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Abstract

In this paper,we present a new method for numerically solving singu-
lar two-point boundary value problems for certain ordinary differential
equation having singular coefficients. The analytic solution is repre-
sented in the form of series in reproducing kernel space W2[0, 1]. Some
numerical examples have been studied to demonstrate the accuracy of
the present method.
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1 Introduction

Singular boundary value problems for ordinary differential equation arise very
frequently in several areas of science and engineering. Singular boundary value
problems have been studied by several authors. To mention a few, Jamet[1] has
discussed existence and uniqueness of solutions and presented finite difference
method for numerically solving such problems. Gustafsson [2] has treated the
problem by first writing the series solution in the neighborhood of the singular-
ity and employing several compact and non-compact difference schemes in the
remaining part of the interval. Cohen and Jones [3] have used an economized
expansion to overcome the slow convergence of the Taylor series solution for the
problems and employed deferred correction outside the range of economized
expansion. They considered these polynomials on the whole interval where
the polynomials are valid, neglecting the effect of singularity. Reddien [4] has
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studied collocation method for the numerical solution of such problems. There
are results about solving algorithm on singular boundary value problems are
reported, for details, see [8-14] and their references therein.

In this paper, we will consider a homogeneous second order linear differen-
tial equation having regular singularity given in [5] by :

u′′(x) +m(x)u′(x) + n(x)u(x) = 0, 0 ≤ x ≤ 1 (1.1)

subject to boundary conditions

u(0) = α, u(1) = β (1.2)

where the coefficient function m(x) and n(x) fail to be analytic at x = 0, and
α, β are finite constants. Through transformation of function, (1.1), (1.2) can
be converted into following equivalent form:{

p(x)u′′(x) + f(x)u′(x) + g(x)u(x) = w(x)
u(0) = u(1) = 0,

(1.3)

where p(0) = 0.
Put Lu(x) ≡ p(x)u′′(x) + f(x)u′(x) + g(x)u(x), then Eqs.(1.3) can further

be converted into following form:{
Lu(x) = w(x)
u(0) = u(1) = 0,

(1.4)

It is easy to prove L : W2[0, 1] → W1[0, 1] is bound linear operator. We will
give a new method in order to solve Eq.(1.4), the method of this paper is still
effective for p(x) = ε. The representation of the exact solution is given in the
reproducing kernel space. We only need choose appropriate reproducing kernel
space according to boundary condition to solve the approximate solution.In the
last section of the paper we also illustrate the numerical experiment . It shows
our method is effective.

2 Several reproducing kernel spaces

In the section , several reproducing kernel spaces needed are introduced .
1. The reproducing kernel space W2[0, 1]

W2[0, 1] = {u(x)|u, u′, u′′ are absolutely continuous real value functions,
u, u′, u′′, u(3) ∈ L2[0, 1], u(0) = u(1) = 0 } (2.1)

and endowed it with the inner product and norm, respectively,

< u, v >
W2

=

∫ 1

0

36u(x)v(x) + 49u′(x)v′(x) + 14u′′(x)v′′(x) + u(3)v(3)dx (2.2)
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for u(x), v(x) ∈ W2[0, 1], ‖u‖
W2[0,1]

=< u, u >
1
2 , W2[0, 1] is a complete repro-

ducing kernel space, that is, for any u(y) ∈ W2[0, 1] and each fixed x ∈ [0, 1],
there exists Rx(y) ∈ W2[0, 1], y ∈ [0, 1], such that < u(y), Rx(y) >W2

= u(x),
the reproducing kernel Rx(y) can be denoted by

Rx(y) =

{
c1e

y + c2e
−y + c3e

2y + c4e
−2y + c5e

3y + c6e
−3y, y ≤ x,

d1e
y + d2e

−y + d3e
2y + d4e

−2y + d5e
3y + d6e

−3y, y > x,
(2.3)

The coefficients of the reproducing kernel and the process of obtaining them
see[6] and W2[0, 1] is a complete space .
2 The reproducing kernel space W1[0, 1]

The inner space W1[0, 1] is defined by W1[0, 1] = {u(x) | u is absolutely
continuous real value function, u′ ∈ L2[0, 1]}. The inner product and norm in
W1[0, 1] are given respectively by

< u(x), v(x) >
W1

=

∫ 1

0

(uv + u′v′)dx, ‖ u ‖
W1

=
√
< u, u >

W1
,

where u(x), v(x) ∈ W1[0, 1]. In Ref.[7], the author had proved that W1[0, 1] is
a reproducing kernel space and its reproducing kernel is

Qx(y) =
1

2 sinh(1)
[cosh(x+ y − 1) + cosh(|x− y| − 1)].

3 Solving of equation (1.4)

In this section,we shall give a representation of the exact solution of the
Eqs.(1.4)

Lemma 3.1. Suppose ϕi(x) = Ryi
(x), {yi}∞i=1 is the maximum point of |ρi(x)|,

ψi(x) = L∗ϕi(x), then ‖ ψi(x) ‖
W2

≤‖ L ‖ M, i = 1, 2, . . . , where L∗ denotes
the conjugated operator of L, M is a constant.

Proof. ‖ ψi(x) ‖2
W2

=‖ L∗ϕi(x) ‖2
W1

≤‖ L ‖‖ ϕi(x) ‖2
W1

≤‖ L ‖ (ϕi(x), ϕi(x))W1
=‖

L ‖ (ϕi(x), Ryi
(x))

W1

=‖ L ‖ ϕi(yi) =‖ L ‖ Ryi
(yi) ≤‖ L ‖M .

Suppose u(x) is solution of Eqs.1.4, Let

r0(x) = u(x), ρ0(x) = w(x),

r1(x) = r0(x) − P0r0(x), . . . , rk(x) = rk−1(x) − Pk−1rk−1(x),

ρi(x) = ρ0(x) − LP0r0(x), . . . , ρk(x) = ρk−1(x) − LPk−1rk−1(x),

then Lri(x) = ρi(x), i = 0, 1, 2, . . . .
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In order to discuss conveniently, we let:
(1) Pi, i = 0, 1, . . . is projective operator from W2[0, 1] to ψi(x).
(2){yi}∞i=1 is the maximum point of |ρi(x)|.
(3) From lemma 3.1, we may get Bi = 1

‖ψi(x)‖ ≥ 1
M‖L‖

def
= M

′
, ψi(x) = ψi(x)

‖ψi(x)‖ =

Biψi(x),.

Lemma 3.2. let Lri(x) = ρi(x), i = 0, 1, . . . , then Piri(x) = B2
i ρi(yi)ψi(x), i =

0, 1, 2, . . . .

Proof. Piri(x) = (ri(x), ψi(x))ψi(x)

=(ri(x),
ψi(x)

‖ψi(x)‖)
ψi(x)

‖ψi(x)‖
=B2

i (ri(x), L
∗ϕi(x))ψi(x)

=B2
i (Lri(x), ϕi(x))ψi(x)

=B2
i (ρi(x), Ryi

(x))ψi(x)
=B2

i ρi(yi)ψi(x)

Theorem 3.1. Assume that r0(x) is the solution of Eqs.(1.4), then rk(x) is
monotone decreasing in the sense of ‖.‖

W2
.

Proof. From lemma 3.2, we have
‖rk+1(x)‖2

= (rk(x) − Pkrk(x), rk(x) − Pkrk(x))
=‖ rk(x) ‖2 −2(rk(x), Pkrk(x)) + (Pkrk(x), Pkrk(x))
=‖ rk(x) ‖2 −2(rk(x), B

2
kρk(yk)ψk(x)) +B4

kρ
2
k(yk)(ψk(x), ψk(x))

=‖ rk(x) ‖2 −2B2
kρk(yk)(rk(x), ψk(x)) +B2

kρ
2
k(yk)(ψk(x), ψk(x))

=‖ rk(x) ‖2 −2B2
kρk(yk)(rk(x), L

∗ϕk(x)) +B2
kρ

2
k(yk).

Since (rk(x), L
∗ϕk(x)) = (Lrk(x), ϕk(x)) = (ρk(x), ϕk(x)) = ρk(yk), it fol-

lows that

‖ rk+1(x) ‖2=‖ rk(x) ‖2 −B2
kρ

2
k(yk). (3.1)

Therefore rk(x) is monotone decreasing.

Repeat (3.1) , we obtain

‖ rk+1(x) ‖2=‖ r0(x) ‖2 −
k∑
i=0

B2
i ρ

2
i (yi). (3.2)

In order to obtain the representation of the exact solution of (1.4), we give
the following theorems.

Theorem 3.2. Suppose solution of Eqs.(1.4) is existential, then ρi(x) ∈ l2, i =
0, 1, 2, . . . .
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Proof. If solution of Eqs.(1.4) is existential, then

Lu(x) = Lr0(x) = ρ0(x) = w(x).

From Theorem 3.1, ‖ rk ‖ is convergent. By the (3.2) , we know
∑∞

i=0B
2
i ρ

2
i (yi)

is convergent. By the Lemma 3.1, Bi > M
′
> 0, then

ρi(yi) ∈ l2, i = 0, 1, 2, . . . .

Note that {yi}∞i=1 is maximum point of |ρi(x)|, it shows that ρi(x) ∈ l2, i =
0, 1, 2, . . . .

Corollary 3.1. ρi(x) is uniformly convergent to 0 with respect to x.

Theorem 3.3. Suppose ρi(x) ∈ l2, for any x ∈ [0, 1], then

ρ0(x) =
∞∑
i=0

B2
i ρi(yi)Lψi(x). (3.3)

Proof. By the assumption, we have

ρi+1(x) = ρi(x) − LPiri(x) = ρi(x) − B2
i ρi(yi)Lψi(x), i = 0, 1, 2, . . . . (3.4)

we use (3.4) repeatedly, we obtain

ρi+1(x) = ρ0(x) −
k∑
i=0

LPiri(x) = ρ0(x) −
k∑
i=0

B2
i ρi(yi)Lψi(x), i = 0, 1, 2, . . . .(3.5)

Taking limits for k on both sides of (3.5) and by the Corollary 3.1, it follows
that

ρ0(x) =
∞∑
i=0

B2
i ρi(yi)Lψi(x),∀x ∈ [0, 1].

Finally, we give the main theorem of this paper.

Theorem 3.4. Suppose that the solution of Eqs(1.4) exists and is unique,
ρi+1(x) = ρi(x) − B2

i ρi(yi)Lψi(x), ρi(x) ∈ l2, ∀x ∈ [0, 1], and Bi, i = 0, 1, 2, . . .
is bounded, then solution of Eqs.(1.4) can be expressed as follows

u(x) = r0(x) =

∞∑
i=0

B2
i ρi(yi)ψi(x), (3.6)

where yi is the maximum point of | ρi(x) |, x ∈ [0, 1].
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Proof. Let M0 is a sufficient large number and let

rn(x) =

M0∑
i=n

B2
i ρi(yi)ψi(x), n = 0, 1, 2, . . . ,M0,

then

rn+1(x) = rn(x) − B2
nρn(yn)ψn(x).

Since

Lri(x) = ρi(x), i = 0, 1, 2, . . . ,M0,

by the way of Theorem 3.1, we also obtain

‖ rm+1 ‖2
W2

=‖ rm ‖2
W2

−B2
mρ

2
m(ym), m = 0, 1, 2, . . . ,M0 − 1, (3.7)

then

‖ rM0 ‖2
W2

=‖ rm ‖2
W2

−
M0−1∑
i=0

B2
i ρ

2
i (yi),

namely

‖ rM0 ‖2
W2

=‖
M0∑
i=0

B2
i ρi(yi)ψi(x) ‖2

W2
−

M0−1∑
i=0

B2
i ρ

2
i (yi),

and

‖ r
[
M0
2

]
‖2

W2
=‖

[
M0
2

]∑
i=0

B2
i ρi(yi)ψi(x) ‖2

W2
−

[
M0
2

]−1∑
i=0

B2
i ρ

2
i (yi).

If r0(x) is replaced by rn(x), we have

‖ r
[
M0
2

]+n
‖2

W2
=‖

[
M0
2

]∑
i=n

B2
i ρi(yi)ψi(x) ‖2

W2
−

[
M0
2

]−1∑
i=n

B2
i ρ

2
i (yi), n ≤ [

M0

2
] − 1 (3.8)

and

‖ r
[
M0
2

]+n+1
‖2

W2
=‖

[
M0
2

]∑
i=n+1

B2
i ρi(yi)ψi(x) ‖2

W2
−

[
M0
2

]−1∑
i=n+1

B2
i ρ

2
i (yi), n ≤ [

M0

2
] − 1.(3.9)

Making deviation on the both sides of (3.8) and (3.9), then

‖ r
[
M0
2

]+n
‖2

W2
− ‖ r

[
M0
2

]+n+1
‖2

W2

= ‖ ∑[
M0
2

]

i=n B2
i ρi(yi)ψi ‖2

W2
− ‖ ∑[

M0
2

]

i=n+1B
2
i ρi(yi)ψi(x) ‖2

W2
−B2

nρn(yn),
(3.10)
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where

‖ ∑[
M0
2

]

i=n B2
i ρi(yi)ψi ‖2

W2

= < B2
nρn(yn)ψn(x) +

∑[
M0
2

]

i=n+1B
2
i ρi(yi)ψi(x), B

2
nρn(yn)ψn(x)

+
∑[

M0
2

]

i=n+1B
2
i ρi(yi)ψi(x) >W2

= ‖ ∑[
M0
2

]

i=n+1B
2
i ρi(yi)ψi(x) ‖2

W2
+ ‖ B2

nρn(yn)ψn ‖2
W2

+2 < B2
nρn(yn)ψn(x),

∑[
M0
2

]

i=n+1B
2
i ρi(yi)ψi(x) >W2

= ‖ ∑[
M0
2

]

i=n+1B
2
i ρi(yi)ψi(x) ‖2

W2
+B2

nρn(yn)

+2 < B2
nρn(yn)ψn(x),

∑[
M0
2

]

i=n+1B
2
i ρi(yi)ψi(x) >W2

.

(3.11)

Taking above equality into (3.10), we have

2 < B2
nρn(yn)ψn(x),

∑[
M0
2

]

i=n+1B
2
i ρi(yi)ψi(x) >W2

= ‖ r̄
[
M0
2

]+n
‖2

W2
− ‖ r̄

[
M0
2

]+n+1
‖2

W2
,

(3.12)

from (3.7),

‖ r̄
[
M0
2

]+n
‖2

W2
− ‖ r̄

[
M0
2

]+n+1
‖2

W2
= B2

[
M0
2

]+n
ρ2

[
M0
2

]+n
(y

[
M0
2

]+n
),

Since Bi is bounded and ρi(x) → 0, we obtain

2 < B2
nρn(yn)ψn(x),

∞∑
i=n

B2
i ρi(yi)ψi(x) >W2

= 0. (3.13)

Equality (3.13) holds for any n ∈ N , thus

B2
iB

2
j ρi(yi)ρj(yj) < ψi(x), ψj(x) >W2

= 0, (i 	= j). (3.14)

Finally, by (3.14), it follows that
‖ ∑M0

i=nB
2
i ρi(yi)ψi ‖2

W2

= <
∑M0

i=nB
2
i ρi(yi)ψi(x),

∑M0

i=nB
2
i ρi(yi)ψi(x) >W2

=
∑M0

i=n ‖ B2
i ρi(yi)ψi(x) ‖2

W2

+
∑M0

i=n,j=n

∑M0

j �=iB
2
iB

2
j ρi(yi)ρj(yj) < ψi(x), ψj(x) >W2

=
∑M0

i=nB
2
i ρ

2
i (yi),

(3.15)

where we used Bi ‖ ψi ‖W2
= 1.

Since Bi < M , series
∑M0

i=nB
2
i ρi(yi) → 0,M0, n→ ∞, namely

‖
M0∑
i=n

B2
i ρi(yi)ψi ‖2

W2
→ 0,M0, n→ ∞,
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hence series
∑∞

i=0B
2
i ρi(yi)ψi(x) is convergent. Let

u(x) =

∞∑
i=0

B2
i ρi(yi)ψi(x),

we have

Lu(x) = L

∞∑
i=0

B2
i ρi(yi)ψi(x) =

∞∑
i=0

B2
i ρi(yi)Lψi(x).

By the Theorem 3.3, the right of above equality amounts to ρ0(x), so

Lu(x) = ρ0(x),

as

u(x) =

∞∑
i=0

B2
i ρi(yi)ψi(x)

is solution of Eqs.(1.4).

The approximate solution

un(x) =
n∑
i=0

B2
i ρi(yi)ψi(x) (3.16)

is obtained by truncating the series (3.6).
Summarizing above discussion, by Theorem 3.2, if solution of Eqs.(1.4) is

existential, then ρi(x) ∈ l2, i = 0, 1, 2, . . . , by Theorem 3.4, if ρi(x) ∈ l2, i =
0, 1, 2, . . . ,, then

u(x) =

∞∑
i=0

B2
i ρi(yi)ψi(x)

is solution of Eqs.(1.4).

Corollary 3.2. The solution of Eqs.(1.4) is

u(x) =
∞∑
i=0

B2
i ρi(yi)ψi(x)

if and only if ρi(x) ∈ l2, where ρi+1(x) = ρi(x)−B2
i ρi(yi)Lψi(x), i = 0, 1, 2, . . . .

Theorem 3.5. rk(x) → 0 as k → ∞ in the sense of ‖ · ‖W2

Proof. From Theorem 3.1, ‖ rk ‖W2
is convergent, we suppose that ‖ rk ‖W2→

c,(c is constant). Taking linits for k on both sides of (3.2), we have

c =‖ r0 ‖W2
−

∞∑
i=0

B2
i ρi(yi),
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where by (3.14),
‖ r0 ‖W2

= ‖ ∑∞
i=0B

2
i ρi(yi)ψi(x) ‖W2

= <
∑M0

i=nB
2
i ρi(yi)ψi(x),

∑M0

i=nB
2
i ρi(yi)ψi(x) >W2

=
∑∞

i=0B
2
i ρ

2
i (yi) +

∑∞
i=0,j=0

∑∞
j �=iB

2
iB

2
j ρi(yi)ρj(yj) < ψi(x), ψj(x) >W2

=
∑∞

i=0B
2
i ρ

2
i (yi),

(3.17)

thus

c =

∞∑
i=0

B2
i ρ

2
i (yi) −

∞∑
i=0

B2
i ρ

2
i (yi) = 0,

namely
‖ rk ‖W2

→ 0, as k → ∞. Consequently, rk(x) → 0, as k → ∞, in the sense of
‖ · ‖

W2
.

4 solution of Eqs.(1.4) and a numerical example

According to (3.16) we will present a numerical example for solving Eqs.(1.4)
in the reproducing kernel space W2[0, 1]. All computations are performed by
the Mathematica 5.0 software package.
Example

Considering equation

{
4x(x+ 1)u

′′
(x) + (3 + 11x)u

′
(x) + u(x) = w(x)

u(0) = u(1) = 0

where x ∈ [0, 1]. The true solutions are u(x) = 9x(ex−1−1), w(x) = 9(−3e(1+
4x) + ex(3 + 23x+ 23x2 + 4x3))/e . Using our method, we obtain approximate
solution un(x)(n = 100) on [0, 1]. The numerical results are given in following
Table 1.
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Table 1:
Node True solution u(x) Approximate solution un(x) Absolute error Relative error
0.02 -0.112444 -0.112467 2.26149E-5 2.01122E-4
0.10 -0.534087 -0.533464 6.23436E-4 1.16729E-3
0.18 -0.906501 -0.905599 9.0147E-4 9.9445E-4
0.26 -1.22355 -1.22282 7.29015E-4 5.95818E-4
0.34 -1.47843 -1.47794 4.98556E-4 3.37219E-4
0.42 -1.66358 -1.66332 2.65589E-4 1.59649E-4
0.50 -1.77061 -1.77056 4.85874E-5 2.7441E-5
0.58 -1.79022 -1.79033 1.17293E-4 6.5519E-5
0.66 -1.71208 -1.71231 2.23113E-4 1.30317E-4
0.74 -1.5248 -1.52506 2.62453E-4 1.72123E-4
0.82 -1.21571 -1.21594 2.3552E-4 1.93731E-4
0.90 -0.770817 -0.770985 1.67664E-4 2.17514E-4
0.98 -0.174648 -0.17469 4.20038E-5 2.40506E-4

References

[1] P.Jamet, On the convergence of finite difference approximations to one
dimensional singular boundary value problems, Numer.Math.14(1970),355-
378.

[2] B.Gustafsson, A numerical method for solving singular boundary value
problems, Numer.Math.21(1973),328-344.

[3] A.M.Cohen, D.E.Jones, A note on the numerical solution of some singular
second order differential equations, J.Inst.Math.Appl.13(1974),379-384

[4] G.W.Reddien, On the collocation method for singular two point boundary
value problems, Numer.Math.25(1975),427-432.

[5] M.K.Kadalbajoo, V.K.Aggarwal, Numerical solution of singular
boundary value problems via Chebyshev polynomial and B-spline,
Appl.Math.Comput.160(2005),851-863.

[6] Fazhan Geng, Minggen Cui, Solving a nonlinear system of second order
boundary value problems, J.Math.Anal.Appl.327(2007),1167-1181.

[7] Chunli Li, Minggen Cui, The exact solution for solving a class
nonlinear operator equations in the reproducing kernel space,
Appl.Math.Comput.143(2-3)(2003),393-399.

[8] R.K.Jain,P.Jain, Finite difference for a class of singular two point boundary
value problems, Int.J.Comput.Math.27(1989),113.

[9] S.R.K.Iyengar, P.Jain, Spline difference method for singular two point
boundary value problems, Numer.Math.500(1987)363.



Singular boundary value problems 1913

[10] M.M.Chawla, C.P.Katti, A finite difference method for a class of singular
boundary value problem, IMA J.Numer.Anal.4(1984),457.

[11] R.D.Russel, L.F.Shampine, Numerical methods for singular boundary
value problems, SIAM J.Numer.Anal.4(1975),13.

[12] A.Sidi, V.Kluzner, A Bi-CG type iterative method for Drazin inverse so-
lution of singular inconsistent non-symmetric linear systems of arbitrary
index, Electron.J.Linear Algebra.6(1999),72-94.

[13] M.K.Kadalbajoo, V.K.Aggarwal, Numerical solution of singu-
lar boundary value problems via Chebyshev polynomial and B-
Spline,AMC.160(2005),851-863.

[14] Jieyong Zhou, Yimin Wei, A two-step algorithm for solving singular linear
systems with index one, AMC 175(2006),472-485.

Received: January 12, 2007


