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Abstract

Consider the discrete nonlinear system x(i + 1) = f(x(i)), i ≥ 0
and the corresponding output signal y(i) = Cx(i), i ≥ 0. Given a
constraint set Ω ⊂ IRp, a initial state x(0) is said to be output admissible
if the resulting output function satisfies the condition y(i) ∈ Ω, ∀i ≥ 0.
The set of all possible such initial conditions is the output maximal
admissible set X∞. Contrary to the linear case, the representation of
the maximal output admissible set for nonlinear systems is certainly
more complex and not available. However, we restrain in this paper
to the theoretical and algorithmic characterization of the set XM∞ =
X∞ ∩ B(0,M) where B(0,M) = {x ∈ IRn/‖x‖ ≤ M} with M is as
large as we desire it. The maximal output admissible set for discrete
delayed systems is also considered. As direct application of obtained
results, we propose a technique that allows to determine, among all the
perturbations susceptible to infect the initial state of a discrete nonlinear
system, those which are relatively tolerable.
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1 Introduction

Output admissible sets have important applications in the analysis and de-

sign of closed-loop systems with state and control constraints. Although, the

theory of output admissible sets has been extensively treated (see[2-11]), in

most of the works devoted to its study, the problem for nonlinear systems is

not considered hence it’s applicability is severely limited.

The aim of this work is to present a contribution to the study of the maximal

output admissible sets X∞ for discrete nonlinear systems. More precisely, the

objective is to characterize the initial conditions of an uncontrolled nonlinear

discrete system whose resulting trajectory satisfies a specified pointwise-in-

time constraint. Such problem have important applications, to illustrate that

we consider the following example. A nonlinear controlled discrete time system

is described by {
x(i + 1) = F (x(i)) + G(ui), i ∈ IN

x(0) is given in IRn

where (ui)i is the feedback control given by

ui = H(x(i))

F, G and H are supposed to be nonlinear appropriate functions. In addition,

there may be physical constraints on the state variable if the constraints are

violated by an action uk serious consequences may happen, see ([1] ,[6]). By

appropriate choice of matrices C and a set Ω, the constraints above may be

summarized by the set inclusion

Cx(i) ∈ Ω, ∀i ∈ IN (1)

and it is desired to obtain a safe set of initial conditions x(0), i.e. a set

X∞ such that x(0) ∈ X∞ implies (1), the problem can be state equivalently

as a problem involving an unforced nonlinear discrete systems with output

constraints. Specifically, given a continuous nonlinear function f : IRn −→ IRn

such that f(0) = 0, a p × n matrix C and a constraint set Ω ⊂ IRp.

We have to determine, for a given initial state x(0) if the system{
x(i + 1) = f(x(i)), i ∈ IN

x(0) ∈ IRn (2)

with the output signal

y(i) = Cx(i), i ∈ IN (3)
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satisfies the output constraint

y(i) ∈ Ω. (4)

An initial condition x(0) is output admissible if the resulting output function

(3) satisfied the constraint (4). The set of all such initial state is the maximal

output admissible set X∞.

In the case of a linear system (see [5], [17]) and linear delayed system [13],

the maximal output set has completely determined, algorithm based on the

mathematical programming, have allowed a numerical simulation of the max-

imal set. In the nonlinear case, which is the object of this paper, we have not

been able to characterize the set X∞; however, we propose a theoretical and

algorithmic characterization of the set XM
∞ = X∞ ∩B(0, M) where B(0, M) is

the ball of center 0 and radius M .

The fact to restrict to the set XM
∞ does not reduce the importance of the work

and this for the next reason. Given an initial state x(0) ∈ IRn, we wonders if

x(0) is output admissible or no. To answer to this question we firstly deter-

mines the set Xr
∞ = X∞ ∩ B(0, r) where r is a real that verifies ‖x(0)‖ ≤ r

and we verifies if x(0) ∈ Xr
∞ or no. The numerical simulations are presented

and the case of discrete delayed systems is also studied .

The real process are often affected disturbances and it is necessary to consider

then in the project of the control. Unfortunately, in many case, non informa-

tion about the disturbances in deterministic or statistic sense.To better avoid

damages being able to be caused by such disturbances on the evolution of a

system, it’s very important to characterize (under some hypothesis) the set of

this disturbances (see [14] [4]). The case of the disturbances which infect the

initial state for linear system has considered in [?]. Motives by theory devel-

oped for maximal output set, in the second part of this work, we consider the

nonlinear disturbed discrete system described by{
xd(i + 1) = f(xd(i)), i ∈ IN

xd(0) = x(0) + d
(5)

here (xd(i)) is the disturbed state of system, d is a perturbation that infect the

initial state x(0). The corresponding output perturbation is supposed to be

yd(i) = Cxd(i). (6)

The disturbance d being unavoidable, we use technique developed in the first

part to determine all perturbations d that are ε-tolerable, i.e., the perturbations

such that

‖yd(i) − y(i)‖ ≤ ε, ∀i ≥ 0
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where

y(i) = Cx(i), i ≥ 0

and (x(i))i≥0 is the uninfected state given by{
x(i + 1) = f(x(i)), i ∈ IN

x(0).

2 Preliminary results

Consider the uncontrolled nonlinear discrete system described by{
x(i + 1) = f(x(i)), i ∈ IN

x(0) = x0 ∈ IRn (7)

the corresponding output is

y(i) = Cx(i), i ∈ IN (8)

where the state variable x(i) is in IRn, f is a continuous nonlinear function that

verify f(0) = 0 and the observation variable y(i) ∈ IRp, satisfies the output

constraint

y(i) ∈ Ω, ∀i ∈ IN (9)

where C is a p × n real matrix.

An initial condition x(0) ∈ IRn is output admissible if x(0) ∈ B(0, M) and the

resulting output function (8) satisfies (9). The set of all such initial conditions

is the maximal output admissible set XM
∞ .

We proof that under hypothesis on f , the maximal output admissible set is

determined by a finite number of functional inequalities and leads to algorith-

mic procedures for the computation of XM
∞ .

The system (8) can be equivalently rewritten in the form

y(i) = Cf i(x0), for all i ∈ IN (10)

The set of all output admissible initial states is formally given by

XM
∞ = {x0 ∈ B(0, M) ∩ IRn / Cf i(x0) ∈ Ω, ∀i ∈ IN} (11)

We assume hereafter that 0 ∈ int Ω. This assumption is satisfied in any

reasonable application and has nice consequences. Imposing special condition

on f we have a nonempty maximal admissible set XM
∞ which contains the

origin, indeed
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Proposition 2.1 (i) The closure propertie of Ω is inherited by XM
∞ .

(ii) If f is asymptotically lyapunov stable (i.e., ∀I ∈ IN ∃δ > 0 such that

‖x(I)−x′(I)‖ < δ then lim
i → ∞‖f i(x(I))− f i(x′(I))‖ = 0) and 0 ∈ int Ω

then, 0 ∈ int XM
∞ .

Proof.

It is easily to verify the closure of XM
∞ from his definition and continuity of f .

The assumption of asymptotic lyapunov stability implies that there exists a

constant δ > 0 such that for all x0 ∈ B(0, δ), lim
i→∞

‖f i(x0)‖ = 0. which implies

that for all x0 ∈ B(0, δ) and η > 0 there exists i0 > 0, such that for all i ≥ i0,

f i(x0) ∈ B(0, η), we deduce that

∀x0 ∈ B(0, δ) we have Cf i(x0) ∈ B(0, η‖C‖), ∀i ≥ i0. (12)

Since 0 ∈ int Ω, we have

∃ρ > 0 such that B(0, ρ) ⊂ Ω (13)

if we pose η = ρ
‖C‖ then

∃δ > 0 such that x0 ∈ B(0, δ) =⇒ Cf i(x0) ∈ B(0, ρ) ⊂ Ω, ∀i ≥ i0

and using the continuity of f and the condition f(0) = 0 we deduce that

∃δ′ > 0 such that x0 ∈ B(0, δ′) =⇒ Cf i(x0) ∈ Ω 0 ≤ i < i0

we choose α = inf(δ, δ′, M) we obtain,

for every x0 ∈ B(0, α) =⇒ y(i) = Cf i(x0) ∈ Ω, ∀i ∈ IN

thus B(0, α) ⊂ XM
∞ , consequently 0 ∈ Int XM

∞

3 Characterization of the maximal output ad-

missible set

In order to characterize the maximal output admissible set given formally by

(11), we define for each integer k the set

XM
k = {x0 ∈ B(0, M) ∩ IRn / Cf i(x0) ∈ Ω, ∀i = 0, . . . , k}
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Definition 3.1 The set XM
∞ is finitely determined if there exists an integer k

such that XM
∞ is nonempty and XM

∞ = XM
k .

Remark 3.1 (i) Obviously, the set XM
k satisfies the following condition: for

k1, k2 ∈ IN such that k1 ≤ k2, we have.

XM
∞ ⊂ XM

k2
⊂ XM

k1

(ii) Suppose that XM
∞ is finitely determined and let k0 be the smallest k such

that XM
k = XM

k+1, then XM
∞ = XM

k0
= XM

k for all k ≥ k0.

Proposition 3.1 (i) If XM
∞ is finitely determined then there exists an integer

k such that XM
k is nonempty and XM

k = XM
k+1.

(ii) If f(B(0, M)) ⊂ B(0, M) and XM
k = XM

k+1 for some integer k then XM
∞

is finitely determined.

Proof.

(i) If XM
∞ = XM

k for some k ∈ IN, then XM
k is nonempty and obviously

XM
k = XM

k+1

(ii) Suppose that f(B(0, M)) ⊂ B(0, M) and there exists a integer k such

that XM
k is nonempty and XM

k = XM
k+1 then

x0 ∈ XM
k =⇒ x0 ∈ XM

k+1 =⇒ f(x0) ∈ XM
k

and by iteration

x0 ∈ XM
k =⇒ f j(x0) ∈ XM

k , ∀j ∈ IN

hence XM
k ⊂ XM

∞ , we apply remark 3.1 to deduce that XM
k = XM

∞

As a natural consequence of the previous proposition, we shall give in section

4 an algorithm which allows to determine the smallest integer k∗ such that

XM
∞ = XM

k∗ .

It is desirable to have simple condition which assure the finite determination

of XM
∞ . Our main results in this direction is the following theorems.

Theorem 3.1 Suppose the following assumptions hold

1. f is continuous, f(0) = 0, f(B(0, M)) ⊂ B(0, M) and f is asymptoti-

cally lyapunov stable.

2. 0 ∈ intΩ.
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3. f(λx) = g(λ)f(x), ∀x ∈ IRn, ∀λ ∈ IR where g is a real function

which verify g(0) = 0 and the sequence (gk(λ))k≥0 is bounded ∀λ ∈ IR,

(gk = g ◦ g ◦ . . . ◦ g︸ ︷︷ ︸
k−times

).

then XM
∞ is finitely determined.

Proof.

First case: M ≤ δ, then we apply equation (12) for η = ρ
‖C‖ we obtain

if x0 ∈ B(0, M) then Cf i0(x0) ∈ B(0, ρ) ⊂ Ω (14)

Second case: M > δ, by hypothesis 3 of theorem we have

Cfkx0 = Cfk(M
δ

δ
M

x0) = gk(M
δ
)Cfk( δ

M
x0). Since (gk(M

δ
))k≥0 is bounded by

some constant M ′ then using equation (12) and η = ρ
‖C‖M ′ we deduce that

∀x0 ∈ B(0, M) ∃i0 such that Cfk(x0) ∈ B(0, ρ), ∀k ≥ i0. In particular we

obtain equation (14).

Then if x0 ∈ XM
i0−1, we have x0 ∈ B(0, M) and Cfk(x0) ∈ Ω, ∀k ∈

{0, . . . , i0 − 1}, by equation(14) we deduce that x0 ∈ XM
i0 . Consequently

XM
i0−1 = XM

i0
and we deduce from proposition 2.1 that the maximal admissible

set is finitely determined.

Theorem 3.2 Suppose the following assumptions hold

1. ‖f(x)‖ ≤ η‖x‖, ∀x ∈ IRn and η ∈]0, 1[.

2. 0 ∈ intΩ.

then XM
∞ is finitely determined.

Proof.

It apparent from hypothesis 1 that

‖Cf i(x0)‖ ≤ ‖C‖ηi‖x0‖, ∀iIN,

then for x0 ∈ B(0, M) there exists a k ∈ IN∗ such that

‖Cfk(x0)‖ ≤ ρ (15)

then, if x0 ∈ XM
k−1 we have x0 ∈ B(0, M) and Cf i(x0) ∈ Ω for i ∈ {0, . . . , k −

1}. Using (13) and by equation (15) we have Cf i(x0) ∈ Ω for i ∈ {0, . . . , k}.
Consequently x0 ∈ XM

k . This result imply that XM
k = XM

k−1.
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4 Algorithmic determination

The proposition 3.1 suggests the following conceptual algorithm for determin-

ing the output admissible index k∗, consequently the characterization of the

set XM
∞ .

Algorithm I∣∣∣∣∣∣∣∣∣

step 1 : Set k = 0

step 2 : If XM
k = XM

k+1 then set k∗ = k and stop,

else continue.

step 3 : Replace k by k + 1 and return to step 2.

Clearly, the algorithm I will produce k0 and XM
∞ if and only if XM

∞ is finitely

determined. There appears to be no finite algorithmic procedure for showing

that XM
∞ is not finitely determined.

Algorithm I is not practical because it does not describe how the test XM
k =

XM
k+1 is implemented. The difficulty can be overcome if we intruded in IRn the

following norm

‖x‖ = max
1≤i≤n

|xi|, ∀x = (x1, x2, . . . , xn) ∈ IRn.

and if Ω is defined by:

Ω = {y ∈ IRp; hi(y) ≤ 0, i = 1, . . . , s} (16)

where hi : IRp −→ IR are a given function. Such a sets have many importance

in a practical view. In this case, for every integer k, XM
k is given by

XM
k = {x0 ∈ B(0, M); hj(Cf ix0) ≤ 0, j = 1, . . . , s; i = 0, . . . , k}

On the other hand

XM
k+1 = {x0 ∈ XM

k ; Cfk+1(x0) ∈ Ω}
= {x0 ∈ XM

k ; hj(Cfk+1(x0)) ≤ 0, for j = 1, . . . , s}
Now, since XM

k+1 ⊂ XM
k for every integer k, then

XM
k+1 = XM

k ⇐⇒ x0 ∈ XM
k ; hj(Cfk+1(x0)) ≤ 0, ∀j = 1, . . . , s

⇐⇒ sup
x0∈XM

k

hj(Cfk+1(x0)) ≤ 0, ∀j = 1, . . . , s

⇐⇒ sup
hj(Cf l(x0)) ≤ 0; gr(x) ≤ 0︸ ︷︷ ︸
j∈{1,... ,s}, l∈{0,... ,k}, r∈{1,... ,2n}

hi(Cfk+1x0) ≤ 0, ∀i ∈ {1, . . . , s}.
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with gl : IRn −→ IR is described for all x = (x1, . . . , xn) ∈ IRn by

{
g2r−1(x) = xr − M, for r ∈ {1, 2, . . . , n}
g2r(x) = −xr − M, for r ∈ {1, 2, . . . , n} .

Consequently the test XM
k = XM

k+1 leads to a set of mathematical programming

problems, and algorithm I can be rewritten of practical manner under the form

Algorithm II
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

step 1 : Set k = 0;

step 2 : For i = 1, . . . , s, do :

Maximize Ji(x) = hi(Cfk+1(x0))⎧⎨
⎩

hr(CAlx) ≤ 0, gj(x) ≤ 0

r = 1, . . . , s, j = 1, 2, . . . , 2n,

l = 1, . . . , k.

Let J∗
i be the maximum value of Ji(x).

If J∗
i ≤ 0, for i = 1, . . . , s then set k∗ := k and stop.

Else continue.

step 3 : Replace k by k + 1 and return to step 2.

Assumptions of theorems 3.1 and 3.2 are sufficient but not necessary. If

these conditions are not verified, then Algorithm II can also be used for every

Ω given by (16). If the Algorithm converge then XM
∞ is finitely determined,

else it is not. To illustrate this work we give some examples.

Example 1: Let f , C, Ω, and M given by

f : IR2 −→ IR2,(
x

y

)
−→

(
0.4|x| − 0.1y

−0.2|x| + 0.5y

)

C = (−1, 0.2), Ω = [−0.5, 5] and M = 10. Then, we use algorithm II to

establish that k∗ = 2 and we have

XM
∞ = {

(
x

y

)
∈ IR2/ |x| ≤ 10, |y| ≤ 10, −0.5 ≤ −x + 0.2y ≤ 5,

−0.5 ≤ −0.44|x| + 0.11|y| ≤ 5,

−0.5 ≤ |0.176|x| − 0.02y| − 0.04|x| + 0.1y ≤ 5}

The following figure gives a representation of Maximal output set XM
∞ corre-

sponding to example 1.
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Figure 1: The set XM
∞ corresponding to example 1

Example 2: For f , C, Ω, and M given by

f : IR2 −→ IR2,(
x

y

)
−→

(
1
4
arctan(x

2
)

y
2

)

C = (1, 2), Ω = [−0.5, 0.5] and M = 1, we have k∗ = 1 and

XM
∞ = {

(
x

y

)
∈ IR2 / |x| ≤ 1, |y| ≤ 2, |x + 2y| ≤ 1

2
, |1

4
arctan(

x

2
) + y| ≤ 1

2
}

Figure 2 give the representation of Maximal output set XM
∞ corresponding to

example 2.

Figure 2: The set XM
∞ corresponding to example 2
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5 Maximal output admissible sets for nonlin-

ear discrete delayed Systems

Consider the uncontrolled nonlinear discrete delayed system described by⎧⎨
⎩

x(i + 1) = f(x(i), . . . , x(i − r)), i ∈ IN

x(0) = x0

x(s) = αs, −r ≤ s ≤ −1

(17)

the corresponding output is

y(i) =
t∑

j=0

Cjx(i − j), i ∈ IN (18)

where the state variable x(i) is in IRn, f is a continuous nonlinear function

that verify f(0) = 0, r and t are integers such that t ≤ r and the observation

variable y(i) ∈ IRp, satisfies the output constraint

y(i) ∈ Ω, ∀i ∈ IN (19)

where Cj are a p × n real matrices.

An initial condition α = (x0, α−1, . . . , α−r) ∈ IRn(r+1) is output admissible if

the resulting output function (18) satisfies (19). The set of all such initial

conditions is the maximal output admissible set XM
∞ .

we proof that under hypothesis on f , the maximal output admissible set is

finitely determined by a finite number of functional inequalities and leads to

algorithmic procedures for the computation of XM
∞ .

Define the state variable ξ(i) by

ξ(i) = (x(i), x(i − 1), . . . , x(i − r))


then we easily verify that (ξ(i))i≥0 is the solution of the following difference

equation {
ξ(i + 1) = F (ξ(i))

ξ(0) = α

where F : IRn(r+1) −→ IRn(r+1) is given by

F (y0, . . . , yr) = (f(y0, . . . , yr), y0, y1, . . . , yr−1)



If we define the matrix C̃ by

C̃ = (C0| . . . |Ct| 0p×n| . . . |0p×n︸ ︷︷ ︸
(r−t)−times

) ∈ L(IRn(r+1), IRp)
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then the output function y(i) are described in terms of the variable ξ(i) as

follows

y(i) = C̃ξ(i).

Thus, the set of all output admissible initial states is formally given by

XM
∞ = {α ∈ B(0, M) ∩ IRn(r+1) / C̃F i(α) ∈ Ω, ∀i ∈ IN}. (20)

In order to characterize the maximal output sets given formally by (20), we

define for each integer k the set

XM
k = {α ∈ B(0, M) ∩ IRn(r+1) / C̃F i(α) ∈ Ω, ∀i ∈ {0, 1, . . . , k}}.

On the other hand

F i(α) = (f(F i−1(α)), . . . , f(F i−r−1(α)))
, ∀i > r (21)

if ∀x = (x0, x1, . . . , xr) ∈ IRn(r+1)

f(a0x0, a1x1, . . . , arxr) = g(a0, a1, . . . , ar)f(x) (22)

where g is a real function which verify g(0) = 0, then we have

F i(λx) = Ai(λ)F i(x)

where

Ai(λ) =

⎛
⎜⎜⎜⎜⎝

(φi(λ, λ, . . . , λ))1 0 . . . 0

0 (φi(λ, λ, . . . , λ))2
. . .

...
...

. . .
. . . 0

0 . . . 0 (φi(λ, λ, . . . , λ))r+1

⎞
⎟⎟⎟⎟⎠

and

φ(λ0, . . . , λr) = (g(λ0, . . . , λr), λ0, . . . , λr−1)



Using equation (21), we have the following result

Theorem 5.1 Suppose the following assumptions hold

1. f is continuous, f(0) = 0, f(B(0, M)) ⊂ B(0, M) and f satisfied equa-

tion (22).

2. F is asymptotically lyapunov stable

3. 0 ∈ intΩ.
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4. (‖Ai(λ)‖)i≥0 is bounded ∀λ ∈ IR.

then XM
∞ described by equation (20) is finitely determined.

and similarly to theorem 3.2, we have

Theorem 5.2 Suppose the following assumptions hold

1. 0 ∈ intΩ.

2. ‖F i(x)‖ ≤ (Cste)ηi‖x‖, η ∈]0, 1[, ∀i ∈ IN.

then XM
∞ is finitely determined,i.e., there exists k ∈ IN such that XM

∞ = XM
k

We determine the output admissible index k∗ using the algorithm II by making

the assignments C −→ C̃, f −→ F, and Ω −→ Ω

6 Application to Perturbed Systems

This section is devoted to the characterization of admissible disturbances for

the nonlinear discrete infected system described by{
xd(i + 1) = f(xd(i)), i ∈ IN

xd(0) = x0 + d ∈ IRn (23)

the corresponding output function is

yd(i) = Cxd(i), i ∈ IN (24)

where f is a continuous nonlinear function, the observation variable yd(i) ∈ IRp,

and C is a p × n real matrix, xd(i) ∈ IRn is the state variable and d ∈ IRn

represents a unavoidable disturbances which enters the system because of its

connections with the environment. The output signal corresponding to d = 0

is simply denoted by (y(i))i≥0 i.e.,

y(i) = Cx(i), i ∈ IN (25)

where (x(i))i≥0 is the uninfected state given by

{
x(i + 1) = f(x(i)), i ∈ IN

x(0) = x0 ∈ IRn (26)

It is reasonable to agree that a source d is tolerable if, for every integer i,

the subsequent output variable yd(i) remains in a neighborhood of the unin-

fected output y(i), this requires from us to introduce the index of admissibility
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ε(ε > 0). We say that the source d is ε-admissible if ‖yd(i) − y(i)‖ ≤ ε for all

integer i ≥ 0.

Motivated by practical consideration, we suppose that the disturbances d sus-

ceptible of infecting the initial state of system satisfied ϕ(d) = (x0 + d, x0) ∈
B(0, M) = {x ∈ IR2n/‖x‖ ≤ M}.
The purpose of this section is to characterize, under certain hypothesis, The

set SM(ε) of all source d such that ϕ(d) ∈ B(0, M) which are ε-admissible. We

call SM(ε) the ε-admissible set. We proof that under certain hypothesis on f ,

the ε-admissible set is finitely determined and leads to algorithmic procedures

for the computation of SM(ε). The set of all ε-admissible set is formally given

by

SM(ε) = {d ∈ IRn /ϕ(d) ∈ B(0, M), ‖Cf i(x0 + d) − Cf i(x0)‖ ≤ ε, ∀i ∈ IN}
(27)

The set SM(ε) is derived from an infinite number of inequalities and it is

difficult to characterize. However we propose some sufficient conditions which

assure SM(ε) to be finitely accessible, i.e., there exists an integer k such that

SM(ε) = SM
k (ε) where

SM
k (ε) = {d ∈ IRn /ϕ(d) ∈ B(0, M), ‖Cf i(x0+d)−Cf i(x0)‖ ≤ ε, ∀i = 0, . . . , k}

Let us define the functionals L and F

L : IRn × IRn −→ IRn

(a, b) −→ a − b

F : IRn × IRn −→ IRn × IRn

(x, y) −→ (f(x), f(y))

by above notations we can easily establish that the set SM(ε) can be rewriting

as follows

SM(ε) = {d ∈ IRn / ϕ(d) ∈ B(0, M), ‖CLF iϕ(d)‖ ≤ ε, ∀i ∈ IN}

moreover

SM(ε) = {d ∈ IRn / ϕ(d) ∈ HM(ε)}
where

HM(ε) = {ξ ∈ B(0, M) / ‖CLF iξ‖ ≤ ε, ∀i ∈ IN}.
For every k ∈ IN, we define the set HM

k (ε) by

HM
k (ε) = {ξ ∈ B(0, M) / ‖CLF iξ‖ ≤ ε, ∀i ∈ {0, . . . , k},
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HM(ε) is said to be finitely accessible if there exists k ∈ IN such that HM(ε) =

HM
k (ε), we note k∗ the smallest integer such that HM(ε) = HM

k∗ (ε).

Obviously, the set HM
k (ε) satisfies the following condition:

HM(ε) ⊂ HM
k2

(ε) ⊂ HM
k1

(ε), ∀k1, k2 ∈ IN such that k1 ≤ k2.

We use the result established in proposition 3.1, to give a sufficient conditions

to assure that the set SM(ε) contains the origin and a properties to characterize

finitely the set SM(ε).

Proposition 6.1 (i) The set SM(ε) is closed and if f is asymptotically lya-

punov stable then, 0 ∈ int SM(ε).

(ii) If HM(ε) is finitely determined then there exists an integer k such that

HM
k (ε) is nonempty and HM

k (ε) = HM
k+1(ε).

(iii) If f(B(0, M)) ⊂ B(0, M) and HM
k (ε) = HM

k+1(ε) for some integer k ∈ IN

then HM(ε) is finitely determined.

Suppose that HM(ε) is finitely determined and let k0 be the smallest k such

that HM
k (ε) = HM

k+1(ε), then HM(ε) = HM
k0

(ε) = HM
k (ε) for all k ≥ k0.

We apply the result established in theorem 3.1 and 3.2 to give a sufficient

conditions which make HM(ε) accessible and we deduce the following results

Theorem 6.1 Suppose the following assumptions hold

1. f is continuous, f(B(0, M)) ⊂ B(0, M) and asymptotically lyapunov

stable.

2. f(λx) = g(λ)f(x), ∀x ∈ IRn, ∀λ ∈ IR where g is a real function which

verify g(0) = 0 and the sequence (gk(λ))k≥0 is bounded for all λ ∈ IR,

(gk = g ◦ g ◦ . . . ◦ g︸ ︷︷ ︸
k−times

).

then HM(ε) is finitely determined.

Theorem 6.2 If ‖f(x)‖ ≤ η‖x‖, ∀x ∈ IRn and η ∈]0, 1[, then HM(ε) is

finitely determined.

The proposition 6.1 we suggest the following conceptual algorithm for de-

termining the output admissible index k0, such that HM
k∗ (ε) = HM(ε) and

consequently the characterization of the set SM(ε) by

SM(ε) = SM
k∗ (ε) = ϕ−1(HM

k∗ (ε)).
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The set HM
k (ε) is described by

HM
k (ε) =

{
ξ ∈ IR2n / gl(ξ) ≤ 0 and hj(CLF i(ξ) ≤ 0 for

l = 1, 2, . . . , 4n, j = 1, 2, . . . , 2p and i = 1, 2, . . . , k

}
.

with gl : IR2n −→ IR, hj : IRp −→ IR, are described for all x = (x1, . . . , x2n) ∈
IR2n and y = (y1, . . . , yp) by

{
g2r−1(x) = xr − M, for r ∈ {1, 2, . . . , 2n}
g2r(x) = −xr − M, for r ∈ {1, 2, . . . , 2n}

{
h2r−1(y) = yr − ε, for r ∈ {1, 2, . . . , p}
h2r(y) = −yr − ε, for r ∈ {1, 2, . . . , p}

we deduce from

HM
k (ε) = HM

k+1(ε) =⇒ HM
k (ε) ⊂ HM

k+1(ε)

that

HM
k (ε) = HM

k+1(ε) =⇒ ∀ξ ∈ HM
k (ε), hj(CLF k+1(ξ) ≤ 0, ∀j ∈ {1, 2, . . . , 2p}

equivalently to

sup
ξ∈HM

k (ε)

hj(CLF k+1(ξ)) ≤ 0, ∀j ∈ {1, . . . , 2p}.

Consequently the test HM
k (ε) = HM

k+1(ε) leads to a set of mathematical pro-

gramming problems, and we can give an practical algorithm under the following

form.

Algorithm III
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

step 1 : Set k = 0;

step 2 : For i = 1, . . . , 2p, do :Maximize

Ji(x) = hi(CLF k+1(x)){
hi(CLF l(x) ≤ 0, gj(x) ≤ 0

i = 1, . . . , 2p, j = 1, 2, . . . , 4n, l = 1, . . . , k.

Let J∗
i be the maximum value of Ji(x).

If J∗
i ≤ 0, for i = 1, . . . , 2p then set k∗ := k and stop.

Else continue.

step 3 : Replace k by k + 1 and return to step 2.
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