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Abstract

In this paper, we derive new two stage explicit SRK methods with
weak order 1 for SDEs with one. With two test problems,the absolute
error and the CPU time of our method present and compare with the
Euler method.
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1 Introduction

Consider the autonomous stochastic differential equations(SDEs), given by:
d ()—g() dt+Zg] y(to):yo,te[to,T]

where g;(y),7 = 0,...,m are,d-vector valued functions and the W;(t),j =
1,...,m, are independent Wiener processes. The above equation can be written
in the integral form:

y()—y0+/t ds+Z/gj

The variance and the mean of the Wiener process are t and zero, respec-
tively.Hence, typical sample paths of a Wiener process obtain large value in
magnitude as time progress.Therefore,the sample paths are not of bounded
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variation and the above stochastic integral cannot be calculated by the usual
Reiman-Stelitjes rules and are defined as

Zgj(y(@)) (Wj(t:) — Wy(ti-1)) ,

where ¢; = 0t; + (1 — 0)t;_1, for 0 < 0 < 1 and, for {to,---,tx} be partition
of [to,t], with t = o + Lh) to) .7 = 0,---,N .The most common choices are
0 =0and g = %, which g1ves the Ito and stratnovich integrals(see[4] for further
details), respectively.

Definition 1:Suppose yjy be the numerical approximation to y(ty) after
N step with h = % ,then g is converge weakly with order ¢ ,if for each G
with 2(¢ + 1) times continuously differentiable R-valued function on ¢ there
exist ¢ > 0 (independent of k) and § > 0 such that

[EIG(y(tn))] = ElG(yn)]l < ch® — h € (0,9). (1)

2 Stochastic Runge—-Kutta Methods

In order to derive stochastic Runge-Kutta(SRK) methods to approximate of
the exact solution y(t,+1) by ¥n.1, when y, be given, consider the following
family:

Yni1 = yn+z Z ngadb)y;(hdb) (2)

t=1 ja,jp=0
Y(javjb) _ Ja Jb){g y + Z Z a (Jasdvsde Jd)Y(Jc Jd))
1 I \In 2,0p
iy=17c,5a=0
+ g, (Un Z Z ,YZ(JZ:Jb,Jc,Jd Y(Ju]d)}
=1 jc,ja=0
where ?]fj“’jb) is a random variable independent of y,with the following prop-
erty:
K1h?* gp =0
E[(77J0v) 2k 1 Jb
[(77@ ) ] thk b 7& 0

for constant K7 and Ky and £k =1,2,.

“(aribrieria)

For deriving explicit SRK, assume ,7;7 =0 (for any ja, Js, Je, ja) and

almdvieda) — (for any i < i, and ja, jp, Je, ja) (see for example, [5],[6]). Hence (2)

3X2
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can be rewritten as follows:

S m

yn+1 — yn + Z Z ngavjb)}/;(javjb) (3)
=1 ja,jp=0
Y(Jm]b _ nZJan {g]b yn+z Z &ZJZZ,Jb,Jc,Jd (chd))}

=1 jc,ja=0

2.1 SRK Methods and the Butcher Array

In this section ,the weak order conditions with multi—colored rooted trees(MRTs)be
studied. An MRT with a root < (0 <k <m and k is the colored label)is a
tree recursively defined such that:

e 70U) is the primitive tree having a vertex Wlth root

o if ty,ts,...,t; are MRTs then [ty,ts,...,t I@RT with root (3 and
fore=1,2,....,k , t; are its sub-MRTs.

First,we consider only deterministic case(m = 0),therefore j, = jp = j. = ja =
0 and (3)may be rewritten as follows:

0,0)+ (0,0
Yni1 =y + Y 0¥ (4)
i=1
UO 0,0) (0,0,0,0 (0,0
) - ;;7/1( {g yTL + Z&z ip )}/;b ))}
ip=1

with comparing (4) and the normal formula of the Runge-Kutta methods:

Ynt+1l = Yn T+ Z LY (5)
i=1
Y = hgo(yn + Z ai;Y ;)
i=1
we have:
m(o 0 _ ’ Cgo,o) b Oég,o,o,o) = o,
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with the ”Butcher tabular”,

For stochastic case (m # 0) , consider the general form of explicit stochastic
Runge-Kutta methods with s—stage given by:

Yo =Un+ D 3 2 gu(V7) (6)

i=1 k=0
i—1 m
7=1 k=0
with ”Butcher tabular”
‘ 70) O . zim)
‘ L,OT L @OT 0 )T

where Z®) = (Zi(f)) for i,j = 1,2,---,s and 2®" = (z%k), . --,zgk)) for k =
0,1,---,m. Since the method is explicit, hence Z® is strictly lower triangular
matrix.

By substituting of Y;(j o) 4o Yns+1 in (3)the following expression be obtained:

Ynsl = Un + Z Z ﬁZ(Ja,Jb)gjb(kz(Ja,Jb)) (7)

i=1 ja Jp=0

Ja,]b _yn+z Z )\’E];lbjbj(‘Jd g]b(k,(]m]d))

ip=1 jc,ja=0

(Jasdv) _ (0,0)~(jasjb) (Jasdvdesda) _ (Jm]bv]cv]d)"’(]m]b)
where [3; =c N and A7 = n;

For simplicity, we assume

(Ozjbvjcvjd) _ (ijvjcvjd) _ _ (mvjbvjcvjd)
Qg = Qy =Ty

and consequently,
k.(o’jb) — k(lzjb) e — k(mmjb)

By expansion of (7) on indices j, and j; with the above assumption, the fol-
lowing result be derived:

Yokl = Yo + Z Z BIN)go (k) -+ 37 B g (k) (8)

i=1 Ja_o i=1 ja:0

kz(ja,jb) Yo + Z Z /\ZJ?be Jes 0) k‘ (Je,0 4+ Z Z )\Ejzbub,]c,m)) m(kz(gc,m))

ip=1 j.=0 ipy=1 jc=0
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and from (6) and (8) we have:

Z ﬁ(ja,g) — Z C(ja7€)ﬁ<(ja7€) — Z(f)

ja=0 ja=0
m m

(jllvjb?jcve) _ (javjbvjcvé)"'(jcve) _ (E)
E )‘n'b = E :O%'b U Zn'b
je=0 je=0

Therefore the ”"Butcher tabular” of the method, for example, if s = 2 and
m = 1 will be:

0 0 0 0
m=1 _(1,0,4,0)~(4,0 m=1 _(1,0,5,1)~(j,1
Zj:o O‘él ’ )ﬁ{lj ) 0 Z]’:o O‘él ’ )77§J : 0
0 0 0 0
DRt Gl G B e G AN
i= j=
m__(.0)~(,0 m (5,00 ~(,0 m G D)~G,1 m G D~01
ijo CEJ )77? ) ijo ng );7{21 ) ijo CEJ );7{11 ) ijo ng )ﬁ;] )

Table 1: The Butcher tabular for s =2, m =1

3 Approximation of stochastic differential equa-
tion with one Wiener process

Consider the stratonovich SDEs with one Wiener process given by:

dy = go(y(t))dt + g1(y(t)) o dW.

In this subsection,we are going to approximate this equation by bi-colored
rooted tree,when s = 2. Here, we show the color,associated with deterministic
case,with zero and another color,associated with stochastic case,with 1. ko-
mori[5] has given the analysis of weak order conditions of a SRK family for
SDEs. The following trees are satisfying in weak order 1 condition:

[T(l)](l) , [FO1W [T(l)](O) 7 [[T(l)](l)](l)
(7 7)) (T(l)’ T(U)

therefore the order conditions corrosponding to these trees, will be:
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Z Zc(ﬂ, 77551 0)) h

’L1 1]1 0
Z ch E@) =0 (9)
1= 1_71 O
h
Z Z (G1,1) 11121712, )E(?]ffl 1)771(;2, )) _ 3

11712 171 ,J2 =0

>3 G <
11 12

i1, 12 171,52= 0

DS g B )~

i1 12713 1]1712713 0

Z Z C(jl’ Eﬁ; J2s )&Eﬁ?z 32, )E(ﬁffh )771(52, )5‘7;(;37 )) -0

11712713 1 31732733 0

0 ,0,72,1 ,0 )
D)3 el )~

11,12 171 ]2 =0

>3 el B )~

\ %1,52=1j1,j2=0

Note that our method is explicit, therefore the fifth equation is always holds. We
assume:
1,0 0,0 1,0 0,1 1 1 0,1 1,1

m

A = 04511’0’0’0) , As = 04511’1’0’0), By = Zozéll’o’j’l) (10)

7=0

Z MRS i LD g Z D
Jj=0 j=0

7=0

Therefore the Runge-Kutta methods formula and the Butcher tabular corre-
sponding to these assumptions, will be:

s = g+ COYO0 L 00 gy 0 g (0
Y00 _ 500 oy
VO =31 g1(y)
Y, = A{O 0 go( + Ay™” + BY{™) (11)
\ Yz(m) A{O K 91(yn + AQ?J(OO + 321/1(0’1))
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and
0 0 0 0
AlA{o 0) 0 B, #10 1) 0
0 0 0 0
A0 0 | Bi™ 0
(10 o)ﬁ(lo 0) 02;7420,0) dl% 1 dﬁéo,n

Table 2: Butcher tableau for s = 2, m = 2 with assumption(10)

The explicit Runge-Kutta coefficients in (9)will be reduced,for example:

1
m = =h o =g =2 A=, (12)
also,we can assume that %0 D = %0’1) =AW = J;.

By substituting of (10) and (12) in (9),the following system be obtained:

(1+"NNh=h =" =0 = ¢ =0
(d1 + dg) x0=0
Bs. dg
(di +do)* =
(B2.dy) % 0 = 0
By x0=0

| (Asudy) x0=0

One solution of (13),is

(13)

1
2
2

Therefore, The Runge-Kutta formula will be:

(

Ynt1 = Yn + 3 <Y(00)—|—Y(00)—|—Y0 1)—|—Y(0 1))
v )_hQO(yn)
1
YO Z J, ga(yn)
0,0 0,0 0,1
Y( "= hogolya + 40+ VOY)
0,1 0,0 0,1
\Y( =T g+ 1" )+Y( N (14)

that can be presented by the following tableau where be named by "WEM1”:
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0 0] 0 0
h 0] 2 0
0 0] 0 0
h 0] 2 0
T Ih | Th 1

Table 3: The WEM1 Method

4 Numerical results

In this section, numerical results from the implementation of the above meth-
ods are compared with their exact solution.The methods are (14) correspond
to one Wiener processes.

It will be implemented with constant stepsize.Since J; ~ N(0,h) ,i = 1,2, ...,
hence for generating the wiener increments J;, we use the random number gen-
erator randn(#traj, #numstep) in Matlab, such that at each call
randn(#traj, #numstep) a #traj x #numstep matrix of independent N (0, 1)
samples, be created.

In this paper, the solutions are computed by averaging the results on 1000
trajectory of simulation.

The average of error for each stepsize at the end of the interval of integration,
for G(x) =z in (1), is defined by:

K
]‘ 7 7
AE = E;Iy (tn) =y

where g% and yétN) are the numerical approximation and the exact solution of
SDE at ty on the i—th simulation path over K simulations,respectively.

We have considered two test problems. The first problem is a pure SDE with-
out deterministic part with one Wiener process. The second example has both
deterministic and stochastic parts with two unknown parameter a and 3. This
problem be solved numerically with a = —1 and different values g = 1 and
0.001.

Test Problem 1.Consider

dy =a(l—y*)odW y(0)=0, te[0,1]

with the exact solution y(t) = tanh(aW (t) + arctanh(yo)).
Test Problem 2. Consider
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Error CPU Time
WEM]1 ‘ Euler | WEM1 ‘ FEuler
0.0238 0.1863 || 1.0625 | 0.0313
0.0120 0.1865 || 1.9844 | 0.0469
0.0063 0.1800 || 4.0938 | 0.0938
L 0.0031 0.1738 || 7.9219 | 0.1094
L 0.0016 0.1805 || 15.8594 | 0.2031
= 10.0007592 | 0.1814 || 31.7813 | 0.3906

Table 4: Absolute errors and CPU time for the test Problem 1, with a =
1, K =1000

dy = —a(1 —yHdt + (1 —y*)odW  y(0) = 0.5, t € [0,1]
with the exact solution :

(1 +yo)exp(—2at +26W(t)) +yo — 1
(1 +yo)exp(—2at +28W (1)) + 1 —yo

y(t) =

In this example v and ( are the coefficients of the deterministic and stochastic
parts respectively. When § = 1 then maximum of the absolute error is about
0.0205 for h = % It is clear that the exact and numerical solution of all
equations have been calculated on the same simulation paths.

Error CPU Time
WEMI1 | Euler || WEM1 | Euler
0.0205 0.1158 1.7188 0.9219
0.0102 0.1137 | 3.3438 1.6719
0.0048 0.1120 || 6.5469 3.2031
0.0024 0.1231 || 12.9375 | 6.2500
0.0012 0.1149 25.75 12.3281

0.00062467 | 0.1235 || 51.4219 | 24.8281

Bl =

—
=]
=

N
|-
=

=
o | 4
=

H

100
=]
=

Table 5: Absolute errors and CPU time for the test Problem 2, with a =
—1,6=1and K = 1000

Tables 4, 5 show the absolute errors and CPU time of the WEM1 methods and
the Euler method. All numerical results confirm the accuracy of this method
with respect to the Euler method.
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