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Abstract 

The Kurganov and Levy scheme [SIAM J.Sci.Comput.22, p1467,2000] which 
is a semi-discrete numerical solution of hyperbolic systems is applied to the 
system of one dimensional electrostatic fluid equations and modified to model 
perturbations and shockwaves in an electrostatic plasma. For an initial density 
perturbations in the system, we illustrate how the method captures the 
formation and evolution of ion-acoustic solitons and shock waves.   
 
Mathematics Subject Classification: 65M06  
 
Keywords: Semi-discrete, hyperbolic, solitons, shock wave, high resolution 
schemes 

 

1. Introduction 

Shocks and solitons occur in various fluids such as electrostatic fluids 
consisting of electrons and ions. Theory, experiments and simulations [ 1] 
show that solitons and shocks occur both in the laboratory and space.To model 
the shocks and the solitons we use a modified version of the Kurganov Levy 
third order semi-discrete scheme (SD3). In a previous study [4] a fully discrete 
NNT scheme which is characterised by a limiter, produced nonoscillatory  
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pertubations and shock solutions whilst the SD3 produced oscillations. Hence 
the limiter was used in the CWENO reconstruction part of the SD3 scheme. 
We then compared the SD3 scheme to the another recently modified 
Nonstaggered Nessyahu Tadmor high resolution scheme (NNT).  
 
 
 
2. The numerical integration scheme 
 
We study the system of equations in the conservative form 
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which is a one dimensional hyperbolic system of partial differential equations. 
Here ( )txu ,  is the unkown m-dimensional vector function, ( )uf  is the flux 

vector and ( )ug  is a continuous source vector function on the right hand side 
(RHS), with x  the single spatial coordinate and t  the temporal 
coordinate.Such equations can be used to model many physical 
systems,including fluids and various types of gases,including electrical 
plasmas.      
We apply a recent high-resolution semi-discrete numerical scheme due to 
Kurganov and Levy (2000) which can be applied to (1) as outlined in (Naidoo 
and Baboolal 2004). In applying this method we employ uniform spatial and 
temporal grids with spacing, jj xxx −=∆ +1 ; 

nn ttt −=∆ +1 (with j  and n  being suitable integer indices) together with the 
semi-discrete scheme (“SD3”) (R. Naidoo and Baboolal 2004), 
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The construction of this scheme is described in detail in (Kurganov and Levy 
2000) and (R. Naidoo and Baboolal 2004).We note in particular that the 
solution is updated by fitting on already computed or known cell average 

values { }n
jU  at time level n , piecewise polynomials of degree two on cells of 

size x∆  central at jx namely 

           ( ) 2)()(, jjjjj
n

j xxCxxBAtxP −+−+= ,                       (3) 

Where the constants are ( ).........jA are specified later. 
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Where the forms (4) are respectively the left and right intermediate values at 

2
1

+j
x    and (.)ρ denotes 

the spectral radii of the respective flux Jacobian, defining the maximum local 
propagation speeds n

j
a

2
1

±
. This scheme has been tested on problems involving 

shock propagation in various gas fluids (R. Naidoo and Baboolal 2004) and is 
known to give accurate results. Also, as a comparison we shall make use of a 
fully discrete scheme (“NNT”) for hyperbolic systems with source terms, 
recently derived by the authors, as a modification  of the Nessyahu and 
Tadmor scheme(R. Naidoo and Baboolal, 2003): 
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Again this scheme has been tested on similar problems as noted above, as well 
as on the electrostatic fluid equation to model ion-acoustic soliton propagation 
(R. Naidoo and Baboolal, 2003). Here we are interested in applying the SD3 
scheme (2), together with a modification (11) on the electrostatic fluid 
equations, and in comparing its performance on them with the NNT scheme 
(6).  
3. Some implementation details of the numerical schemes 
 
The implementation of the NNT scheme above follows the report (R. Naidoo 
and Baboolal, 2005), where in particular we mention that the source term can 
make the scheme implicit. Then it requires fixed-point iterations to 
convergence at each grid point at every time level. On the other hand, the SD3 
scheme is explicit in time. Thus the implementation of it follows closely the 
prescription given in (Kurganov and Levy 2000) and (R. Naidoo and 
Baboolal ,2004) where in particular we use for the non-oscillatory piece-wise 
polynomial (4) the “CWENO” reconstruction (Kurganov and Levy 2000) in 
which form (3) is determined by 
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The constants RCL WWW ,,  and are calculated as in Kurganov and Levy (2000) 

and involve heuristic factors which have a bearing on the sharpness of the 
slopes near discontinuities. In addition, it is required to compute at every time 
step the spectral radii (5) of the Jacobian of the flux terms, which we obtained 
exactly for the case to follow. In some cases (at or near discontinuities) we 
shall find that solutions can be improved, by employing the so called nonlinear 
limiters, in the calculation of the derivative terms. Thus we employ the min-
mod limiter function  (.)MM given by (Nessyahu and Tadmor 1990). 
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Then for (8) we obtain the improved form, 

⎥⎦
⎤

⎢⎣
⎡ −−+−−

∆
= −+−+ ),(

2
),(1

1111
n
j

n
j

n
j

n
j

cn
j

n
j

n
j

n
jRj uuuuMM

W
uuuuMMW

x
B  

              )],([1
211

n
j

n
j

n
j

n
jL uuuuMMW

x
−−− −−

∆
+                    (11) 

 
4.The electrostatic coupled fluid equations  
 
The one-dimensional Euler-Poisson equations for an unmagnetized 
electrostatic system consisting of electrons and ions taken as ideal fluids 
together with the ideal gas law are: 
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Equation of state: =− yk
kk np constant                                                    (14) 

Poisson’s equation for the electric potential: 
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The index k=e(i) denotes electrons (ions) respectively and kkkkk mypvn ,,,,  
and kq  are the respective component densities, flow velocities, partial 
pressures, adiabatic indices (=1 for isothermal electrons and =3 adiabatic  
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ions),particle masses and charges and φ  is the electric potential. eT  and iT  are 

the respective electron and ion temperatures and 
i

e
e m

m
=µ  is the electron to 

ion mass ratio. The final equations are suitably normalized to time and spatial 
scales appropriate for the observation of ion-acoustic wave structures. 
With the  above completed, the model equations may be written in the 
 respective conservation and quasilinear forms (Baboolal, 2001). 
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With the Poisson equation cast as 
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In the above, TuuuuU ],,,[ 4321= is the 4-vector of conserved quantities 

(densities and currents), )(UF   is the flux vector function with )(UA  its 
Jacobian and ),( φUG  the vector function of the RHS of (12)-(13). In the flux 
Jacobian )(UA the eigenvalues are real and distinct with linearly independent 
eigenvectors and hence justify the classification of the plasma fluid equations 
as hyperbolic, in the local sense. The coupled fluid-Poisson equations are 
solved as a system. For the numerical integration we employ a system length 

,256 dexL λ= with the number of grid points per Debye length 10=pxN , 

giving 1.0=∆x , ion/electron mass ratio of 50, an ion/electron temperature 
ratio of  1/100 together with 01.0=∆t . This choice satisfies the CFL 
condition (Baboolal 2001, Hirsch 1997) for linear stability given in terms of 

the spectral radius mΛ  of the Jacobian ( )UA , 1≤
∆
∆

Λ
x
t

m .  

In our application, we illustrate how solitons can be generated from an initial 
Gaussian density perturbation of the form 

            ,0;)(
2
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where cx  is the system centre and xL  is its length (See Baboolal, 2001) for 

more details).The initial velocities of the ions and electrons are set to zero for 
all x and reflective boundary conditions are employed (Baboolal and R. 
Naidoo, 2003). 
 
5. Initial calculations using NNT and SD3 
 
Employing both the NNT scheme and the SD3 scheme (2) with (7)-(9), we 
allowed the system to evolve from the initial equilibrium state, but with a  
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Gaussian density profile as given above. As noted in previous simulations (R. 
Naidoo and Baboolal, 2005, Baboolal, 2001), solitons form and evolve and get 
reflective from the boundaries. In the figure 1 below we observe the situation 
when some 20000 time steps have been reached. Two effects that are 
noticeable are that there is significant dissipation in the soliton structures in 
the NNT results. This behaviour is due to inherent dissipation noted by 
Kurganov and Levy (2000) of such schemes, an effect which manifests when 

( )2~ xt ∆∆  as is the case here. Secondly, whilst the SD3 scheme captures the 
structures with apparently negligible dissipation, there appear to be 
unacceptable large random of high frequency oscillations in the curves, 
particularly noticeable in the electron fluid velocity profile. We believe that 
this effect no physical origin and is merely numerical noise. 
  
6. Initial calculations using SD3 and SD3 with limiter 
 
Using the same conditions for the SD3 scheme as above but using (10) and 
(11) in the CWENO reconstruction in the SD3 we again allowed the system to 
evolve from the initial equilibrium state, with a Gaussian density profile as 
given above. In figure 2 the SD3 scheme with limiter shows stability over a 
longer time period. The non physical oscillations have been considerably 
reduced in the SD3 limiter scheme. These results agree in the physics with 
previous simulations or no dissipation over long integration times. In the 
figure 2 below we see that there is less numerical noise in the SD3 scheme 
with limiter than the SD3 scheme. However the amplitude remains the same. 
In Table 1 below the CPU times for SD3 with limiter scheme  is 10% and 8% 
larger than the NNT and SD3 schemes respectively.  
Table 1 
CPU times (s) for the NNT, SD3 and SD3 with limiter. 
The solitons were computed for 20000 time units. 
Scheme Time(s) 
NNT 698.21 
SD3 718.40 
SD3 with 
limiter 

778.81 

  
7. Initial Calculations for electrostatic shock waves 
 
The initial calculations for the shock wave was taken as a Riemann  
(Shock Tube) problem for general gas problems. Here we use  

gridsxt c  100 0.1,x ,001.0 ==∆=∆  where t∆  is the time interval, x∆ is the 

space interval and cx  is the discontinuity. The initial conditions are given as 

follows:  
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In fig 3 we observe shockwaves moving to the left and right together with the 
contact discontinuity moving to the right. Sharp electron waves are observed 
at the discontinuity whilst the ion waves remains relatively smooth. For larger 
times the density of the electron and ion waves tend to break-up at the 
discontinuity due to the fluctuation of the electric fields. The density and 
momentum propagation tend to be stable as time progresses.    
 
 
 
 
8. Conclusion 
 
We have illustrated how the electrostatic fluid equations can be numerically 
integrated with a modern high-resolution semi-discrete scheme. It has been 
applied to demonstrate ion-acoustic soliton and shock wave formation and 
propagation. The characteristics features of such solitons are adequately 
depicted with the SD3 scheme, as compared with results from a fully discrete 
NNT scheme, but fare poorly with the latter in suppressing non-physical noise. 
However, when the SD3 scheme is combined with a nonlinear limiter for the 
derivative terms, the non-physical oscillations are considerably reduced, 
resulting in superior results to those of the NNT scheme although the CPU in 
table 1 is larger. The SD3 shock wave solution is also very stable and 
comparable with other known results. It is thus expected that the SD3 scheme 
will be of great advantage in the numerical investigation of other nonlinear 
plasma fluid structures.      
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Fig 1: Formation and time evolution of a Gaussian-perturbation induced 
solitons in a plasma fluid with a NNT and SD3 schemes.  Here the curve 
labelled 1-~5 ,~4 , 5.0~3 ~2 ,5.0~1 e φiie vvnn ++ where ( )ie nn  is the 

electron/ion density, ( )ie vv  is the electron/ion flow velocity, φ  is the 

electrostatic potential all in normalised units.  
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Fig 2 : Formation and time evolution of a Gaussian-perturbation induced 
solitons in a plasma fluid with an sd3 and sd3 limiter schemes. Here the curve 
labelled 1-~5 ,~4 , 5.0~3 ~2 ,5.0~1 e φiie vvnn ++ where ( )ie nn  is  the 

electron/ion density, ( )ie vv  is the electron/ion flow velocity, φ  is the 

electrostatic potential all in normalised units.  
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Fig 3: Formation and time evolution of shock waves in a plasma fluid. Here 
the curve labelled 1~4 , ~3  2.5,~2  ,5.3~1 e −++ iie vvnn  where ( )ie nn  is  

the electron/ion density, ( )ie vv  is the electron/ion flow velocity, all in 

normalised units. 
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