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Abstract

The purpose of this paper is to study new stochastic comparisons

based on the Laplace transform order of reversed residual life. Some

basic properties of the new order are given. We also provide several

preservation properties of it under the reliability operations of convolu-

tion, mixture and parallel system.
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1 Introduction

Suppose X is a non-negative random variable having absolutely continu-

ous distribution FX(x) with density fX(x). Then the ordinary Laplace trans-

form of the density function fX is given by

LX(s) =

∫ ∞

0

e−su fX(u)d(u), s > 0.

The Laplace transform of FX is defined by

L∗
X(s) =

∫ ∞

0

e−su FX(u)du.
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It is easy to check that if FX is continuous then

L∗
X(s) =

1

s
LX(s), s ≥ 0.

Throughout this paperX and Y are two random variables with distribution

functions FX and FY , respectively. Denote by LX the Laplace transform of

FX , and by FX = 1−FX the corresponding survival function. We use a similar

notation for all other distribution functions. Moreover, we will use the term

increasing in place of non-decreasing, and decreasing in place of non-increasing.

Given two random variables X and Y , X is said to be smaller than Y in

the Laplace transform order (denoted by X ≤Lt Y ) if LX(s) ≥ LY (s), for all

s > 0. Clearly, X ≤Lt Y ⇔ L∗
X(s) ≥ L∗

Y (s), for all s > 0 if both FX and FY

are continuous.

Also, it can be checked that M ≤Lt N is equivalent to L∗
M (s) ≥ L∗

N (s) for

all s > 0, or

M ≤Lt N ⇔
∑∞

n=0
εnQM (n) ≥

∑∞
n=0

εnQN(n), ε ∈ (0, 1), (1.1)

if M and N are non-negative integer-valued random variables with distribution

probabilities QM(n) = P (M < n) and QN (n) = P (N < n), respectively.

The Laplace transform can be interpreted in several ways when the ran-

dom variable represents the lifetime of a system or a unit, which yields several

applications of Laplace transform order. Applications, properties and inter-

pretations of the Laplace transform order can be found in Alzaid et al. (1991),

Klefsjo (1983), Shaked and Wong (1997) Denuit (2001) and Belzunce et al.

(1999).

For any random variable X, let

X(t) = [t−X | X < t], t ∈ {x : FX(x) < 1},

denote a random variable whose distribution is the same as the conditional

distribution of t −X given that X < t. When the random variable X denote

the life time (X ≥ 0, with probability one) of a unit, X(t) is known as reversed

residual life (or time since failure or inactivity time, or idle time), (see, for
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instance, Chandra and Roy (2001), Block et al. (1998), Nanda et al. (2003),

Kayid and Ahmad (2004), Ahmad et al. (2005)).

In this case given a random variable X(t), then

L∗
X(t)

(s) =

∫ t

0

esuFX(u)du

est FX(t)
, s > 0.

In this paper, based on this measure we will deal with a new ordering called

Laplace transform ordering of reversed residual life. In Section 2, we present

definitions, notations and basic properties used throughout the paper. Several

preservation properties of stochastic comparisons and some aging notions based

on the Laplace transform order of reversed residual lives under the reliability

operations of mixture, convolution and parallel system are studied in Section

3. Finally, in Section 4 we provide a preservation property under monotone

transformation of the new order.

2 Definitions, notations and characterization

In the context of reliability theory several orders have been introduced to

compare two lifetime distributions. These orders have been found useful for

modelling, or the design of better systems. We see below some of these orders

(see, Shaked and Shanthikumar (1994), Nanda et al. (2003) and Kayid and

Ahmad (2004)).

Given a random variable X, with distribution function FX , Xt = (X − t |
X ≥ t), denotes the additional residual life where t ∈ (0, lX) and lX = sup{t :

FX(t) < 1}. Based on the stochastic comparison of Xt, the hazard rate order

(X ≤HR Y ) can be defined as

Xt ≤ST Yt, for all t,

where the stochastic ordering (≤ST ) is defined as

X ≤ST Y ⇔ FX(t) ≤ F Y (t), for all t.

Definition 2.1. Let X and Y be two non-negative random variables. The

random variable X is said to be smaller than Y in the
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(i) mean residual life order (denoted by X ≤MRL Y ) if, and only if,

∫ ∞
t
F Y (x)dx∫ ∞

t
FX(x)dx

increasing in t for all t ∈ (0, lX) ∩ (0, lY );

(ii) reversed mean residual life order (denoted by X ≤RMRL Y ) if, and only if,

∫ t

0
FY (x)dx∫ t

0
FX(x)dx

increasing in t for all t ∈ R+.

(iii) increasing concave order (denoted by X ≤icv Y ) if, and only if,

∫ x

0

FX(u)du ≤
∫ x

0

F Y (u)du, for all x.

Let us observe that the ≤MRL order are more informative than the ≤ST

order, since it compare the underlying systems at any time t in contrast to

the global comparison offered by the orders ≤ST . However, it is reasonable to

presume that in many realistic situations the random variable is not necessarily

related to the future but can also refer to the past. For instance, consider a

system whose state is observed only at certain preassigned inspection times.

If at time t the system is inspected for the first time and it is found to be

’down’, then the failure relies on the past, i.e. on which instant in (0, t) it

has failed. It thus seems natural to introduce a notion that is dual to the

Laplace transform order of residual lives ≤Lt−rl, introduced by Belzunce et al.

(1999) and furthered by several authors, including Gao et al.(2003), Kayid and

Ahmad (2004), in the sense that it refers to past time and not to future time.

Following this idea we introduc a new partial order based on the Laplace

transform order of reversed residual life.

Definition 2.2. Let X and Y be two non-negative random variables. The

random variable X is said to be smaller than Y in the Laplace transform order

of reversed residual lives (denoted by X ≤LT−RRL Y ) if

X(t) ≥Lt Y(t) for all t ∈ R+,

Observe that, by definition of ≤LT−RRL order, it holdsX ≤LT−RRL Y , if and

only if L∗
X(t)

(s) ≥ L∗
Y(t)

(s) for all t, s ≥ 0. Actually, an equivalent condition for

LT − RRL order is given in Ahmad and Kayid (2005), and is the following.
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Proposition 2.1. Let X and Y be two continuous non-negative random

variables with distribution functions F and G, respectively, then for all t ≥ 0

and s > 0

X ≤LT−RRL Y ⇐⇒
∫ t

0
esuF (u)du∫ t

0
esuG(u)du

is decreasing in t ≥ 0. (2.1)

On the other hand, in the literature, many non-parametric aging classes

of distributions have been defined (cf. Barlow and Proschan (1975)). In

particular, decreasing reversed hazard rate (DRHR) and increasing reversed

mean residual life (IRMR) classes of distributions has been studied by many

researchers in the recent past

The following two propositions gives most characterizations of DRHR and

IRMR classes.

Proposition 2.2. For 0 < t1 < t2, the following statements are equivalent.

(a) X has decreasing reversed hazard rate;

(b) X(t1) is smaller than X(t2) in stochastic ordering;

(c) X(t1) is smaller than X(t2) in hazard rate ordering;

(d) the distribution function of X is logconcave.

Proposition 2.3. The random variable X is IRMR if, and only if, any one

of the following conditions holds:

(i) [t−X | X < t] ≤RMRL [s−X | X < s] whenever t ≤ s.

(ii) X ≤RMR [t−X |< t] for all t > 0 (when X is a non-positive random

variable).

(iii) X + t ≤RMR X + s whenever t ≤ s.

Next we introduce a new aging class based on the Laplace transform order

Definition 2.3. A non-negative random variable X is said to have increasing

reversed residual lives in the Laplace order, denoted by X ∈ IRRLLt if

X(t) ≤Lt X(s), for all s > t ≥ 0.
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The following implications are well known or easy to prove as indicated

below:

X ≤RHR Y ⇒ X ≤LT−RRL Y ⇒ X ≤RMRL Y, (2.2)

and

DRFR ⇒ IRRLLT ⇒ IRMR.

The implications X ≤RHR Y ⇒ X ≤LT−RRL Y follows from Theorem

3.B.6 of Shaked and Shanthikumar (1994) and X ≤LT−RRL Y ⇒ X ≤RMRL Y

follows from (3.B.2) of Shaked and Shanthikumar (1994) and from Kayid and

Ahmad (2004).

From the definition it could be thought that the new order is equivalent

to one of the orders (≤LT−R and ≤R−LT−R) introduced by Shaked and Wong

(1997). However this is not true in general. Recall that ≤RH� ≤R−LT−R and

≤LT−R�≤ICV (see Shaked and Wong, 1997), therefore from (2.2) and from

≤RMRL−→ ≤ICV (see Kayid and Ahmad, 2004) neither ≤LT−R nor ≤R−LT−R

is equivalent to ≤LT−RRL .

One may refer to Shaked and Shanthikumar (1994), and Muller and Stoyan

(2002) for the hazard rate order (≤HR), the reversed hazard rate order (≤RHR),

the mean residual life order (≤MRL), and other common used stochastic orders.

Also, one can refer to, Nanda et al. (2003) for the reversed mean residual life

order (≤RMRL) and increasing reversed mean residual life aging class (IRMR)

and Shaked and Shanthikumar (1994) for the decreasing reversed failure rate

aging class (DRFR) and other aging notions.

3 Preservation properties of the LT-RRL or-

der

In this section, we describe some basic properties of the LT −RRL order,

which will be used frequently in the sequel, and then give preservation prop-

erties of this order under the operations of mixture, convolution, monotone

transformation and series system.



Laplace order 1779

3.1 Basic properties

From (1.1) and Definition 2.2, we state the next proposition without proof.

Its proof follows a similar argument to that of Proposition 2.1.of Ahmad and

Kayid (2005).

Proposition 3.1. Let M and N be two nonnegative integer-valued random

variables with distribution probabilities QM(n) and QN (n), respectively. Then

∑k=n
k=0 ε

kQN(k − 1)∑k=n
k=0 ε

kQM(k − 1)
is increasing in n ∈ {0, 1, ...} for each ε ∈ (0, 1).

Observe that

X ∈ IRRLLt ⇔ X(t) ≤Lt−RRL X(t
′
) for all t

′
> t ≥ 0.

From (2.1), we easily obtain the following useful proposition.

Proposition 3.2. Let X be a non-negative continuous random variable with

distribution function F , and denote

φ(t) =

∫ t

−∞
esuF (u) du for all t.

Then

X ∈ IRRLLT ⇔ φ(t) is logconcave in t ∈ R+ for all s ≥ 0.

Special attention should be paid to the logconcavity and logconvexity of a

non-negative function ζ . The logconcavity of ζ(t) in t ∈ R is equivalent to that

ζ(x− y) is TP2 in (x, y) ∈ R2, whereas the logconvexity of ζ(t) in t ∈ R dose

not in general imply that ζ(x+ y) is TP2 in (x, y) ∈ R2. The definition of TP2

is given in the paragraph before Theorem 3.1. However, if ζ(t) is logconvex

[logconcave] in t ∈ R+, then ζ(x+ y) [ζ(x+ 1/y] is TP2 in (x, y) ∈ R2. These

facts will be used in the sequel.

Proposition 3.3. Let X be a non-negative random variable. Then for any

non-negative random variable Y independent of X

X ∈ IRRLLT ⇒ X ≤LT−RRL X + Y.
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Proof. Suppose that X ∈ IRRLLT and Y is any non-negative random vari-

able, and fix s ≥ 0. Let FW denote the distribution function of a random

variable W , and denote

φW (t) =

∫ t

−∞
esuFW (u)du, for all t ∈ R+.

Then it follows from Proposition 3.2 that φX(t) is log-concave in t ∈ R; that is

φ(t−v)/φX(t) is increasing in t ∈ R for each v ≥ 0. Also, by Fubini’s Theorem,

we have

φX+Y (t) =

∫ t

−∞
esu

(∫ ∞

0

FX(u− v)dFY (v)

)
du

=

∫ ∞

0

(∫ t

−∞
esuFX(u− v)du

)
dFY (v)

=

∫ ∞

0

φX(t− v) esv dFY (v).

Therefore,

φX+Y (t)

φX(t)
=

∫ ∞

0

esv φX(t− v)

φX(t)
dv is increasing in t ∈ R.

Thus, by Proposition 2.1, we get X ≤LT−RRL X + Y.

3.2 Mixture and convolution

The following result shows that the (LT −RRL) order is preserved under

convolutions, when appropriate assumptions are satisfied.

Theorem 3.1. Let X1, X2 and Y be three non-negative random variables,

where Y is independent of both X1 and X2, and let Y have density g. If

X1 ≤LT−RRL X2 and g is log-concave then X1 + Y ≤LT−RRL X2 + Y.

Proof. First we note that, for fixed s ≥ 0 and i = 1, 2,

Φ(i, t) =

∫ ∞

0

e−svFXi+Y (t− v)dv

=

∫ ∞

0

e−sv

∫ ∞

0

Fi(t− v − u)dFY (u)dv
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=

∫ ∞

0

e−sv

∫ t

0

Fi(z − v) fY (t− z) dzdv

=

∫ ∞

0

fY (t− z)

∫ t

0

e−svFi(z − v)dvdz

=

∫ t

−∞
fY (t− z)ψ(i, z) dz.

As shown in Proposition 2.1, the assertion follows if we prove that Φ(i, t) is

TP2 in (i, t) (see Joag-Dev et al., 1995). By the assumption X1 ≤LT−RRL Y1 we

can say that ψ(i, z) is TP2 in (i, z). Moreover, since Y has logconcave density,

fY (t− z) is TP2 in (t, z). Therefore by the basic composition formula (Karlin,

1968) it follows that Φ(i, t) is TP2 in (i, t). This completes the proof.

Corollary 3.1. If X1 ≤LT−RRL Y2 and X2 ≤LT−RRL Y2 where X1 is indepen-

dent of X2 and Y1 is independent of Y2, then the following statements hold:

(i) If X1 and Y2 have log-concave densities, then X1 +X2 ≤LT−RRL Y1 + Y2.

(ii) If X2 and Y1 have log-concave densities, then X1 +X2 ≤LT−RRL Y1 + Y2.

Proof. The following chain of inequalities, which establish (i), follows by

Theorem 3.1:

X1 +X2 ≤LT−RRL X1 + Y2 ≤LT−RRL Y1 + Y2.

The proof of (ii) is similar.

Repeated application of Theorem 3.1, using the closure property of log-

concaves under convolution, yields the following result.

Theorem 3.2. If X1, X2, ... and Y1, Y2, ... are sequences of independent

random variables with Xi ≤LR−RRL Yi and Xi, Yi have log-concave densities

for all i, then
n∑

i=1

Xi ≤LR−RRL

n∑
i=1

Yi , (n = 1, 2, ...).

Proof. We shall prove the theorem by induction. Clearly, the result is true

for n = 1. Assume that the result is true for p = n− 1, i.e.,

n−1∑
i=1

Xi ≤LR−RRL

n−1∑
i=1

Yi. (4.1)
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Note that each of the two sides of (4.1) has a log-concave density (see, e.g.,

Karlin, 1968, page128). Appealing to Corollary 4.1, the result follows.

Let now X(θ) be a random variable having distribution function Fθ, and

let Θi be a random variable having distribution Gi, for i = 1, 2, and support

R+. The following is a closure of LT −RRL order under mixture.

Theorem 3.3. Let X(θ), θ ∈ R+ be a family of random variables independent

of Θ1 and Θ2. If Θ1 ≤lr Θ2 and if X(θ1) ≤LT−RRL X(θ2) whenever θ1 ≤ θ2,

then X(Θ1) ≤LT−RRL X(Θ2)

Proof. Let Fi be the distribution function of X(Θi), with i = 1, 2. We known

that

Fi(x) =

∫ ∞

0

Fθ(x)dGi(θ).

Again, because of Proposition 2.1, we should prove that Φ(i, t) =
∫ ∞

0
e−sxFi(t−

x)dx is TP2 in (i, t). But actually

Φ(i, t) =

∫ ∞

0

e−sxFi(t− x)dx

=

∫ ∞

0

e−sx

∫ ∞

0

Fθ(t− x)dGi(θ)dx

=

∫ ∞

0

gi(θ)

∫ ∞

0

e−sxFθ(t− x) dxd(θ)

=

∫ ∞

0

gi(θ) ψ(θ, t)dθ.

By assumption X(θ1) ≤LT−RRL X(θ2) whenever θ1 ≤ θ2, we have that

ψ(θ, t) is TP2 in (θ, t), while from assumption Θ1 ≤lr Θ2 follows that gi(θ)

is TP2 in (i,θ). Thus again the assertion follows from the basic composition

formula.

Suppose that Xi, i = 1, ..., n be a collection of independent random vari-

ables. Suppose that Fi is the distributions functions of Xi. Let α = (α1, ..., αn)

and β = (β1, ..., βn) be two probability vectors. Let X and Y be two random

variables having the respective distribution functions F and G defined by

F (x) =
n∑

i=1

αiFi(x) and G(x) =
n∑

i=1

βiFi(x). (4.2)
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The following result gives conditions under which X and Y are comparable

with respect to the LT − RRL order. One may refer to Ahmed and Kayid

(2004) and Kayid and Ahmad (2004) for a similar preservation property of the

mean residual life order (≤MRL), the Laplace transform of residual life order

(≤LT−RL) and mean inactivity time order (≤MIT ), respectively. Definition,

properties and applications of ≤MRL order and ≤LT−RL order can be found,

for instance, in Shaked and Shanthikumar (1994), Belzunce et al. (1999) and

Gao et al. (2003).

Corollary 3.2. Let X1, ..., Xn be a collection of independent random variables

with corresponding distribution functions F1, ..., Fn, such that X1 ≤LT−RRL

X2 ≤LT−RRL ... ≤LT−RRL Xn and let α = (α1, ..., αn) and β = (β1, ..., βn) such

that α ≤DLR β. Let X and Y have distribution functions F and G defined in

(4.2). Then X ≤LT−RRL Y.

To demonstrate the usefulness of the above results in recognizing (LT −
RRL)-ordered random variables, we consider the following examples.

Example 3.1. Let Xλdenote the convolution of n exponential distributions

with parameters λ1, ..., λn respectively. Assume without loss of generality that

λ1 ≤ ... ≤ λn. Since exponential densities are log-concave, Theorem 3.3 implies

that Xλ ≤LT−RRL Yμ whenever λi ≥ μi for i = 1, ..., n.

Example 3.2. Let Xi ∼ Exp(λi), i = 1, ..., n be independent random vari-

ables. Let X and Y be α and β mixtures of Xi’s. An application of Theorem

4.3, immediately X ≤LT−RRL Y for every two probability vector α and β such

thatα ≤DLRβ .

Another application of Theorem 3.3 is contained in following example.

Example 3.3. Let Xλ and Xμ be as given in Example 3.1. For 0 ≤ q ≤ p ≤ 1

and p+ q = 1, we have

pXλ + qXμ ≤LT−RRL qXλ + pXμ.

3.3 Parallel system

Preservation properties of an order under parallel and/or series systems

are of importance in reliability theory. The next result gives conditions under
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which the Lt − RRL order is closed under parallel systems. The conditions

here are the same as those given in Theorem 5.3(ii) of Alzaid et al. (1991) (see

also Theorem 3.B.7(b) of Shaked and Shanthikumar (1994)) for the Laplace

transform order.

We first recall the definition of completely monotone (c.m) functions. A

function h : R+ → R is said to be completely monotone if all its derivatives

h(n) exist and satisfy h(0) ≡ h ≥ 0, h(1) ≤ 0, h(2) ≥ 0, .... More formally, h is

c.m. if (−1)nh(n)(x) ≥ 0 for all x > 0 and n = 0, 1, 2, ... .

Theorem 3.4. Let the independent non-negative random variablesX1,X2,...,Xn,

Y1, Y2, ..., Yn have the distribution functions F1, F2, ..., Fn, G1, G2, ..., Gn, re-

spectively. If Xi ≤LT−RRL Yi, i = 1, 2, ..., n, and Fi and Gi are completely

monotone then

max{X1, ..., Xn} ≤LT−RRL max{Y1, ..., Yn}.

Proof. Denote Tn = max{X1, ..., Xn} and Wn = max{Y1, ..., Yn}. Note that,

for the maximum, it holds

[t− Tn | Tn < t] = max{[t−Xi | Xi < t], i = 1, ..., n},

and

[t−Wn |Wn < t] = max{[t− Yi | Yi < t], i = 1, ..., n},
for all t ≥ 0. Let Fi|t and Gi|t are c.m. if Fi and Gi are c.m.

Fix t ≥ 0. By the assumption Xi ≤LT−RRL Yi, we have

[t−Xi | Xi < t] ≤LT [t− Yi | Yi < t].

Then, by Theorem 3.B.7(b) of Shaked and Shanthikumar (1994), we have

max{[t−Xi | Xi < t], i = 1, ..., n} ≤LT max{[t− Yi | Yi < t], i = 1, ..., n}.

Thus,

[t− Tn | Tn < t] ≤LT [t−Wn | Wn < t] for all t ≥ 0,

implying that Tn ≤LT−RRL Wn. This completes the proof.

Unfortunately, the proof above does not hold for more general coherent

systems.
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4 Monotone transformation

We first recall the definition of completely monotone (c.m.) functions. A

function h : R+ → R is said to be completely monotone if all its derivatives

h(n) exist and satisfy h(0) ≡ h ≥ 0, h(1) ≤ 0, h(2) ≥ 0, .... More formally, h is

c.m. if (−1)nh(n)(x) ≥ 0 for all x > 0 and n = 0, 1, 2, ... .

The next theorem states that the Lt−RRL order is preserved under c.m.

transformations. One may refer to Alzaid et al. (1991) for a similar preserva-

tion property of the ≤LT order.

Theorem 4.1. Let X and Y be two nonnegative random variables. Then

X ≤LT−RRL Y if and only if h(X) ≤LT−RRL h(y) for all non-negative function

h with a c.m. derivative.

Proof. We give the proof of the necessity only. Let h be any nonnegative

function with a c.m. derivative, and suppose that X ≤LT−RRL Y . We have to

prove that

[h(X) | h(X) < t] ≥Lt [h(Y ) | h(Y ) < t] for all t ∈ R+. (4.1)

From the assumption, it follows that Xh−1(t) ≥LT Yh−1(t) or, equivalently,

[
X | X < h−1(t)

] ≥LT

[
Y | Y < h−1(t)

]
for all t ∈ R+. (4.2)

Here the inverse h−1 of h is taken to be the right continuous version of it

defined by h−1(u) = sup{x : h(x) ≤ u} for u ∈ R.. From the definition of

h−1 and the continuity of h, it is easy to check that x < h−1(t) if and only if

h(x) < t. Thus (4.2) can be rewritten as

[X | h(X) < t] ≥LT [Y | h(Y ) < t] for each t ∈ R+.

By Corollary 3.2 of Alzaid et al. (1991), we get that

h ([X | h(X) < t]) ≥LT h ([Y | h(Y ) < t]) for each t ∈ R+.

implying (4.1). This completes the proof.

The following theorem characterizes the LT − RRL order in terms of the

reversed mean residual life ≤RMRL order.

Theorem 4.2. Let X and Y be two nonnegative random variables. Then
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X ≤LT−RRL Y if and only if h(X) ≤RMRL h(Y ) for each nonnegative function

h with a c.m. derivative.

Proof. Necessity : Suppose that X ≤LT−RRL Y and that h is any non-

negative function with a c.m. derivative. Then, by Theorem 3.1, we get

h(X) ≤LT−RRL h(Y ). Since the order ≤LT−RRL is stronger than the order

≤RMRL (see Kayid and Ahmad, 2004) it follows that h(X) ≤RMRL h(Y ).

Sufficiency: Let h be a nonnegative function with a c.m. derivative, and

fix s > 0. Since η(x) = 1 − e−sx is nonnegative with a c.m. derivative, then it

is easy to see that η(h(x)) is also nonnegative with a c.m. derivative. So, by

the assumption, we have that η(h(X)) ≤RMRL η(h(Y )); that is,

E[η(h(X)) | η(h(X)) < t] ≥ E[η(h(Y )) | η(h(Y )) < t] for all t ∈ R+,

or, equivalently,

E[η(h(X)) | h(X) < t] ≥ E[η(h(Y )) | h(Y ) < t] for all t ∈ R+. (3.3)

By the definition of the order ≤LT , it follows from (3.3) that

[h(X) | h(X) < t] ≥Lt [h(Y ) | h(Y ) < t] for all t ∈ R+.

implying h(X) ≤LT−RRL h(Y ). Therefore, the desired result follows from

Theorem 4.1.
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