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Abstract

This paper is concerned with the optimal control of a production in-
ventory system with deteriorating items. It is assumed that the de-
terioration rate follows the two-parameter Weibull distribution. The
continuous-review and periodic-review policies are investigated. In each
case, optimality conditions are derived. Also, numerical illustrative ex-
amples are presented.
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1 Introduction

Application of optimal control theory to management science/operations re-
search problems is a rich research area; see Sethi and Thompson [21]. The
problem of interest to us is the production planning problem. We consider
a firm that produces a single product, selling some units and stocking the
remaining units in a warehouse. Advantages and disadvantages of holding a
stock are well-known. High inventory incurs high holding costs and low pro-
duction costs while low inventory incurs low holding costs and high production
costs. Typically, the firm has to balance these costs and find the quantity it
should produce in order to keep the total cost at a minimum.

We deal in this paper with the case where units of the product, while in
stock, are subject to deterioration. This is a topic that has received a lot of

1This research was supported by the College of Science Research Center at King Saud
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attention; see Goyal and Giri [11]. A large number of theoretical papers make
the assumption that the deterioration rate follows the Weibull distribution, see
for example [4, 5, 9, 10, 15, 16, 19, 26]. Also, fitting empirical data to mathe-
matical distributions has lead many researchers to use the Weibull distribution
to model the deterioration rate. Among the items whose rate of deterioration
was assumed to follow the Weibull distribution are refrigerated meats (An-
dujar and Herrera [1]), roasted and ground coffee (Cardelli and Labuza [3]),
pasteurized milk (Duyvesteyn [7]), luncheon meats (Gacula [8]), breakfast ce-
real (Pickering [14]), cottage cheese (Schmidt and Bouma [20]), cassava flour
(Shirose et al. [22]), corn seed (Tang et al. [23]), frozen foods (Tomasicchio
et al. [24]), and ice cream (Wittinger and Smith [25]). Besides food stuff,
there are many products, such as camera films, drugs, pharmaceuticals, chem-
icals, electronic components and radioactive substances that deteriorate while
in stock. Also, reservoir systems are subject to deterioration in the form of
evaporation. Poultry farms and fish ponds witness deterioration in the form
of death of the animals (chicken and fish).

Our problem is dynamic and the solution sought is a function of time. So,
the problem can be represented as an optimal control problem with one state
variable (inventory level) and one control variable (rate of manufacturing).
There are a few papers that used an optimal control approach to study dy-
namic production models. For example, Dobos [6] was interested in the optimal
control of reverse logistics systems, where reusable materials returned from the
market are remanufactured. Khemlnitsky and Gerchak [12] used an optimal
control approach to solve a production system where demand depends on the
inventory level. Kiesmüller [13] was interested in the optimal control of recov-
ery systems, where attention is given to recycling and remanufacturing of used
products in order to reduce waste. Riddalls and Bennett [17] used an optimal
control algorithm to a differential equation model of a production inventory
system to cater for batch production costs which, usually, are not modelled in
aggregate production problems. Salama [18] considered the optimal control of
an unreliable manufacturing system with restarting costs. Zhang et al. [27]
were concerned with the scheduling of a marketing production system with a
demand dependent on the marketing status.

The novelty we will be taking into consideration in this research is that
the time to deterioration is a random variable following the two-parameter
Weibull distribution. This distribution can be used to model either increasing
or decreasing rate of deterioration, according to the choice of the parame-
ters. We note that in the literature, Weibull distributed deterioration rate was
considered in optimization models but not in optimal control models. The
probability density function for a two-parameter Weibull distribution is given
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by

f(t) = αβtβ−1e−αtβ , t > 0,

where α > 0 is the scale parameter and β > 0 is the shape parameter. The
probability distribution function is

F (t) = 1 − e−αtβ , t > 0.

The instantaneous rate of deterioration of the on-hand inventory is given by

θ(t) =
f(t)

1 − F (t)
= αβtβ−1, t > 0.

To build our model, we will assume that the demand rate is a general function
of time. We will also assume that the firm has set an inventory goal level
and a production goal rate. The inventory goal level is a safety stock that the
company wants to keep on hand. The production goal rate is the most efficient
rate desired by the firm. The objective is to determine the optimal production
rate that will keep the inventory level and the production rate as close as
possible to the inventory goal level and production goal rate, respectively.
Since a review policy by the firm can be either continuous or periodic, we will
study both of these policies. In each case, necessary and sufficient optimality
conditions are derived. In the case of the continuous-review policy, the main
tool in the study of this kind of problems is the Pontryagin maximum principle.
In the case of the periodic-review policy, the Lagrangian technique is used.

In the next section we introduce the notation and formally describe the
system. In sections 3 and 4 we study the optimal control of the system under
a continuous-review and a periodic review, respectively. Illustrative numerical
examples are provided in each of these sections.

2 Model Formulation and Notation

Let T > 0 represent the length of the planning horizon and consider a firm
that manufactures a certain product, selling some and stocking the rest in a
warehouse. At any instant of time t ∈ [0, T ], we denote by I(t) the inventory
level in the warehouse. The firm has set an inventory goal level (a target level)
Î and a penalty h ≥ 0 is incurred for the inventory level to deviate from its goal.
At any instant of time t ∈ [0, T ], the firm manufactures units of the product
at a rate P (t). It has set a production goal rate P̂ and a penalty K > 0 is
incurred for the production rate to deviate from its goal. The production of
new units at rate P (t) increases the inventory level while the demand for the
product at rate D(t) and deterioration at rate θ(t) = αβtβ−1 decreases the
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inventory level. The change in the level of inventory in stock is therefore given
by the state equation

İ(t) = −αβtβ−1I(t) + P (t) − D(t), ∀t ∈ [0, T ]. (1)

We assume that the initial stock I(0) = I0 is known and note that the pro-
duction goal rate P̂ can be computed using the state equation (1) as

P̂ (t) = D(t) + αβtβ−1Î.

To present the problem as an optimal control problem, we let I(t) represent
the state variable and P (t) represent the control variable which needs to be
nonnegative:

P (t) ≥ 0. (2)

Now we look for the optimal production rate, that is the rate that minimizes
the performance index

J =
1

2

∫ T

0

{
h

[
I(t) − Î

]2

+ K
[
P (t) − P̂ (t)

]2
}

dt, (3)

subject to constraints (1)-(2).

Now to solve this problem, it is well-known that, historically, there have
been two basic inventory systems: the continuous-review system and the periodic-
review system. With continuous-review systems, the level of a company’s
inventory is monitored at all times and the inventory position is constantly
adjusted. Management of inventory is an ongoing process. Periodic-review
systems, on the other hand, check the inventory level at fixed intervals rather
than through continuous monitoring and adjust the inventory position at spe-
cific time intervals such as daily, weekly, biweekly, or monthly.

3 Continuous-Review Policy

We first assume that the firm adopts a continuous-review policy. The necessary
optimality conditions are derived using Pontryagin maximum principle, see for
example Sethi and Thompson [21].

3.1 Analytical Solution. Denoting the adjoint variable by λ, the Hamilto-
nian is given by

H = −1

2

{
h

[
I(t) − Î

]2

+ K
[
P (t) − P̂ (t)

]2
}

+λ(t)
[
P (t) − D(t) − αβtβ−1I(t)

]
.

(1)
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The necessary optimality conditions

∂H

∂P
= 0,

∂H

∂I
= −λ̇,

∂H

∂λ
= İ ,

are respectively equivalent to

P (t) = P̂ (t) +
λ(t)

K
, (2)

λ̇(t) = h
[
I(t) − Î

]
+ λ(t)αβtβ−1, (3)

and the state equation (1). Substituting expression (2) into the state equation
(1) yields

İ(t) = −αβtβ−1I(t) + P̂ (t) +
λ(t)

K
− D(t). (4)

Note that from (4) we have

λ(t)

K
= İ(t) + αβtβ−1I(t) − P̂ (t) + D(t). (5)

Also, differentiating (4), we get

Ï(t) = −αβ(β − 1)tβ−2I(t) − αβtβ−1İ(t) +
λ̇(t)

K
+

˙̂
P (t) − Ḋ(t). (6)

Substituting expression (3) into (6) yields

Ï(t) = −αβ(β−1)tβ−2I(t)+αβtβ−1

[
λ(t)

K
− İ(t)

]
+

h

K

[
I(t) − Î

]
+

˙̂
P (t)−Ḋ(t).

(7)
Finally, substitute expression (5) into (7) to obtain

Ï(t)−
[

h

K
+ αβ(αβ − β + 1)t2(β−1)

]
I(t) = αβtβ−1

[
D(t) − P̂ (t)

]
− λ

K
Î+

˙̂
P (t)−Ḋ(t).

(8)
Together with the initial condition I(0) = I0 and the terminal condition λ(T ) =
0, this is a boundary value problem that is solved numerically since a closed
form solution is not possible.

3.2 Numerical Example. To illustrate, we consider a numerical example
where the planning horizon has length T = 12 months and the demand rate is
a sinusoidal function of time given by D(t) = 1 + sin(t). The cost parameters
are h = 1 and K = 20. The initial and goal inventory level are I0 = 2 and
Î = 10, respectively. Finally, the shape and scale parameters of the Weibull
distribution for the deterioration rate are α = 0.5 and β = 3, respectively. The
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second-order differential equation was solved numerically using version 7.0 of
the mathematical package Matlab. Figure 1 (left) shows the convergence
of the optimal inventory towards inventory goal level. A similar convergence
is observed in Figure 1 (right) for the optimal production rate toward the
production goal rate. It is always worth investigating the sensitivity of the
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Figure 1: Optimal inventory level (left) and optimal production rate (right).

optimal solution to changes in the system parameters. In our case, the de-
terioration rate was our main interest and we successively varied the shape
and scale parameters of the Weibull distribution and recorded the value of the
optimal objective function value. Figure 2 shows that the objective function
increases as either α or β increases. We also observe that the objective function
is a concave function of α but a convex function of β.

4 Periodic-Review Policy

Now suppose the firm adopts a periodic-review policy. Divide the planning
horizon [0, T ] into N subintervals of equal length and denote respectively by
I(k), P (k), P̂ (k) and D(k) the inventory level, the production rate, the pro-
duction goal rate, and the demand rate on each subinterval.

4.1 Model Discretization. We start by discretizing the model. The ap-
proximate discrete form of Equation (1) is

I(k + 1) − I(k)

Ts

= P (k) − D(k) − αβkβ−1I(k), (1)
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Figure 2: Effect of α (left) and β (right) on the optimal cost.

where Ts is the discretization sampling period. Rearranging the terms in (1)
gives

I(k + 1) =
[
1 − Tsαβkβ−1

]
I(k) + Ts [P (k) − D(k)] . (2)

Since Î and P̂ satisfy (2), we have

Î =
[
1 − Tsαβkβ−1

]
Î + Ts

[
P̂ (k) − D(k)

]
. (3)

Now introduce the shift operator Δ such that

ΔI(k) = I(k) − Î and ΔP (k) = P (k) − P̂ (k).

Subtracting expression (3) from (2) yields

ΔI(k + 1) = a(k)ΔI(k) + TsΔP (k), (4)

where, to simplify this expression, we let

a(k) = 1 − Tsαβkβ−1.

In discrete time, the objective function is

J =
1

2

N∑
0

[
hΔI(k)2 + KΔP (k)2

]
. (5)

Therefore, the problem is to determine the production rate P (k) ≥ 0 that
minimizes (5) subject to the constraint (4).
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4.2 Analytical Solution. In this case, the problem is nonlinear and can
be solved using the Lagrangian technique. To use the Lagrangian technique,
introduce the Lagrange multipliers λ(k) and the Lagrangian function

L =
1

2

N∑
0

{
hΔI(k)2 + KΔP (k)2

}
+λ(k+1)

[
−ΔI(k+1)+a(k)ΔI(k)+TsΔP (k)

]
.

(6)
The necessary optimality conditions

∇ΔP (k)L = 0, ∇ΔI(k)L = 0, ∇λ(k+1)L = 0,

are respectively equivalent to

ΔP (k) = −Ts

K
λ(k + 1), (7)

λ(k) = hΔI(k) + a(k)λ(k + 1), (8)

and the constraint (4). To solve these equations, we use the sweep method of
Bryson and Ho [2]. For k = 0, · · · , N , introduce the positive quantities s(k)
such that

λ(k) = s(k)ΔI(k). (9)

We start by determining these quantities. Substituting (9) into (7) yields

ΔP (k) = −Ts

K
s(k + 1)ΔI(k + 1). (10)

Substituting (4) into (10) yields

ΔP (k) = −Ts

K
s(k + 1)

[
a(k)ΔI(k) + TsΔP (k)

]
. (11)

We solve this equation for ΔP (k) to get

ΔP (k) = − Tsa(k)s(k + 1)

K + T 2
s s(k + 1)

ΔI(k). (12)

Now, substitute (9) into (8)

s(k)ΔI(k) = hΔI(k) + a(k)s(k + 1)ΔI(k + 1). (13)

Also, substitute (4) into (13)

s(k)ΔI(k) =
[
h + a(k)2s(k + 1)

]
ΔI(k) + Tsa(k)s(k + 1)ΔP (k), (14)
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and (12) into (14)

s(k)ΔI(k) =

[
h +

Ka(k)2s(k + 1)

K + T 2
s s(k + 1)

]
ΔI(k). (15)

Hence, we obtain the discrete Ricatti equation

s(k) = h +
Ks(k + 1)

K + T 2
s s(k + 1)

a(k)2, (16)

which needs to be solved backwards, starting from

s(N) = h, (17)

since ΔP (N) = 0. Now, we turn to determining I(k). First, substitute (12)
into (4)

ΔI(k + 1) = a(k)

[
1 − Tss(k + 1)

K + T 2
s s(k + 1)

]
ΔI(k). (18)

Then, starting from I(0) = I0, we compute recursively (forward)

I(k + 1) = Î + a(k)

[
1 − Tss(k + 1)

K + T 2
s s(k + 1)

] [
I(k) − Î

]
. (19)

To determine P (k), again from (4) we have

ΔP (k) =
1

Ts

[
ΔI(k + 1) − a(k)ΔI(k)

]
, (20)

and for k = 0, · · · , N − 1,

P (k) = P̂ (k) +
1

Ts

[
ΔI(k + 1) − a(k)ΔI(k)

]
. (21)

Since only a nonnegative production rate is allowed, the optimal production
rate is chosen equal to

max

{
P̂ (k) +

1

Ts

[
ΔI(k + 1) − a(k)ΔI(k)

]
, 0

}
, k = 0, · · · , N − 1. (22)

4.3 Numerical Example. For this numerical example, the planning horizon
has length N = 12 and the demand rate is D(t) = 1 + sin(t). The inventory
goal level and the initial inventory level are chosen to be Î = 10 and I0 = 2.
We also assume the following parameters for the deteriorations rate α = 0.1
and β = 3 and the following penalty costs h = 1 and K = 20. The first step
is to compute the production goal rate from (3) as

P̂ (k) = max
{

D(k) + αβkβ−1Î , 0
}

.
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Next we successively compute the vector s from (16), the optimal inventory
level I from (19), and the optimal production rate P from (22). Figure 3
(left) shows the optimal inventory level and as can be seen, I converges toward
Î. It also shows (right) the optimal production rate P which, as can be seen,
converges toward P̂ .

0 2 4 6 8 10 12
2

3

4

5

6

7

8

9

10

11

Time

In
v
e
n
to

ry
 L

e
v
e
l

Inventory level

Inventory goal level

0 2 4 6 8 10 12
0

50

100

150

200

250

300

350

400

450

Time

P
ro

d
u
c
ti
o
n
 R

a
te

Production rate

Production goal rate

Figure 3: Optimal inventory level (left) and optimal production rate (right).
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