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Abstract
In this study, base on traditional lapped transform’s properties, inherit from some of
the special characteristic properties of discrete cosine transform, trigonometric
identities and the structure of linear phase filter banks. We present some theoretic
properties in the generalized structure of linear phase paraunitary filter bank and
build some examples corresponding to these properties. These properties not only
improve the complexity in the coding scheme of a signal before quantized but also
because of the recursive property and adopt the Split-Radix Algorithm of the
discrete cosine transform, improve an effective and simplify the lapped structure of

linear phase paraunitary filter banks.
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INTRODUCTION

There have been a tremendous researches in the field of filter banks (FBs) and
multirate systems in the last 30 years [1, 2, 3, 6, 8, 9, 10]. These systems provide
new and effective ways to represent signals for processing, understanding, and
compression purposes. A system, that there is no information loss at the processing
stage, such that the output <[»]is a purely delayed version of the inputx[x], i.e.,
%[n]=x[n—1], is called perfect reconstruction (PR) filter banks. Linear phase (LP)
systems allow us to use simple symmetric extension methods to accurately handle
the boundaries of finite-length signals. Furthermore, the LP property can be
exploited, leading to faster and more efficient FB implementation. From this point
on, all of the FBs in discussion here are LP perfect reconstruction filter banks
(LPPRFB).

There has been a great amount of research on pre and post processing
algorithms for image and video compression systems. Both classes of algorithms
share one common goal: to eliminate or reduce the severity of coding artifacts in the
reconstructed signal. The design of linear-phase filter bank has been increasing
interest and several methods have been developed so far. Recently, in [8], Soman et

al. first developed a complete factorization for even-channel LPPUFBs. Tran et al.



A split-radix DCT base structure 1833

[10] proposed the design of m -channel linear phase perfect reconstruction filter
bank (LPPRFB) through lattice structure, which factorizes the polyphase matrix
into a cascade of elementary building blocks. Besides fast implementation structure
with minimal number of delay elements, the factorization introduced in [10] also
structurally enforces both linear phase and perfect reconstruction properties.
Moreover, based on the lattice factorization, Tran et al. [10] presented several
design examples of LPPRFB, which are quite efficient in image compression,
particularly for highly textured images. Thus, further investigation in LPPRFB is
motivated. Lu G. and K.K. Ma, [1] present a simplified version of lattice
factorization for LPPRFB of [10]. The new lattice factorization substantially
reduces the number of free parameters while covering the same class of LPPRFB as
shown in [10]. Consequently, the new lattice structure can reduce the search space
in nonlinear optimization for the design of filter bank and lower the computation
cost in hardware implementation. In [10], Lu G. and K.K. Ma propose a new
structure for pairwise mirror image (PMI) property to LPPUFBs, with even-
channel, which is a simplified version of the lattice in [9]. The new structure spans
the same class of PMI LPPUFBs as the original lattice, while the numbers of free
parameters are significantly reduced. Through this way, better results with faster
convergence in the optimization can be achieved.

The Type-Il discrete cosine transform (DCT-II), Rao [7], has found wide

applications in image and video compression, due to its excellent energy
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compaction capability and to the existence of numerous fast implementations.
However, coding schemes exhibit annoying blocking artifacts at low bit rates. The
lapped orthogonal transform (LOT) [9] provides a solution to this problem via post-
processing of the DCT coefficients. The basis functions of the LOT cover two data
blocks. Further suppression of blocking artifacts can be achieved by employing
multistage post-processing, as in the generalized LOT (GenLOT) [6]. In [4], Jie
presents a general structure of LPPUFB with both pre and post-processing modules
added to the DCT.

Notation-wise, vectors and matrices are denoted by boldfaced characters, special
matrices1,J,0,D represents, respectively, the identity, the reversal identity, the zero
and the diagonal matrix with entry +1when the corresponding filter is symmetric,
and -1 while the corresponding filter is antisymmetric. Capital
letters m, L, K denote respectively the number of the channels, the filter length, and

the overlapping factor.
1. LAPPED STRUCTURE OF LPPUFB
For an m -channel kM -tap general structure of LPPUFB system is developed in

1993, [8], by which the analysis polyphase matrix E(z)is shown in Figure 1 (a), and

can be factorized as

1
E(e), H1Gi()Go (1)

where matrices Goand G;(z),i =1,---,k-1are called the initial and i th propagate stage
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of the system, are defined as

G():diag(Uo,Vo)W (2)
Gi(z) _ diag(U;, Vi WA, (z)W 3
Aq(2) _ diag(zL,1) (4)

matrices U; and v; in (3) and (4) are arbitrary (M /2)x(m /2)orthogonal matrices,

matrices W and W in the (3) and (4) represent two kinds of m x m butterfly matrix,
given by

W:%B —II} W:%B —JI} (5)
In which, 1 and J are (M/2)x(M/2) identity and reversal identity matrix,
respectively.

Recently, the reduction of the complexity had been improved significantly,
after Gan [2] shows that either all U; or v; in G;(z) can be eliminated, and the
completeness of the structure is still guaranteed, that is, G;(z),i =1,--,k-1in (4) can
be reduced to

Gi(z) _ diag(1,V; )WA, ()W (6)

we show this improvement in Figure 1(b).
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(b)

Figure 1: An M -channel kM -tap analysis system: (a) The initial structure. (b) The
improved structure.

By the orthogonal property of ugandv;, and with the commutative property

between the diagonal matrix diag(Ug,Ug)and the butterfly matrix w and the advance

chainA,(z), the matrix Uy in Go can actually be moved to propagate stage G v (z)for

1< N < K —-1rather thanG,. We propose it as the following proposition.

Proposition 1: The analysis polyphase matrix E(z)of any m x kM LPLUFB can be

factorized as E(z)

and

1

= ﬁG,-(z)Go, where
=K-1

G x-1(z) _diag(Ug, V.1 )WA, (2)W (7)

Go _ diag(I, Vo W (8)
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G(z) _ diag(L, V; WA, ()W for 1Si<N-1 )

In advance, to simplify the structure, turn all w in G;(z) by W through the
relation W = diag(I,J)Wdiag(1,J) , this makes each propagate
stage G;(z) , 1<i< K -2 with the same the structure form, and hence, a new

expression of E(z)is shown in Figure 2, and states in the following proposition:

E\Xf | \/*Z\/“”Z%?Z v %H
A A Ao AT A

41
— Gy = — B> By = “— Gpy —

Figure 2: The simplified lapped transform: all winG;(z),i =1,---,N -1is replaced

A

by w.

Proposition 2: The analysis polyphase matrix of any M x kM LPLUFBE(z)can be

factorized as

1 ~ 0 ~
E(z): .Nl_-f Gi(Z)GN ! G‘,-(z) (10)
i=K-1 Jj=N-1 !

where G;(z)fori = N +1,N +2,---,K —1is the same as (3), and the modified propagate

stages

G y _diag(Ug, VNJ)W . (11)

Go_

Aq(z)Wdiag(L,dVo )W . (12)

G j = Na(c)Weliag(LIVI)W ¢ j=12,+,N -1 (13)
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Proof: After modified w by W, each stage G (z), j=12,--, NV is of the form
G;(z) _ diag(L, V;J)WA,, (z)Wdiag(1,d) i=12,-,N -1 (14)

Start fromi = N, moving diag(1,J)of G y (z)to the next stage G y_(z)and product with

the first block diag(1,Vy_1J)of G y_1(z), this makes
G v-1(z) _ diag(L, IV y_13)WA,, (z)Wdiag(1,J) (15)

The proof of this Proposition is completed after similarly the way for index

i = N-1, N-2,---,0 term by term.

In (12), vy J is the rotation of v with axis the first column of vy ; while Jvyis
the rotation of vy with axis the first row in (13); and in (14), Jv;Jis the rotation
of v; with axis the antidiagonal.

Since all these matrices U; , v; and J are arbitrary (M /2)x (M /2) orthogonal
matrices, for simplicity, we replace vyJ , Jvg and Jv;J in (12), (13) and (14),

by Vy, VoandV;, respectively.
Take some special cases of V; , which result in a great improvement of simplifying

process before coding.

Proposition 3: As state in the Proposition 2, take Eyi(z)= 11 G j(z), under
j=N-1

condition V;=-1for alli=042,-,N -1, theng; (z)=[2 z(ﬂ and hence the cascade

product of two cascade stages G;(z)G;.1(z)=z1, fori = 01,2,---,N —2. And hence, the



A split-radix DCT base structure 1839

analysis polyphase matrix

[]Gi(2) Gy if N = 2k,
Ez)_q S [ (16)

0 zJ _
0 0} FN =2k +1.

N
=~
Q
—_
N
S
O

Theorem 1: Given any orthogonal matrix Eq, the polyphase matrix E(z) of
any M x KM (M even, K integer) linear phase paraunitary filter bank satisfying (1)

can be factorized as
1
E(z) - EoG'x1 _711217(;1,' (ZFO (17)
or

E(z)zilf[lci(z)GE)Eo (18)
where G 1(z) =E?G x_1(z)and Go = GHE] .

Proof: It is simply using the orthogonality of Eq. To (17), since the final
stage G x 1(z) =EoE} G ¢ 1(z), while for the (18) initial stage Go=GoEJE,.

Though it states only on the final and initial stage, in fact, we can embed any

orthogonal operation Eq at any stage N between stageoand K —1.
III. SPLIT RADIX ALGORITHM OF DCT

The popular DCT in JPEG and MPEG is the eight-point type-11 DCT. Because of its
practical value, numerous fast DCT-II algorithms have been proposed [7], the most

effective are ones based on sparse matrix even partly recursive factorizations, i.e.,
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an even M -point DCT-II can be implemented via an m /2 -point DCT-1I and
anM /2 - point DCT-IV it is a close neighbor of the optimal solution in the search
space.

All lapped transforms can be viewed as post- and pre-processing of the DCT
coefficients with the quantizer Q in between, as shown in Fig. 4(a). A more intuitive
viewpoint is depicted in Fig. 4(b), where the pre- and post-filter are outside the
existing framework. This way, we have a chance at improving coding performance
while achieving standard-compliance with minimal software/ hardware

modifications.

2 5[DCT [ LT 2 Q FS[ILT —»[IDCT |2

(i)

25 LT >[DCT |2 Q E={1DCT [ ILT |2
(b)

Figure 4: The pre/post processing structure. (a) DCT as a preprocessing , and (b)
as a postprocessing of a lapped transform.

For even integer n>4, consider a finite length signal x:(xo,xl,u-,x,,_l)T,
define the even-odd permutation matrix P, on x by
P,x = (xO’xZ"")xn—2’x11x3y"'1xn—1)T (19)

Proposition 4: (First order factorization) Let M >4 be an even integer, the

matrix Cff  can be factorized in the form
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il _®ldiag(clh ,, 1, Miag(lyys Tps2)W (20)

Proof: First, assume M =2m , for some integer m >2. We permute the row of

cif by multiplying with P, and write the result as a block matrix

1 |Ao Aol
1>McM:{A10 An} 1)

where the four matrices are defined as

Ago_ {\/ﬁ g(Zi)cos%ﬁ}il (22)

i,j=0
i=m-1, j=2m-1
1 o (20)(2j+1
1 @i+12i+1) |"”
. . Lerrfej+l)
10 — {\/;‘9(21 +1)cos 2M ”}i Jj=0 0
ﬂl—lsjzzm_l
T 2i+1)-(2j +1
Aq1 = {\/;8(21 +1)cos%”}i_o j=m (25)

In which, ey, (/)=1/v2 foi =0,m ; and1fori=1,---,m —1. It can be found out that
Ago=CH andAp=cCk. To the two blocks Ap;and A4, by changing index j' = j-n ,
and using identities cos(2kr — 6)= cos 6 and cos|(2k +1)z — ] =-cos 6 for integer k . We

have

Ao _Ci J (26)

A _-CVJ (27)
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And hence,

rt -G Gy 3]
\/z CM/Z _CM/2 J

_|Chz 0 i[l J}
0 C:\)I//Z V2 r-J

CII 0 I 0]«
:{ ag/z clv MO J}W (28)

M/2

Since P} =PI , finally we complete the proof

Cﬁ:PZdi”g(Cﬁ/z C/’;}//z iag(IM/2 JM/Z)VV

Example 1: For» =4, we have the factorization of c as
cll _ pldiagCl! CIV Miag(l, J,)W

Indeed,
11 0 0
1 -1 0 0
} 00 \/Ecos% \/Esin% {

00 \/Esin% -\/Ecos%

(29)

N
cocor
oroo
coro
rooo
oror
roro
'
Loro
'
olLor

To factorize DCT-IV, we need to introduce some matrices using in this paper. First
denote the modified identity matricesT), 1}, and the forward shift matrix v,, by

-1 1

1, zdiag(gM (i)*l)fio , 1), = diag(gM (i +1)*1),/Z5 (30)
D = diag ((i)'l),{zg)l 1 vy =i - i - (31)

the modified addition matrices:
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11Uy, VD |
= A 1)=—— 1 di 1 J
AM(O) IM M( ) /—2 |:VT1 -1 1D . lllg( M M]_) (32)

Furthermore, we define cosine and sine vectors by

M-1

_ (2k+1)ﬂ} :{ , (2k+1)7r}Ml
Cy = A S = | sin 33
M {cos T M e |, (33)

And the cross-shaped twiddle matrices:

1 IMl JMl — diag Cy, Jldiangsl
TM(O)=E|:IM1 'JM11| TM(]-) —d|ag(IM1 DMl)l:_JNH diagMSMl Mdiag JMchMIM} (34)

We present the factorization of DCT-IV ciy for even integer m >4 in the
following subsection.

Proposition 5: For even integer M =2m > 4 , the matrix c1¥ can be factorized in the

form:
Cly Pl Ay Wdiaglcd )y (1) (35)

In which, A, (1)is the modified addition matrix

111, VD, |;:
AM(]-)EE|:V£ _I,',”Dm:|dmg(lm Jm) (36)

and the cross-shaped twiddle matrix is

. diag C J, diag J S
Ty (1) = diag(1,, Dm)[_,] Siag s diag ngCmmm} (37)

m

Proof: First, we permute the rows of ¥ by multiplying with Py, and write the

results as block matrix

v Ao An
ParCir :[Am All} (38)

where these four blocks are defined as
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1 (4i +1)2j +1)7 }""1
Ago — 39
00— feos L (39)
1 (4i +1)\M +2 j+1)7r}'"l
AL
o= m {ws aM i,j=0 (40)
. . m-1
Ato_ le {cos (4i + 32(;; +1)7r} 41)
i,j=0

. . m-1
Avs 1 {cos (4i +3)\M + 2 +1)7r} 42)
m M i,j=0
It can be proved easily that
1 ’ 1 4 7 .
AOO:E(I,,, CudiagCp,-VDy St J dtagSm) (43)
and
Ao =%(V,§ CY diag Cpy + 1) D,y SH 3, diag S, ) (44)

To the other two matrices Ag;and Ay, it is more complex than the two matrices
above, and needs more trigonometric identities, such as use cos(a + (7 /2))=—sina to

expand these two matrices, these transpose the order of column vector C,, andsS,, .

Agy =

{ws (4i +1) (M +2 j+1)7r}m_1

aM i,j=0

[ R
[l )

i,j=0

i )

i,j=0
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- / j i . m-1
= L (-1)icosi 2j+1 7 cos| M+2j+1 ﬂ-(-l)'sin i 2j+1 x sin M+2j+1 n
Jm M AM M AM o
r— / j ; . m-1
-2 {(‘1)icos i[ 1+1j” sin( M-2]-1j”_(_1)1 sin i[ 2J +1)n’ cos( M-Zj-ljn}
Nm M AM M aM i.j=0

1 . :
:—Z{Dm Uy C2 diag(3,,S1m)-Dw Viu ST diag(3,,C, )} (45)

N

Analogous the way, we get block

1 . " -
Ay :E{V,ﬁ CH 3, diag( 3, S )~V Dy SH diag(3,,C,, )} (46)
And hence, the block form of Py, C4} become
1[Lw VuDy|[CH 0 diag C I diagd , S
PyClV _— | 'm m Ym m ' Cm m mSm
MYy = \/E[V;% -I)y Dmﬂ 0 Ssiy|-J, diagS,,  diagCy J, (47)

Finally, we complete the proof by moving ey, from the left to the right.
The Corollary next, demonstrates the propagate property of DCT-II and DCT-1V
[5], which results in the Split Radix Algorithm of DCT-Il and DCT-IV.

Corollary (Second order factorization) Let m be an integer M >8 with M =0mod 4

be given. Then the matricescf} , and cf¥ can be factorized as follows
CII T .. T T . . I w /4 n .
M =Py dmg(PM/zy P2 mg(IM/zy AM/z(l))dmg(CM/4. Chmya, Coyya, CM/4)dmg(TM/2(O)1 TM/Z(l))TM(O) (48)

Cly = Pl Ay ) diaglPly 2, P2 MiaglCllya, Cotva, Clya, €AY Jiag(Tyy,5(0), Ty, 0 Ty ) (49)

Let M=2" m=>3, and let Mmy=2"5  s=04,--,m-1. In the first order

factorization, we have c¥ split into Cl{;’l@q{z (proposition 4). Recursive

application, the second order factorization (proposition 5), Cgl ® CZ{Z is split
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intoc eci ecll eci! , to thesorder factorization, we illustrate the expand
2 M M M

procedure of the split radix DCT-11 and DCT-1V in the Figure 5 for the third order

factorization.

1 )4
CM3 CM3
cll CII
M) M;
CIV clV
M3 M3
_lcll ol
CM1 CM1
CII CII
M3 M3
clvV CIV
Mo )4 Mo 1
CM3 CM3
11 v
[ h -
/4 C
CM3 M
cll cll
M, — M,
clv Cy | Ic Cii
M M
14 ral/l
CM3 Clts
cll CIV
M, — M)
C 1
M3 CM3
b)
@ (

Figure 5. The Split Radix Expansion of DCT-I1I (a), and DCT-IV (b).

Example 2: The 8-point DCT-II c{ has the second order factorization as

V22 2 2 2 2 2 A2
2 2 2 2 2 2 2 2

3 57 Tz 9z 11z 137 157

COS— COS— COS— COS— COS— COS—— COS—— COS——

1 16 16 16 16 16 16 6

67 107 l4n 187 22r 267 307
COS—— COS—— COS—— COS—— COS—— COS—— COS—— COS——
16 1 1 16 16 6

4 15 21z 217 337 397 457

1| cos— cos— cos—— cos——— cos——— coOS—— COS——— COS———
ch_= 16 16 16 16 16 16 16 16
8 7 T 127 207 287 367 44z 527 607
COS—— COS—— COS—— COS—— COS—— COS—— COS—— COS——
16 16 16 16 16 16 16 6

57 157z 257 357 457 557 657 757
COS—— COS—— COS—— COS—— COS—— — cos——
16 16 16 16 16 16 16 16

T 187 307 27 54z 667 87 907
COS—— COS—— COS—— COS—— COS—— COS—— — coOs——
16 1 1 16 16 16 16
1z i 637 T 1z 1057z

cos cos cos cos COS—— COS—— COS—— CO

16 16 16 16 16 16 16 16
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_ P{ 0 | [ls 00 T| 0, ¢ o, 0, |[Ts0) 04
= PSTI: T:| [0 A (1)} 2 €2 02 02 11 0T L)) Te0)
4 4 4
0 Py 0, 0, ¢l oo,
0, 0, 0, C)f
We show the procedure in Figure 6(a), there are four rotation angles and three

butterfly matrices in the factorizing procedure.

Example 3: The second factorization of 8-point DCT-IV ¢V is

0, 0, 0,

, T
CIV:LPST I, VaDy [14 04} P[0 (102 €5 0, 0 [T4(0) 04 }[14 04}[ diag Cy4 J4ditng4S4}
872 8 |VT 1) Dy |04 I Tl 0, 0, ¢l o, |L 0 T4(1)] |04 Dy | -J4diag S, diag J4Cy

0, P/
0, 0, 0, C)f

We depict the procedure in Figure 6(b), there are four rotation angles and three

butterfly matrices in the factorizing procedure..

£
F—5
LifT
T —
i
[<F]
a)
i () =

Figure 6. The structure of Split-Radix algorithm: (a) 8-point DCT-II. (b) 8-point
DCT-1V.

At the end of this section, follows from the Theorem in section Il, we embed DCT

C, which is been radix split for purposes, into the N th stageGy, 0<N<K -1,



1848 Chao-Hsien Tseng

such that
Gy :CCTdiag(UO,V}V)\i/ (50)
and hence, the m -channel ka -tap analysis system E(z)can be factorized as

N+1 ~ 0 A
EG)_ T Gi(eBy 11 6G2) (51)
i=K-1 j=N-1

we demonstrate the structure of E(z)in Fig. 7.

cT

Gia

AR AR VIR 2R 2R 2N

AR AR BRI 2R 2R AR

Figure 7. An M -channel kM -tap Split-Radix analysis system.

1V. CONCLUSION

In this paper, we generalize the structure of linear phase paraunitary filter banks
through elementary matrices operations. Then, by the special characteristic of
discrete cosine transform, we adopt split radix algorithm in the processing. These
properties not only improve the complexity of coding algorithm for a finite signal
before quantized but also due to the compactness property and the recursive radix
sparse matrix factorizations property of the discrete cosine transform, it is indeed
support an effective and simplified lapped structure of linear phase paraunitary

filter banks.
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