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Abstract

The decreasing (increasing) variance residual life DVRL (IVRL)
class of life distribuation is well known and extensively studied in the
literature. A new test is presented for testing exponentiality against
DVRL (IVRL) life distributions based on the highly popular ”Kernel of
curve fitting”. The percentiles of these tests are tabulated for sample
size n = 5(1)40. The proposed test is simple to calculate , dos not de-
pend on the choice of either the bandwidth or the kernal, asymptotically
normal and performs well in terms of power and Pitman asymptotic ef-
ficiencies for several alternatives.
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1 Introduction

Let X be an absolutly continuous non negative random variable with distri-

bution function F , survival function F = 1 − F . Studies on F as exponential

versus that it belongs to a nonparametric class of life distributions have con-

tinued over the past three decades or more. Of the most common and practical

are the increasing failure rate (IFR), increasing failure rate average (IFRA),

new better than used (NBU), new better than used in expectation (NBUE)

and decreasing mean residual life (DMRL). An ordering of live variable that

proved useful in producing classes of life distributions is due to Stoyan (1983),
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Bhattacharjee (1991) for definations and properties.

The variance residual life (VRL) function is useful in many areas including

biometry, actuarial science and reliability. Let X, denote the life time of an

equipment with distribution function F (x), survival function F = 1−F , mean

life μ =
∫ ∞
0 F (u)du and variance σ2 = var(X) both assumed finite. The mean

residual life (MRL) and the variance residual life (VRL) functions are defined

as the following:

μ(x) = E{X − x|X ≥ x} =

∫ ∞
x F (u)du

F (x)
, x ≥ 0, (1.1)

and

σ2(x) = var{X − x|X ≥ x} = var{X|X ≥ x}. (1.2)

A distribution function F is said to be a decereasing (increasin) variance resid-

ual life DVRL (IVRL) if σ2(t) is nonincreasing (nondecreasing) function of t,

t ≥ 0. Consider E[U2|x] = − ∫ ∞
0 u2dF (u/x), integrating by parts one has

σ2(x) + μ2(x) =
2

F (x)

∫ ∞

x

∫ ∞

y
F (t)dtdy,

let ν(y) =
∫ ∞
y F (t)dt, and r(x) = f(x)

F (x)
then,

σ2(x) + μ2(x) =
2

F (x)

∫ ∞

x
ν(y)dy, (1.3)

μ(x) =
ν(x)

F (x)
, (1.4)

and
dμ(x)

dx
= −1 + r(x)μ(x). (1.5)

Differentiating (1.3) with respect to x, we have

dσ2(x)

dx
=

2f(x)

F
2
(x)

∫ ∞

x
ν(y)dy − 2ν(x)

F (x)
− 2μ(x)

dμ(x)

dx
. (1.6)

Using (1.4),(1.5) in (1.6) we obtain

dσ2(x)

dx
= r(x)(

2

F (x)

∫ ∞

x
ν(y)dy)− 2μ(x) − 2μ(x)(−1 + r(x)μ(x)). (1.7)

Using (1.3) in (1.7), we obtain

dσ2(x)

dx
= r(x)[σ2(x) − μ2(x)],
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Since F (x) is DVRL (IVRL) then, σ2(x) ≤ (≥)μ2(x) imlies σ2(x) + μ2(x) ≤
(≥)2μ2(x), hence

2

F (x)

∫ ∞

x
ν(y)dy ≤ (≥)2μ2(x).

Now, we have the following definition:

Definition (1.1): A life distribution F , with F (0) = 0 and its survival func-

tion F is said to have DVRL (IVRL) if

1

F (x)

∫ ∞

x
ν(y)dy ≤ (≥)μ2(x), (1.8)

or

F (x)
∫ ∞

x
ν(y)dy ≤ (≥)ν2(x). (1.9)

Launcer (1984), Gupta (1987)and Gupta et al (1987) studied characteriza-

tion of this class and used it to find better bounds on moments and survival

function. Gupta and Kirmani (2000) charactrized the distribution to the uni-

variate and the bivariate cases. Testing exponentiality versus (IFR, IFRA,

NBU, NBUE, DMRL) classes have got a good deal of attention in the liter-

ature. For this literature we refer the reader to the surveys by Doksum and

Yandell (1984), Hendi and Abouammoh(2001) and Abu-Youssef (2002) among

others. All of these approaches are based on devising a measure of departure

from Ho in favor of H1, then estimating this measure empircically. The re-

sulting statistics are all versions of the well known U-statistics class. As with

all procedure based on the emprical distribution functon, the procedures men-

tioned above have little robustness and may be deficient. Thus one may be

intersted in a different approach that enjoys more robustness and may be more

efficient. One such approach that proved viable in several testing problems is

to use nonparametric density estimation . The ” Kernel method ” is used in

some general goodness of fit problems successfully, cf Ahmad and Li (1997a,b),

Fan and Li (1995), Hong and White (1995) and Ahmad et al.(1999) among

many others. In this paper, we use this approach by defining a measure of

departure from Ho that depend on the pdf f(x). Thus the emprical version

of these measure require estimating f(x) and thus one may use the celebrated

”Kernel method”. For a background material on this method, we refer to the

books by Scott (1992) and Jones and Wand (1995). Using Kernel methods in

reliability appears in early work of Watson and Leadbetter (1964) and Ahmad

(1976) among others. While using kernel method for testing NBUC, NBUE

and HNBUE are given by Ahmad, et al.(1999). The exponential distribution
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is the only distribution when the equality is obtained in (1.7) . Hence we test

H0 : F is exponential (μ) against H1 : F is DVRL (IVRL) and not exponential.

In order to test H0 against H1 we may use the following measure of departure

from H0:

δKV =
∫ ∞

0
f(x){ν2(x) − F (x)

∫ ∞

x
ν(y)dy}dF (x). (1.10)

We have ∫ ∞

x
ν(y)dy = −xν(x) − x2

2
F (x) +

1

2

∫ ∞

x
y2dF (y). (1.11)

From (2.2) and (2.3), we obtain

δKV =
∫ ∞

0
f(x)[ν2(x) + xν(x)F (x) +

1

2
x2(F (x))2

−1

2
F (x)

∫ ∞

0
y2I(y > x)dF (y)]dF (x), (1.12)

where,

I(y > x) =

⎧⎪⎪⎨
⎪⎪⎩

1, y > x

0, O.W.

Note that under H0 : δKV = 0, while under H1 : δKV > (<)0. To estimate δKV ,

let X1, X2, . . . , Xn be a random sample from F , let F n(x) = 1
n

∑n
j=1 I(Xj > x)

denote the empirical distribution of the survival function F (x), dFn(x) = 1
n
,

ν(x) is estimated by ν̂n(x) = 1
n

∑n
k=1(Xk − x)I(Xk > x), μ is estimated by

sample mean X and pdf f(x) is estimated by f̂n(x) = 1
nan

∑n
l=1 k(

x−Xl

an
), where

k(.) be a known pdf, symmetric and bounded with 0 mean and variance σ2
k > 0.

Symmetric uniform, normal, double exponential are examples of such pdf. Let

{an} be a sequence of reals such that an → 0 and nan → ∞ as n→ ∞. Other

conditions on k and an will be stated when needed. We propose to estimate

δKV by

δ̂KVn =
∫ ∞

0
f̂n(x)[ν̂

2
n(x) + xν̂n(x)F n(x) +

1

2
x2F

2
n(x)

−1

2
F n(x)

∫ ∞

0
y2I(y > x)dFn(y)]dFn(x). (1.13)

or

δ̂KVn =
1

n4an

n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

k(
Xi −Xl

an
)[(Xj −Xi)(Xk −Xi)

+Xi(Xk −Xi) +
1

2
X2
i −

1

2
X2
k ]I(Xj > Xi)I(Xk > Xi) (1.14)
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i.e.

δ̂KVn =
1

n4an

n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

k(
Xi −Xl

an
)[XjXk.

.+
1

2
X2
i −XjXi − 1

2
X2
k ]I(Xj > Xi)I(Xk > Xi). (1.15)

let us rewrite(1.15) as

δ̂KVn =
1

n(n− 1)(n− 2)(n− 3)

∑ ∑ ∑ ∑
i�=j �=k �=l

φn(Xi, Xj, Xk, Xl). (1.16)

To make the test scale invariant, we take

Δ̂KVn =
δ̂KVn

X
2 , (1.17)

with measure of departure ΔKV = δKV

μ2 . Set

φn(X1, X2, X3, X4) =
1

a
k(
X1 −X4

a
)
[
X2X3 +

1

2
X2

1 −X2X1 − 1

2
X2

3

]
I(X2 > X1)I(X3 > X1), (1.18)

and define the symmetric kernel

ξ(X1, X2, X3, X4) =
1

4!

∑
R

φn(Xi1, Xi2, Xi3, Xi4),

where the sum over all arrangements of (X1, X2, X3 and X4). Then δ̂KVn is

equivalent to the U-statistic. In section 2, condition under which
√
n(Δ̂KVn −

ΔKV ) is asymptotically normal are given , the null and nonnull variance are

obtained. The test basecd on Δ̂KVn is shown to be consistent and its relative

efficiencies to other test and its power estimate for 95% percentile are given

for some well known alternatives. Finally small samles Monte Carlo critical

values are also given.

2 Testing against DVRL alternatives

2.1 The test procedure

The “kernel method” was used for testing exponentiality against some

classes of life distributions cf. Ahmad et al. (1999). In this section, we derive
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a kernel-test for H0 : F is exponential (μ) against H1 : F is DVRL and not

exponential. First, we prove the following

Theorem 2.1. If na4
n → 0 as n→ ∞, if f has bounded second derivative and

if V (ψn(X1)) < ∞, where ψn(X1) is as given (2.7), then
√
n(ΔKVn − ΔKV ) is

asymptotically normal with mean 0 and variance limn V (ψn(X1). Under H0,

the variance = 0.0714

The following simple lemma is needed in the proof of theorem 2.1.

Lemma 2.1. Let θn = E[Δ̂KVn ], then

θn =
∫ ∞

0
E[f̂n(x)][ν

2(x) + xν(x)F (x) +
1

2
x2(F (x))2

−1

2
F (x)

∫ ∞

0
y2I(y > x)dF (y)]dF (x), (2.1)

Proof. Note that Ef̂n(x) = 1
a

∫
K(x−y

a
)f(y)dy. Set gn(x) = Ef̂n(x), thus

EΔ̂KVn = θn = E[φn(X1, X2, X3, X4). (2.2)

where

φn(X1, X2, X3, X4) = (1/a)K(
X1 −X4

a
)
[
X2X3 +

1

2
X2

1 −X1X2 − 1

2
X2

3

]
I(X2 > X1)I(X3 > X1).

Hence

θn = Egn(X1)[ν
2(X1) +X1ν(X1)F (X1) +

1

2
X2

1 (F (X1))
2 −

1

2
F (X1)

∫ ∞

0
y2I(y > x)dF (y)]

=
∫ ∞

0
gn(x)[ν

2(x) + xν(x)F (x) +
1

2
x2(F (x))2

−1

2
F (x)

∫ ∞

0
y2I(y > x)dF (y)]dF (x). (2.3)

Proof theorem 2.1. Note that

√
n(Δ̂KVn − ΔKV ) =

√
n(Δ̂KVn − θn) +

√
n(θn − ΔKV ) (2.4)

But

Ef̂n(x) =
1

a

∫
k(
x− y

a
)f(y)dy =

∫
k(w)f(x− aw)dw

� f(x) +
a2

2
f ′′(x)σ2

k,
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under the condition assumed on k. Hence

θ(1)
n � δ

(1)
F +

a2

2
σ2
k

{∫ ∞

0
f ′′(x)[ν2(x) + xν(x)F (x) +

1

2
x2(F (x))2

−1

2
F (x)

∫ ∞

0
y2I(y > x)dF (y)]dF (x)

}
. (2.5)

Thus
√
n(θ(1)

n − Δ
(1)
F ) = O(a2

√
n) = 0(1), by assumptions. Note also Δ̂KVn is

unbiased estimate of θn = EΔ̂KV and is asymptotically unbiased estimate of

ΔKVn. Next, write

√
n(Δ̂KVn − θn) =

√
n{( 1

n

n∑
i=1

ψn(Xi)) + (n(n− 1)(n− 2)(n− 3))−1

∑ ∑ ∑
i�=j �=l �=k

ξn(Xi, Xj, Xk, Xl, )}. (2.6)

where

ψn(X1) = E[φn(X1, X2, X3, X4)|X1] + E[φn(X2, X1, X3, X4)|X1]

+E[φn(X2, X3, X1, X4)|X1]

+E[φn(X2, X3, X4, X1)|X1] − 4θn, (2.7)

and

ξn(X1, X2, X3, X4) = φn(X1, X2, X3, X4) − ψn(X1) − 3θn. (2.8)

Now, by Layaponouff’s central theorem, the first term in the right hand side

of (2.6) is asymptotically normal if Ln = E[ψn(X1)]2+δ√
n

[V (ψn(X1))]
1+δ/2 → 0 as

n→ ∞. Now using (2.4) it is easy to see for large n

E[φn(X1, X2, X3, X4)|X1] = f(X1){(
∫ ∞

X1

udF (u))2 +
1

2
X2

1F
2
(X1)

−X1F (X1)
∫ ∞

X1

udF (u)

−1

2
F (X1)

∫ ∞

X1

u2dF (u)}, (2.9)

E[φn(X2, X1, X3, X4)|X1] =
∫ X1

0
f 2(y)[X1)

∫ ∞

y
udF (u) +

1

2
y2F (y)

−X1yF (y) − 1

2

∫ ∞

y
u2dF (u)]dy, (2.10)

E[φn(X2, X3, X1, X4)|X1] =
∫ X1

0
f 2(y)[X

∫ ∞

y
udF (u) +

1

2
y2F (y)

−y
∫ ∞

y
udF (u) − 1

2
X2

1F (y)]dy (2.11)
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observe that E[φn(X2, X3, X4, X1)|X1] has the same representation as (2.9).

Set η(X1) to be the sum of twice of right hand side of (2.9) plus that of (2.10)

and (2.11). Thus

ψn(X1) = η(X1) +Op(a
2) say, (2.12)

Then, V (ψn(X1)) = V ar(η1(X1)) + O(a2), and for p > 2, E|ψn(X1)|p ≤
CpE|η(X1)|p = O(1). Hence, Ln → 0 as n → ∞ provided that na4 → 0

as n→ ∞. Next, look at

E

⎡
⎣ √

n

n(n− 1)(n− 2)(n− 3)

∑ ∑ ∑ ∑
i�=j �=k �=l

ξn(Xi, Xj, Xk, Xl)

⎤
⎦

=
1

n(n− 1)2(n− 2)2(n− 3)2

∑ ∑ ∑ ∑
i�=j �=k �=l

E[ξn(Xi, Xj, Xk, Xl) × ξn(Xi, Xj , Xk, Xl)]

=
1

(n− 1)
Eξ2

n(X1, X2, X3, X4) = O(na)−1 = O(1). (2.13)

UnderH0, F (x) = e−xand η(X1) = −16
27

+ 7
9
X−X2

6
+ 16

27
e−3X . Thus E0[η(X1)] = 0

and σ2
0 = V ar(η(X1) = 0.0714 by direct calculation. The theorem is proved.

2.2 Asymptotic Relative Efficiency

To asses how good this procedure is relative others, we use the concept

of “Pitman’s asymptotic relative efficiency” (PARE). To do this we need to

evaluate the “Pitman’s asymptotic efficiency”(PAE) of our test Δ̂KVn in (1.15)

and compare this (by taking ratios) with PAE of other tests to get PARE. For

the proposed test the PAE is given by

1

σ0

{
d

dθ
ΔKv(θ)

}
θ→θ0

=
1

σ0

{
d

dθ

∫ ∞

0
fθ(x)[ν

2
θ (x) + xνθ(x)F θ(x) +

1

2
x2F θ(x)

−1

2
F θ(x)

∫ ∞

x
y2dFθ(y)]dFθ(x)

}
θ→θ0

. (2.1)

We compare our test statistic Δ̂KVn to the test statistics V ∗ and Δ̂n presented

by Hollander and Proschan (1975) and Abu-Youssef (2002) respectively. Two

of the most commonly used alternatives [see Hollander and Proschan, 1975]

(i) Linear failure rate : F̄θ = e−x−
θx2

2 , x > 0, θ > 0

(ii) Weibull : F̄θ = e−x
θ
, x > 0, θ > 0.
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Direct calculations of the PAE of the tests V ∗, Δ̂n and Δ̂vn are summarized in

Table 2.1.

Table 2.1 PAE of Δ̂vn , V ∗ and Δ̂n

Distribution V ∗ Δ̂n Δ̂Kvn

Linear failure rate (F1) 0.906 0.9192 0.9356

Weibull (F2) 0.846 0.71 1.8313

In Table 2.2 we give PARE’s of Δ̂vn with respect to V ∗ and Δ̂n and whose

PAE are mentioned in in Table 2.1.

Table 2.2 PARE of Δ̂vn with respect toV ∗ and Δ̂n

Distribution eFi
(Δ̂vn ,V ∗) eFi

(Δ̂vn ,Δ̂n)

Linear failure rate (F1) 0.99 1.007

Weibull (F2) 2.236 2.665

From Table 2.2 it appears that the test statistic Δ̂KVn performs well for F 1

and F 2 and it is more efficient than both Δ̂n and V ∗

2.3 The Power Estimates

The power of the test statistics Δ̂Kvn is considerd for 95% percentille in

Table 2.3 for three of most commonly used alternatives [see Hollander and

Proschan (1975)], they are

(i) Linear failure rate : F̄θ = e−x−
θx2

2 , x > 0, θ > 0

(ii) Makeham : F̄θ = e−x−θ(x+e
−x−1), x ≥ 0, θ > 0

(iii) Weibull : F̄θ = e−x
θ
, x > 0, θ > 0.

These distributions are reduced to exponential distribution for appropriate

values of θ . To conduct the test, calculate
√

1000n
714

δ̂KVn and reject H0 if this

value exceeds Zα, the standard normal variate at level α.

Table 2.3 Power Estimate of Δ̂KVn
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Sample Size

Distribution θ n=10 n=20 n=30

F1 2 0.605 0.578 0.546

Linear failure 3 0.802 0.863 0.911

rate 4 0.926 0.981 0.988

F2 2 0.390 0.299 0.234

Makham 3 0.572 0.591 0.569

4 0.732 0.792 0.833

F3 2 0.249 0.157 0.147

Weibull 3 0.491 0.603 0.741

4 0.545 0.606 0.615

2.4 Monte-Carlo Null Distribution Critical Points

In pratice, simulated percentiles for small samples are commonly used by

applied statistications and reliability analyst. We have simulated the upper

percentile points for 95%, 98%, and 99%. Table 2.4 gives these percentile

points of the statistic Δ̂KVn in (1.15) and the calculations are based on 5000

simulated samples of sizes n = 6(2)40. The percentile values change slowly as

n increases. To conduct the test, calculate
√

1000n
714

δ̂KVn and reject H0 if this

value exceeds Zα, the standard normal variate at level α.

Note that: since the above procedure is independent of choosing an and k, we

select k to be the standard normal and those an by the normal scale rule (cf.

Jones and Wand (1995) p.60).

Table (2.4) Critical Values of δ̂
(1)
Rn
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n 95% 98% 99%
6 0.1559 0.2239 0.3070
8 0.1051 0.1624 0.2019
10 0.0557 0.1096 0.1323
12 0.0647 0.0858 0.1155
14 0.0595 0.0737 0.0819
16 0.0562 0.0784 0.0906
18 0.0488 0.0646 0.0768
20 0.0440 0.0590 0.0652
22 0.0408 0.0530 0.0645
24 0.0418 0.0537 0.0623
26 0.0390 0.0489 0.0640
28 0.0366 0.0450 0.0532
30 0.0362 0.0453 0.0518
32 0.0343 0.0444 0.0449
34 0.0326 0.0413 0.0444
36 0.0313 0.0416 0.0454
38 0.0279 0.0341 0.0406
40 0.0281 0.0372 0.0420
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