Article ID:0253-2778(2003)04-0388-07

Nontrivial Solution of a Quasilinear Singular Elliptic Equation With Critical Sobolev-Hardy Exponent*

YAO Yang-xin^{1,2}, SHEN Yao-tian^{1,2}

(1. Department of Mathematics, USTC, Hefei 230026)

(2. Department of Applied Mathematics, South China University of Technology, Guangzhou 510640)

Abstract: The nontrivial solution of a quasilinear singular elliptic equation is studied with critical Sobolev-Hardy exponent by virtue of Sobolev—Hardy inequality and the Mountain Pass Geometry.

Key words: quasilinear elliptic equation; critical exponent; nontrivial solution; Sobolev-Hardy inequality

CLC number: 0175.25 Document code: A

AMS Subject Classifications (2000):35 J65

0 Introduction and the result of existence

In this paper we shall study the existence of the boundary value weighted problem:

$$-\operatorname{div}(\ |x|^{\beta} \nabla u) = |x|^{\alpha} |u|^{p-2} u + \lambda |x|^{\sigma} |u|^{q-2} u, \quad \text{in } \Omega; \ u = 0, \quad \text{on } \partial \Omega. \tag{1}$$

Here Ω is a bounded smooth domain containing the origin and we assume that the critical Sobolev—Hardy exponent $p = 2(N + \alpha)/(N + \beta - 2)$, and suppose that $N \ge 3$, 2 < a < p,

lev—Hardy exponent
$$p=2(N+\alpha)/(N+\beta-2)$$
, and suppose that $N\geqslant 3$, $2< q< p$,

 $N+\alpha>0$, $\alpha+2>\beta$, $\sigma+2>\beta$, $\frac{\beta}{2}\geqslant\frac{\alpha}{p}$ and $\beta\leqslant0$. This type of problem has been studied in several papers. Let us mention some of them. The case when $\beta=0$, $\alpha=0$ and q=2 was first treated in a famous paper by Brezis and Nirenberg^[1]. Some of their results have been generalized by Escobar^[2], including the case with variable nonsingular coefficients.

For the following generalization of problem:

$$-\operatorname{div}(\ |x|^{\beta}|\ \nabla u|^{m-2}\ \nabla u\)\ =\ |x|^{\alpha}u^{p-1}\ +\lambda\ |x|^{\sigma}u^{m-1},\ \text{in}\ \Omega;\ u\ >0\,, \text{in}\ \Omega;\ u\ =0\,, \text{on}\ \partial\Omega.$$

Foundation item: The project is supported by the Natural Science Foundation of China (19871030)

Biography: YAO Yang-xin, male, born in 1957, doctoral candidate. Research area: partial differential equation.

E-mail: mayxyao@ scut. cn

^{*} Received date: 2002-06-26

The restrictions on Ω are the same as before and Egnell [4] has given a brief discussion for a radial solution when $m + \alpha > \beta$, $N + \beta > m$, $m + \sigma > \beta$ and $p = m(N + \alpha)/(N + \beta - m)$.

We shall apply the variational methods to the energy functional associated with (1), namely

$$I(u) = \frac{1}{2} \int_{\Omega} |x|^{\beta} |\nabla u|^{2} - \frac{1}{p} \int_{\Omega} |x|^{\alpha} |u|^{p} - \frac{\lambda}{q} \int_{\Omega} |x|^{\sigma} |u|^{q}, \qquad (2)$$

In order to deal with I(u), let $H^1_{0,\beta}(\Omega)$ be the completion of $\{u \in C^1(\overline{\Omega}) | u = 0, x \in \partial\Omega\}$ with norm given by

$$||u|| \Big(\int_{\Omega} |x|^{\beta} |\nabla u|^{2} dx \Big)^{\frac{1}{2}},$$
 (3)

We know when p, α and β satisfy that

$$p > 2, N + \alpha > 2, p = \frac{2(N + \alpha)}{N + \beta - 2}, \frac{\beta}{2} \ge \frac{\alpha}{p},$$
 (4)

the weighted Sobolev – Hardy inequality [5,9] asserts that there exists a positive constant c such that

$$\left(\int_{\mathbb{R}^N} |x|^{\alpha} |u|^p dx\right)^{\frac{1}{p}} \leq c \left(\int_{\mathbb{R}^N} |x|^{\beta} |\nabla u|^2 dx\right)^{\frac{1}{2}},\tag{5}$$

for all $u \in H^1_{0,\beta}(\mathbb{R}^N)$.

that

The result of this paper is:

Theorem If $\max(2, \frac{2(N+\sigma)}{N+\beta-2}-2) < q < p \text{ and } \beta \leq 0$. Then for all $\lambda > 0$, problem (1) has a nontrivial solution.

1 The proof of some lemmas

Before proving the theorem, we prove several lemmas. Firstly we prove a compactness result.

Lemma 1
$$H_{0,\beta}^1(\Omega) \hookrightarrow L^q(\Omega, |x|^{\sigma} dx)$$
 is compact if $2 < q < p = \frac{2(N+\sigma)}{N+\beta-2}$ and $\sigma > (\frac{N+\beta}{2}-1)q-N$.

Proof Let $\{u_n\}$ be a bounded sequence in $H^1_{0,\beta}(\Omega)$, then $u_n \rightharpoonup u$ weak in $H^1_{0,\beta}(\Omega)$, so $\{u_n\}$ is bounded in $H^1_{0,\beta}(\Omega \backslash B_\delta(\Omega))$ for all $\delta > 0$, where $B_\delta(\Omega) \subset \Omega$. By Kondrahov compactness theorem guarantees the existence of a convergent subsequence of $\{u_n\}$, still denoted by $\{u_n\}$ such that $u_n \to u$ strongly in $L^q(\Omega \backslash B_\delta(\Omega))$. We know that $u_n \to u$ a. e. in $\Omega \backslash B_\delta(\Omega)$. Let $\delta \to 0$, by taking a diagonal sequence, $u_n \to u$ a. e. in Ω . By the Hölder inequality and the weighted Sobolev – Hardy inequality,

$$\int_{B_{\delta}(0)} |x|^{\sigma} |u_{n}|^{q} \leq \left(\int_{B_{\delta}(0)} |x|^{\alpha} |u_{n}|^{p} \right)^{\frac{q}{p}} \left(\int_{B_{\delta}(0)} |x|^{(\sigma - \frac{\alpha q}{p}) \frac{p}{p-q}} \right)^{1 - \frac{q}{p}} \leq C_{1} \int_{B_{\delta}(0)} |x|^{(\sigma - \frac{\alpha q}{p}) \frac{p}{p-q}}$$

for some constant C_1 . Therefore, for a given $\epsilon > 0$, and $\sigma > (\frac{N+\beta}{2}-1)q-N$, we first fix δ such

$$\int_{\mathbb{R}(0)} |x|^{\sigma} |u_n|^{q} < \frac{\epsilon}{3}. \tag{6}$$

On the other hand, by the Egorov theorem, for all $\delta > 0$, there exists some $\Omega_{\delta} \subset \Omega$, $|\Omega_{\delta}| < \delta$, such that $u_n \to u$ uniformly in $\Omega \setminus \Omega_{\delta}$, we have

$$\int_{(Q)B_{\delta}(Q))\backslash Q_{\delta}} |x|^{\sigma} |u_{n} - u|^{q} < \frac{\epsilon}{3}, \tag{7}$$

where δ is small enough.

$$\int_{(\Omega \setminus B_{\delta}(0)) \cap \Omega_{\delta}} |x|^{\sigma} |u_{n} - u|^{q} \leq C_{2} \int_{\Omega_{\delta}} |u_{n} - u|^{q} \leq C_{2} \int_{\Omega_{\delta}} |u_{n} - u|^{q} \leq C_{2} \int_{\Omega_{\delta}} |u_{n} - u|^{q} \int_{p}^{\frac{q}{p}} \left(\int_{\Omega_{\delta}} 1 \right)^{1 - \frac{q}{p}} \leq C_{3} |\Omega_{\delta}|^{1 - \frac{q}{p}} \leq \frac{\epsilon}{3}, \quad (8)$$

Then

$$\int |x|^{\sigma} |u_{n} - u|^{q} \leq \int_{B_{\delta}(0)} |x|^{\sigma} |u_{n} - u|^{q} + \int_{(\Omega \setminus B_{\delta}(0)) \setminus \Omega_{\delta}} |x|^{\sigma} |u_{n} - u|^{q} + \int_{(\Omega \setminus B_{\delta}(0)) \cap \Omega_{\delta}} |x|^{\sigma} |u_{n} - u|^{q} < \epsilon.$$

$$(9)$$

Hence $H_{0,\beta}^1(\Omega) \hookrightarrow L^q(\Omega, |x|^{\sigma} dx)$ is compact.

We will apply the mountain pass theorem [1] without the (PS) condition:

Lemma 2 Let I(u) be a C^1 functional on a Banach space E. Suppose there exist a neighborhood B(0) of 0 in E and a constant α such that $I(u) \ge \alpha$ for every u in the boundary of B(0),

$$I(0) < \alpha \text{ and } I(e) < \alpha \text{ for some } e \notin B(0).$$

Then there is a sequence $\{u_n\}$ in E such that

$$I(u_n) \to c \text{ and } I'(u_n) \to 0,$$
 (10)

where
$$c = \inf_{\gamma \in \Gamma} \max_{0 \le t \le 1} I(\gamma(t)) \ge \alpha$$
, $\Gamma = \{ \gamma \in C^1([0,1],E) : \gamma(0) = 0, \gamma(1) = e \}$.

Lemma 3 There are ρ , $\alpha > 0$ suth that $I(u) \ge \alpha$ when $||u|| = \rho$, there is $e \in H^1_{0,\beta}(\Omega)$, $||e|| > \rho$ such that $I(e) \le 0$.

Proof By the weight Sobolev - Hardy inequality, we have

$$I(u) = \frac{1}{2} ||u||^{2} - \frac{1}{p} \int_{\Omega} |x|^{\alpha} |u|^{p} - \frac{\lambda}{q} \int_{\Omega} |x|^{\sigma} |u|^{q} \geqslant$$

$$\frac{1}{2} ||u||^{2} - \frac{c}{p} ||u||^{p} - \frac{\lambda}{q} ||u||^{q} \left(\int_{\Omega} |x|^{(\sigma - \frac{\alpha q}{p})\frac{p}{p - q}} \right)^{\frac{q}{p}} =$$

$$\left[\frac{1}{2} - \frac{c}{p} \rho^{p-2} - \frac{\lambda}{q} \rho^{q-2} \left(\int_{\Omega} |x|^{(\sigma - \frac{\alpha q}{p})\frac{p}{p - q}} \right)^{\frac{q}{p}} \right] \rho^{2} \geqslant$$

$$\frac{1}{4} \rho^{2} > 0.$$

 $\text{for small }\rho\text{ such that }\frac{1}{2}-\frac{c}{p}\rho^{^{p-2}}-\frac{\lambda}{q}\rho^{^{q-2}}\Big(\int_{O}|_{X}|^{(\sigma-\frac{\alpha q}{p})\frac{p}{p-q}}\Big)^{\frac{q}{p}}<\frac{1}{4}.$

On the other hand, take $\hat{u} \in C_0^{\infty}(\Omega)$ with $\hat{u} \ge 0$, $\hat{u} \not\equiv 0$. Hence for t > 0,

$$I(\hat{tu}) = \frac{t^2}{2} \|\hat{u}\|^2 - \frac{t^p}{p} \int_{\Omega} |x|^{\alpha} |\hat{u}|^p - \frac{\lambda t^q}{q} \int_{\Omega} |x|^{\sigma} |\hat{u}|^q \le$$

$$\frac{t^{2}}{2}\|\hat{u}\|^{2} - \frac{t^{p}}{p}\int_{\Omega}|x|^{\alpha}|\hat{u}|^{p}$$

so that

$$I(t\hat{u}) \rightarrow -\infty$$
 as $t \rightarrow \infty$

Letting $e \equiv t\hat{u}$ with t > 0 large, we have $I(e) \le 0$.

Applying the Mountain Pass Lemma without (PS) condition and lemma 3 there is a (PS) sequence $\{u_n\}\in H^1_{0,\beta}(\Omega)$ such that $I(u_n)\to c$ and $I'(u_n)\to 0$, then

$$I(u_n) = \frac{1}{2} \|u_n\|^2 - \frac{1}{p} \int_{\Omega} |x|^{\alpha} |u_n|^p - \frac{\lambda}{q} \int_{\Omega} |x|^{\sigma} |u_n|^q = c + o(1)$$
(11)

$$\langle I'(u_n), \varphi \rangle = \int_{\Omega} \nabla u_n \nabla \varphi - \int_{\Omega} |x|^{\alpha} |u_n|^{p-2} u_n \varphi - \lambda \int_{\Omega} |x|^{\sigma} |u_n|^{q-2} \varphi = o(1) \|\varphi\|$$
 (12)

Taking $\varphi = u_n$,

$$\langle I'(u_n), u_n \rangle = \|u_n\|^2 - \int_{\Omega} |x|^{\alpha} |u_n|^p - \lambda \int_{\Omega} |x|^{\sigma} |u_n|^q = o(1) \|u_n\|,$$
 (13)

we have

$$\frac{p-2}{2} \|u_n\|^2 - \lambda (1 - \frac{p}{a}) \int_{\Omega} |x|^{\alpha} |u_n|^{q} \} = pc + o(1) \|u_n\| + o(1)$$

Noticing that 2 < q < p and showing that $\{u_n\}$ is bounded in $H^1_{0,\beta}(\Omega)$.

2 Proof of the theorem

Step 1 Indeed, $\{u_n\}$ is bounded in $H^1_{0,\beta}(\Omega)$ and by lemmas 2 and 3, we may assume that (PS)_c sequence $\{u_n\}$ satisfies the set of conditions

$$u_{\scriptscriptstyle n} \!\! \rightharpoonup \!\! u \quad \text{weakly in} \quad H^1_{0,\beta}(\ \varOmega \) \,, \quad u_{\scriptscriptstyle n} \,\! \to \!\! u \quad \text{strongly in} \quad L^q(\ \varOmega , \ \mid \! _{\mathcal{X}} \mid ^{\alpha} \mathrm{d} x \).$$

Therefore, for all $\varphi \in H_0^1(\Omega)$, we have

$$\langle I'(u_n), \varphi \rangle \rightarrow \langle I'(u), \varphi \rangle,$$

and from (12) consequently

$$\langle I'(u), \varphi \rangle = 0$$

for all $\varphi \in H_0^1(\Omega)$, which shows that u is a weak solution of equation (1).

Step 2 We shall now verify that the weak solution $u \not\equiv 0$. Indeed, assume that u = 0. We claim that

$$\int_{\Omega} |x|^{\sigma} |u_n|^q \to 0$$

by (11) and (13) become respectively

$$\frac{1}{2} \|u_n\|^2 - \frac{1}{p} \int_{\Omega} |x|^{\alpha} |u_n|^p = c + o(1)$$
 (14)

$$||u_n||^2 = \int_{\Omega} |x|^{\alpha} |u_n|^p + o(1)$$
 (15)

Therefore

$$c = (\frac{1}{2} - \frac{1}{p}) \|u_n\|^2 + o(1) \ge (\frac{1}{2} - \frac{1}{p}) S(\int_{\Omega} |x|^{\alpha} |u_n|^p)^{\frac{2}{p}} + o(1) =$$

(22)

$$\left(\frac{1}{2} - \frac{1}{p}\right) S \left[\left(\frac{1}{2} - \frac{1}{p}\right)^{-1} c\right]^{\frac{2}{p}} + o(1)$$

So

$$c \geqslant (\frac{1}{2} - \frac{1}{p})S^{\frac{p}{p-2}}.$$

Thus we obtain a contradiction to $c < \left(\frac{1}{2} - \frac{1}{n}\right)S^{\frac{p}{p-2}}$, where c was given in (10). Thus $u \not\equiv 0$.

Step 3 We prove that

$$c < \left(\frac{1}{2} - \frac{1}{n}\right) S^{\frac{p}{p-2}} \tag{16}$$

where c was given in (10). Similar to [8], we only need to prove that for some $v_0 \in H^1_{0,\beta}(\Omega)$, $v_0 \not\equiv 0$ such that

$$\sup_{t\geqslant 0} I(tv_0) < \left(\frac{1}{2} - \frac{1}{p}\right) S^{\frac{p}{p-2}}. \tag{17}$$

According to [5], set

$$U_{\epsilon}(x) = (\epsilon + |x|^{\alpha-\beta+2})^{(2-N-\beta)/(\alpha-\beta+2)}, \quad \epsilon > 0$$
 (18)

We can get S. Similar to [1], let ϕ be a function $\phi \in C_0^{\infty}(\Omega)$, and $\phi(x) \equiv 1$ in a neighbourhood of the origin. Set

$$u_{\epsilon}(x) = \phi(x)U_{\epsilon}(x) \tag{19}$$

$$v_{\epsilon}(x) = u_{\epsilon}(x) \left(\int_{\Omega} |x|^{\alpha} |u_{\epsilon}(x)|^{p} \right)^{-\frac{1}{p}}$$
 (20)

First we calculate directly

$$\int_{\Omega} |x|^{\beta} |\nabla u_{\epsilon}|^{2} = \epsilon^{\frac{2-N-\beta}{\alpha-\beta+2}} \int_{\mathbb{R}^{N}} |x|^{\beta} |\nabla U_{1}|^{2} + O(1)$$
(21)

$$\int_{\Omega} |x|^{\alpha} |u_{\epsilon}|^{p} = \epsilon^{-\frac{N+\alpha}{\alpha-\beta+2}} \int_{\mathbb{R}^{N}} |x|^{\alpha} |U_{1}|^{p} + O(1)$$

$$(22)$$

$$\int_{\Omega} |x|^{\sigma} |u_{\epsilon}|^{q} = \epsilon^{\frac{2N+2\sigma-(N+\beta-2)q}{2(\alpha-\beta+2)}} \int_{\mathbb{R}^{N}} |x|^{\sigma} |U_{1}|^{q} + O(1)$$
(23)

Therefore

$$\int_{\Omega} |x|^{\beta} |\nabla v_{\epsilon}|^{2} = S + O(\epsilon^{\frac{N+\beta-2}{\alpha-\beta+2}})$$
 (24)

$$\int_{\Omega} |x|^{\alpha} |v_{\epsilon}|^{p} = 1 \tag{25}$$

$$\int_{\Omega} |x|^{\sigma} |v_{\epsilon}|^{q} = K \epsilon^{\frac{2N+2\sigma-(N+\beta-2)q}{2(\alpha-\beta+2)}}$$
(26)

Observe if 2 < q < p, then

$$\int_{\Omega} |x|^{\sigma} |v_{\epsilon}|^{q} \to 0 \quad \text{as} \quad \epsilon \to 0$$
 (27)

By using these estiments we will show that there exists $\epsilon > 0$ small enough, such that

sup
$$I(tv_{\epsilon}) < (\frac{1}{2} - \frac{1}{n})S^{\frac{p}{p-2}}$$

Let us consider the functions

$$g(t) = I(tv_{\epsilon}) = \frac{t^2}{2} \int |x|^{\beta} |\nabla v_{\epsilon}|^2 - \frac{t^p}{p} - \lambda \frac{t^q}{q} \int |x|^{\sigma} |v_{\epsilon}|^q$$

and

$$\overline{g}(t) = \frac{t^2}{2} \int |x|^{\beta} |\nabla v_{\epsilon}|^2 - \frac{t^p}{p}.$$

It is clear that $g(t) \to -\infty$ (as $t \to \infty$), then $\sup_{\epsilon \to 0} I(tv_{\epsilon})$ is attained for some $t_{\epsilon} > 0$ and

$$0 = g'(t_{\epsilon}) = t_{\epsilon} \Big(\int |x|^{\beta} |\nabla v_{\epsilon}|^{2} - t_{\epsilon}^{p-2} - \lambda t_{\epsilon}^{q-2} \int |x|^{\sigma} |v_{\epsilon}|^{q} \Big)$$

therefore

$$\int |\,x\,|^{\beta}\,|\,\,\nabla\,v_{\epsilon}\,|^{\,2}\,\,=\,t_{\epsilon}^{p-2}\,\,+\,\,\lambda\,\,t_{\epsilon}^{q-2}\!\int |\,x\,|^{\,\sigma}\,|\,v_{\epsilon}\,|^{\,q}\,\,>\,t_{\epsilon}^{p-2}$$

i. e.,

$$t_{\epsilon} \leq \left(\int_{\Omega} |x|^{\beta} |\nabla v_{\epsilon}|^{2} \right)^{\frac{1}{p-2}} \tag{28}$$

This inequality implies

$$\int_{\Omega} |x|^{\beta} |\nabla v_{\epsilon}|^{2} \leq t_{\epsilon}^{p-2} + \lambda \left(\int_{\Omega} |x|^{\beta} |\nabla v_{\epsilon}|^{p} \right)^{\frac{q-2}{p-2}} \cdot \int_{\Omega} |x|^{\sigma} |v_{\epsilon}|^{q}$$

$$(29)$$

Choosing ϵ small enough, by (24), (27) and (29), we get

$$t_{\epsilon}^{p-2} \geqslant \frac{S}{2} \tag{30}$$

That is, we have a lower bound for t_{ϵ} , independent of ϵ , Now we estimate $g(t_{\epsilon})$. The function $g(t_{\epsilon})$ attains its maximum at $t_{0}^{*} = \left(\int_{\Omega} |x|^{\beta} |\nabla v_{\epsilon}|^{2}\right)^{\frac{1}{p-2}}$, and is increasing at the interval $[0,t_{0}^{*}]$.

Then, by (24), (28) and (29), we have

$$\begin{split} g(\ t_{\epsilon}\) \ = & \stackrel{-}{g}(\ t_{\epsilon}\) \ - \frac{\lambda}{q} t_{\epsilon}^{q} \int |\ x\ |^{\sigma} \ |\ v_{\epsilon}\ |^{q} \leqslant \\ & \stackrel{-}{g}(\ (\ \int_{\Omega} |\ x\ |^{\beta} \ |\ \nabla\ v_{\epsilon}\ |^{2}\)^{\frac{1}{p-2}} \) \ - \frac{\lambda}{q} t_{\epsilon}^{\ q} \int |\ x\ |^{\sigma} \ |\ v_{\epsilon}\ |^{q} \leqslant \\ & (\ \frac{1}{2}\ - \frac{1}{p}\) S^{\frac{p}{p-2}}_{p-2} + \ C_{4} \epsilon^{\frac{N+\beta-2}{\alpha-\beta+2}} - \frac{\lambda}{q} \Big(\frac{S}{2}\Big)^{\frac{q}{p-2}} \int |\ x\ |^{\sigma} \ |\ v_{\epsilon}\ |^{q} \end{split}$$

By (26) we have

$$g(t_{\epsilon}) \leq (\frac{1}{2} - \frac{1}{p})S^{\frac{p}{p-2}} + C_{4}\epsilon^{\frac{N+\beta-2}{\alpha-\beta+2}} - \lambda C_{5}\epsilon^{\frac{2N+2\sigma-(N+\beta-2)q}{2(\alpha-\beta+2)}}$$
(31)

If

$$\frac{N+\beta-2}{\alpha-\beta+2}>\frac{2N+2\sigma-(N+\beta-2)q}{2(\alpha-\beta+2)},$$

That is, $q > \frac{2(N+\sigma)}{N+\beta-2} - 2$, then, for ϵ small enough, we get

$$g(t_{\epsilon}) < (\frac{1}{2} - \frac{1}{p})S^{\frac{p}{p-2}},$$

and the proof is complete.

References

- Brezis H, Nirenberg L. Positive solutions of nonlinear elliptic equation involving critical Sobolev exponents [J]. Comm. Pure Appl. Math., 1983,36:437-477.
- [2] Escobar J F. Positive solutions for some semilinear elliptic equations with critical Sobolev exponents [J]. Comm. Pure Appl. Math., 1987, 5:623-657.
- [3] Egnell H. Semilear elliptic equations involving Sobolev exponents [J]. Arch. Rational Mech. Anal. ,1988,104:27-56.
- [4] Egnell H. Elliptic boundary value problem with singular and critical nonliearities [J]. Indiana Univ. Math. J., 1989,38(2):235-251.
- [5] Chou K S and Chu C W. On the best constant for a weighted Sobolev Hardy inequality [J].

 J. London Math. Soc., 1993, 48(2): 137-151.
- [6] Engnell H. Existence and nonexistence results for m - Laplace equations involving critical Sobolev exponent J. Arch. Ration Mech. Anal., 1988, 104: 57-77.
- [7] Tarantello G. On nonhomogeneous elliptic e-

- quations involving Sobolev exponent J]. Ann. I. H. P. Analyse nonlineaire, 1992, 9(28): 281-304.
- [8] Garcia Azorero J and Peral Alonso I. Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term[J].

 Ame. Math. Soc., 1991, V323 (2): 877-895.
- [9] Lieb E H. Sharp constants in the Hardy-Little-wood-Sobolev and related inequalities [J].
 Annal of Math., 1993,118:349-374.
- [10] Maya C and Shivaji R. Multiple positive solutions for a class of semilinear elliptic boundary value problems [J]. Nonlinear Analysis, Theory, Method & Applications, 1998, 32(1): 41-54.
- [11] Shen Y S and Yan S S. The calculus of variations for the quasiliear elliptic equations [M].

 Guangzhou: The Publishing House of South China Univ. of Tech., 1995.
- [12] Caffarelli L, Kohn R and Nirenberg L. First order interpolation inequalities with weights[J]. Compositio Math. , 1984,53: 259-275.

临界 Sobolev-Hardy 指数的拟线性 奇性椭圆型方程的非平凡解

姚仰新1,2,沈尧天1,2

(1. 中国科学技术大学数学系,合肥 230026; 2. 华南理工大学应用数学系,广州 510640)

摘要:利用 Sobolev-Hardy 不等式和山路几何研究了临界 Sobolev-Hardy 指数的拟线性 奇性椭圆型方程的非平凡解.

关键词:拟线性椭圆型方程;临界指数;非平凡解;Sobolev-Hardy 不等式