of system. We show that the repulsive interaction between the
electrons of the neighbouring atoms is the origin of an supplementary
conductivity of the system
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1 Introduction

The discovery of High-Temperature superconductivity has motivated a con-
siderable effort in physics of strongly correlated electronic systems, and many
theoretical models have been proposed[1]. The Hubbard model [2, 3] is one of
the simplest and more general description of an interacting electrons system
on a lattice. In its simplest form, it includ the usual kinetic energy of elec-
trons and the competition between the on-site electron-electron interaction.
The standard Hubbard model is defined by the second quantized Hamiltonian
[2, 3]:

H =
∑
i�=j,σ

tij .c
†
i,σ.cj,σ + U.

∑
i

ni,↑.ni,↓ (1)

The first term of the eqs(1) represents the kinetic energy of electrons, and
each electron has a possibility of hopping between different lattice sites. cj,σ

is the annihilation operator of the electron at a lattice site j with spin index
σ. c

†
i,σis the creation operator of the electron at a lattice site i, so tij is the

hopping integral from the site j to the site i. The second term represents the
intrasite coloumb interaction with energy U , where ni,σ is the number operator
of electrons at the site i with spin σ .

Recently, the Random Phase Approximation (RPA)[4], was used to resolve
the standard Hubbard model[5, 6]. The RPA is an approach which treats
seriously the correlations of system, and attempt to minimise the system en-
ergy. The standard Hamiltonian Hubbard must be developed as function of
the creation and annihilation operators of the pair particle-hole(p-h), because
our RPA regroups the electrons system on pair: particle-hole. The application
of RPA to standard Hubbard gives non linear coupled equations, where the
resolution is done by a SCRPA[7, 8]. In this paper, we consider an extended
Hubbard model[9], where the intersite coulomb interactions are introduced.
This model was shown to describe many interesting properties of high TC
superconductors materials [10]. In this work, we apply the SCRPA method
to this extended Hubbard model, and study the intersite interaction effect on
the ground state and excitation energy of system. We show that the repulsive
interaction between the electrons of the neighbouring atoms is the origin of a
supplementary conductivity of the system.

2 Extended Hubbard Model

The standard Hubbard model with intrasite interaction explains some impor-
tant physical phenomena like High-Temperature superconductivity [3], Mott-
transition[11]. To explain other physical phenomena observed in different areas
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of the solid state physics like magnetic and transport properties, it is conve-
nient to take into account also the intersite interaction resulting from original
coloumb repulsion modified by the polaronic effect. The extended Hubbard
Hamiltonian is then given by[12, 13]:

H =
∑
i�=j,σ

tij .c
†
i,σ.cj,σ + U.

∑
i

ni,↑.ni,↓ +
1

2

∑
i�=j,σ

V
(1)
ij .ni,σ.nj,σ +

1

2

∑
i�=j,σ

V
(2)
ij .ni,σ.nj,−σ

(2)

U denotes the effective intrasite coloumb interaction. V
(1)
ij ( V

(2)
ij ) describes the

effective intersite coloumb interaction between the electrons in the lattice sites
i and j, with the same spins (opposite spins). V

(1)
ij and V

(2)
ij are not necessary

equal. The model(2) cannot be solved in a general case. There is however,
a special but non trivial case of finite number of sites, which possesses exact
analytical solution[5].

In this work we will limit ourselves to a simple case, and will apply the
general formalism of SCRPA to the two sites problem. We consider a closed
chain in one dimension, with periodic boundary conditions N = 2. Our phys-
ical system is then equivalent to two neighbouring atoms containing a free
electron. The Hamiltonian of the system is:

HII = −t
∑

σ

.(c
†
1,σ.c2,σ + c

†
2,σ.c1,σ) + U.(n1,↑.n1,↓ + n2,↑.n2,↓) (3)

+V1.
∑

σ

n1,σ.n2,σ + V2.
∑

σ

n1,σ.n2,−σ

where t = −t12 = −t21.

In order to apply the approximation SCRPA to the Hubbard model, it is
necessary, first, to apply the Hartree-Fock approximation(HF) to the Hubbard
model. In the HF method, we write the Hamiltonian(3) as function of quasi-
particles operators, wich allow us to obtain the excitation spectrum of indepen-
dent quasiparticles. The states |HF 〉 are defined as: |HF 〉 = a

†
ki,↑.a

†
ki,↓. |vac〉,

where a
†
k,σ is the annihilation operator of the mode (k, σ); ak;σ is related to

cj;σwith the usual Fourier transformation:

cj,σ =
1√
N

.
∑
k,σ

ak,σ. exp(−i.
−→
k .

−→
Rj) (4)

k is the momentum of state |k, σ〉. The periodic boundary conditions suppose

that cN + j,σ = cj,σ. With this condition, eqs(4) gives exp(−i.
−→
k .

−→
Rj) = 1,
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which have two solutions in the first Brillouin zone: k1 = 0 and k2 = −π.
Thus the Hamiltonian is then written as:

HHF = EHF +
∑

σ

{ε1.n1,σ + ε2.n2,σ} (5)

This expression shows that in the HF approximation, the physical system
has two possible states |HF 〉 and |HF 〉∗. |HF 〉 (|HF 〉∗ ) is the Hartree-
Fock ground state (excited state ), with the momentum: k1 = 0; below (and
k2 = −π; above ) the Fermi momentum, and the excitation energy: ε1 (and
ε2), where |HF 〉 = a+

k1,↑.a
+
k1,↓. |vac〉 and |HF 〉∗ = a+

k2,↑.a
+
k2,↓. |vac〉. As in ref

[13], we define the HF quasiparticle operators by: b1,σ = ak1,σ and b2,σ = ak2,σ

. We have then bk,σ |HF 〉 = 0, for all k.
In normal ordering of b1,σ and b2,σ, the Hamiltonian(3) becomes:

H = HHF + Hk=0 + Hk=−π (6)

where

Hk=0 =
U + V2

2
(ñk2,↑ − ñk1,↑) (ñk2,↓ − ñk1,↓) +

V1

4
.
∑

σ

(ñk2,σ − ñk1,σ)2

Hk=−π = −U − V2

2

(
J−
↑ + J

†
↑)(J

−
↓ + J

†
↓
)
− V1

4
.
∑

σ

(
J−

σ + J
†

σ

)2

With

J−
σ = b1,σ b2,σ, J

†
σ =

(
J−

σ

)†
, ñki,σ = b†i,σ bi,σ

Hk=0 and Hk=−π take into account the correlation between the number op-
erators of the type: ñki,σñkj ,σ′ in the ground state: k1 = 0 (below the Fermi
momentum ) and between the magnetic momentum operators of the type:
J

†
σ.J−

σ′ in the excited state: k2 = −π (above the Fermi momentum).

3 Self Consistent Random Phase Approxima-

tion

3.1 Formalism

In order to apply the Formalism of SCRPA to the Hubbard model, it is con-
venient to use the particle-hole(ph-RPA) approximation, which regroup the
physical system on pair. We can then define the RPA excitation operator as:
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Q
†
v =

∑
p,h

(xv
ph.b

†
p.b

†
h − yv

ph.bh.bp) (7)

Where h (and p) are the momentum below (and above) the Fermi momentum.
Eqs(7) shows that the excitation in the ph-RPA is done only by the creation or
(annihilation) of pair: particle-hole via the operator b

†
p.b

†
h (bh.bp) with the am-

plitude xv
ph (yv

ph). The corresponding excited state of this excitation operator

is |v〉 = Q
†
v. |RPA〉, and the corresponding excitation energy is:

Ev =
〈RPA|

[
Qv,

[
H, Q

†
v

]]
|RPA〉

〈RPA| [Qv, Q
†
v

] |RPA〉 (8)

Where |RPA〉 is the vacuum of this RPA excitation operator: Qv |RPA〉 = 0
The minimization of Ev leads to usual RPA equations of type:

(
A B

−B∗ −A∗

)(
xv

yv

)
= Ev.

(
xv

yv

)
With the relations of the orthonormality conditions of the set

{
Qv; Q

†
v

}
,

we can express the elements of A and B by the RPA-amplitudes, and therefore
we have a completely closed system of equations for amplitudes x and y. For
our problem, we consider only the excitation operators, which conserve the
spin, where the excitation is done only by the creation or annihilation of the
pair: particle-hole with the same spin.

Q
†
v = xv

↑.k
†
↑ + xv

↓.k
†
↓ − yv

↑ .k
−
↑ − yv

↓ .k
−
↓ (9)

With K
†
σ = b

†
2,σ.b

†
1,σ/
√

1 − 〈Mσ〉, K−
σ = b1,σ.b2,σ/

√
1 − 〈Mσ〉 and Mσ =

n̂1,σ + n̂2,σ, where the mean values 〈...〉 are taken with respect to the RPA
vacuum (Qv |RPA〉 = 0). The SCRPA equation can then be written in the
form:

⎛⎜⎜⎝
A↑↑ A↑↓ B↑↑ B↑↓
A↓↑ A↓↓ B↓↑ B↓↓
−B↑↑ −B↑↓ −A↑↑ −A↑↓
−B↓↑ −B↓↓ −A↓↑ −A↓↓

⎞⎟⎟⎠ .

⎛⎜⎜⎝
xv
↑

xv
↓

yv
↑

yv
↓

⎞⎟⎟⎠ = Ev.

⎛⎜⎜⎝
xv
↑

xv
↓

yv
↑

yv
↓

⎞⎟⎟⎠ (10)

Where the SCRPA matrix elements are given by:
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Aσσ′ =
〈[

K−
σ ,
[
H, K

†
σ′

]]〉
and

Bσσ′ =
〈[

K−
σ ,
[
H, K−

σ′
]]〉

The orthonormality relations of the set
{

Qv; Q
†
v

}
, give:

A↑↑ = A↓↓ = A A↑↓ = A↓↑ = A′

B↑↑ = B↓↓ = B B↑↓ = B↓↑ = B′

From the Hamiltonian given in eqs(10), we can writte the SCRPA matrix
elements as: A = B + 2.t, A′ = B′, where:

A = 2.t + (U − V2) .

√
1 − 〈M↓〉
1 − 〈M↑〉 .

∑
v

xv
↑(y

v
↓ + xv

↓) (11)

−V1

2
.

(
1

1 − 〈Mσ〉 −
∑

v

(xv
σ.xv

σ + yv
σ.y

v
σ + 2.xv

σ.yv
σ)

)
(12)

and

A′ =
U − V2

2
.

1

1 − 〈Mσ〉 (13)

where

〈Mσ〉 =

2
∑
ν

|yν
σ|2

1 + 2
∑
ν

|yν
σ|2

so, the ph-RPA matrix takes the form:

⎛⎜⎜⎝
A A′ A − 2.t A′

A′ A A′ A − 2.t
2.t − A −A′ −A −A′

−A′ 2.t − A −A′ −A

⎞⎟⎟⎠
⎛⎜⎜⎝

xv
↑

xv
↓

yv
↑

yv
↓

⎞⎟⎟⎠ = Ev.

⎛⎜⎜⎝
xv
↑

xv
↓

yv
↑

yv
↓

⎞⎟⎟⎠
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This ph-RPA matrix has two positive roots:

ε1 = 2.t.

√
A − A′

t
− 1 and ε2 = 2.t.

√
A + A′

t
− 1 (14)

The corresponding eigenvectors are: V1 = [x1.,−x1, y1,−y1] and
V2 = [x2.,−x2, y2,−y2], respectively. Where

x1 = − A − A′ + ε1

A − A′ − 2.t
.y1 ; x2 = − A + A′ + ε1

A + A′ − 2.t
.y1 (15)

and

y1 = −
√

2.

(
A − A′ + ε1

A − A′ − 2.t

)2

− 2 ; y2 = −
√

2.

(
A + A′ + ε2

A + A′ − 2.t

)2

− 2

(16)

So, like the HF approximation, in ph-RPA, our system have tow excitation
energies ε1and ε2, but they are coupled. Thus in this work, we solve a system
of a coupled equations numerically by iteration leading to a SCRPQ solution
which are quasi identical to the exact result.

3.2 Results and discussion

To show the effect of intersite interaction on the energy of the system, we have
studied th evolution of the ground state and excited energies in term of the
interaction V1 and V2.

In figure1 we plot the variation of the ground state energy ESCRPA =
〈0 |H| 0〉 as function of the two parameters of the intersite interaction V1 and
V2.

The result shows that the ground state energy is quasi independent on V1

but, the variation of ESCRPA become more important when we introduce the
intersite interaction with the opposite spins: V2. This results can be explained
by the fact that the SCRPA include only, for the fundamental state, the corre-
lations between the particles with different spins: |0〉 =

(
c1
0 + c1

1J
+
↑ .J+

↓
) |HF 〉

Thus the only type of interaction wich is of interest is V2. In the following
we analyse the V2 effect on the dynamics of system. In figure 2 and 3 we
plot the variation of the gorund state energy and the excitation energies of
SCRPA, respectively, as function of the repulsive intrasite interaction U for
different values of the intersite interaction V2.

The results show that, when U increases, the gap Δ = ε2 − ε1 between the
two excitation energies increases too, and so, the jump of electrons between
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Figure 1: Ground state energy of SCRPA as function of the two parametrs of
the intersite interaction V1/t and V2/t for U/t = 2

Figure 2: Ground state energy of SCRPA as function of the intersite interaction
U/t for differents values of V2/t, with V1/t = 0
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Figure 3: Excitation energies of SCRPA as function of the intersite interaction
U/t for differents values of V2/t, with V1/t = 0

these two states becomes more difficult. Thus, we can conclude, that for a
fixed value of U, while the intersite interaction is repulsive (attractive), the
gap Δ becomes less (more) important. These remarks allow us to assume that
repulsive interaction between the electrons of the neighbouring atoms is the
origin of supplementary conductivity of the system.

4 Conclusion

In this paper, the SCRPA approximation was used to solve the extended Hub-
bard model given in Eqs(3). The quality of the SCRPA method has been
investigated in a previous work by Jemai[5], in which he has shown a remark-
able agreement between SCRPA method and excact results for the standard
Hubbard model. In our work, we have extended this technic to study the
intersite interaction effects on the dynamics of the electrons in the two sites
with 〈ni,↑〉 = 〈ni,↓〉. We have shown that the gap between the excitation en-
ergies: (Δ = ε2 − ε1) are correlated with the intersite interaction energy V2.
This result allow us to suppose that the repulsive intersite interaction (between
the electrons of the neighbouring atoms) is the origin of a supplementary con-
ductivity of the system. In future work[14], we propose to solve the 4-sites
case (plaquette), which may be very important for the explanation of high Tc

superconductivity, by considering the many plaquette configurations in 2D.

Acknowledgement 1 The authors thank Professor Rachid Nassif for care-
fully reading the manuscript and making many constructive comments.
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