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Abstract 

In this study, base on traditional lapped transform’s properties, inherit from some of 

the special characteristic properties of discrete cosine transform, trigonometric 

identities and the structure of linear phase filter banks. We present some theoretic 

properties in the generalized structure of linear phase paraunitary filter bank and 

build some examples corresponding to these properties. These properties not only 

improve the complexity in the coding scheme of a signal before quantized but also 

because of the recursive property and adopt the Split-Radix Algorithm of the 

discrete cosine transform, improve an effective and simplify the lapped structure of 

linear phase paraunitary filter banks. 
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INTRODUCTION 

There have been a tremendous researches in the field of filter banks (FBs) and 

multirate systems in the last 30 years [1, 2, 3, 6, 8, 9, 10]. These systems provide 

new and effective ways to represent signals for processing, understanding, and 

compression purposes. A system, that there is no information loss at the processing 

stage, such that the output [ ]nx̂ is a purely delayed version of the input [ ]nx , i.e., 

[ ]nx̂ = [ ]lnx − , is called perfect reconstruction (PR) filter banks. Linear phase (LP) 

systems allow us to use simple symmetric extension methods to accurately handle 

the boundaries of finite-length signals. Furthermore, the LP property can be 

exploited, leading to faster and more efficient FB implementation. From this point 

on, all of the FBs in discussion here are LP perfect reconstruction filter banks 

(LPPRFB). 

    There has been a great amount of research on pre and post processing 

algorithms for image and video compression systems. Both classes of algorithms 

share one common goal: to eliminate or reduce the severity of coding artifacts in the 

reconstructed signal. The design of linear-phase filter bank has been increasing 

interest and several methods have been developed so far. Recently, in [8], Soman et 

al. first developed a complete factorization for even-channel LPPUFBs. Tran et al.  
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[10] proposed the design of M -channel linear phase perfect reconstruction filter 

bank (LPPRFB) through lattice structure, which factorizes the polyphase matrix 

into a cascade of elementary building blocks. Besides fast implementation structure 

with minimal number of delay elements, the factorization introduced in [10] also 

structurally enforces both linear phase and perfect reconstruction properties. 

Moreover, based on the lattice factorization, Tran et al. [10] presented several 

design examples of LPPRFB, which are quite efficient in image compression, 

particularly for highly textured images. Thus, further investigation in LPPRFB is 

motivated. Lu G. and K.K. Ma, [1] present a simplified version of lattice 

factorization for LPPRFB of [10]. The new lattice factorization substantially 

reduces the number of free parameters while covering the same class of LPPRFB as 

shown in [10]. Consequently, the new lattice structure can reduce the search space 

in nonlinear optimization for the design of filter bank and lower the computation 

cost in hardware implementation. In [10], Lu G. and K.K. Ma propose a new 

structure for pairwise mirror image (PMI) property to LPPUFBs, with even- 

channel, which is a simplified version of the lattice in [9]. The new structure spans 

the same class of PMI LPPUFBs as the original lattice, while the numbers of free 

parameters are significantly reduced. Through this way, better results with faster 

convergence in the optimization can be achieved.  

The Type-II discrete cosine transform (DCT-II), Rao [7], has found wide 

applications in image and video compression, due to its excellent energy  
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compaction capability and to the existence of numerous fast implementations. 

However, coding schemes exhibit annoying blocking artifacts at low bit rates. The 

lapped orthogonal transform (LOT) [9] provides a solution to this problem via post- 

processing of the DCT coefficients. The basis functions of the LOT cover two data 

blocks. Further suppression of blocking artifacts can be achieved by employing 

multistage post-processing, as in the generalized LOT (GenLOT) [6]. In [4], Jie 

presents a general structure of LPPUFB with both pre and post-processing modules 

added to the DCT. 

Notation-wise, vectors and matrices are denoted by boldfaced characters, special 

matrices I, J,0, D represents, respectively, the identity, the reversal identity, the zero 

and the diagonal matrix with entry 1+ when the corresponding filter is symmetric, 

and 1− while the corresponding filter is antisymmetric. Capital 

letters M , L,K denote respectively the number of the channels, the filter length, and 

the overlapping factor. 

II. LAPPED STRUCTURE OF LPPUFB 

For an M -channel KM -tap general structure of LPPUFB system is developed in 

1993, [8], by which the analysis polyphase matrix ( )zE is shown in Figure 1 (a), and 

can be factorized as 

( )zE = ( ) 0
1

1
GG∏

−=Ki
i z  (1)

where matrices 0G and ( )ziG , 11 ,K-,i L= are called the initial and thi propagate stage  
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of the system, are defined as 

0G = ( )WVU ˆ, 00diag  (2)

( )ziG = ( ) ( )WWΛVU z, aiidiag  
(3)

( )zaΛ = ( )II ,zdiag  
(4)

matrices iU and iV in (3) and (4) are arbitrary ( ) ( )22 /M/M × orthogonal matrices, 

matrices W and Ŵ in the (3) and (4) represent two kinds of MM × butterfly matrix, 

given by 

W = ⎥⎦
⎤

⎢⎣
⎡

− II
II

2
1

, Ŵ = ⎥⎦
⎤

⎢⎣
⎡

− IJ
JI

2
1

 (5)

In which, I and J are ( ) ( )22 /M/M × identity and reversal identity matrix, 

respectively. 

    Recently, the reduction of the complexity had been improved significantly, 

after Gan [2] shows that either all iU or iV in ( )ziG can be eliminated, and the 

completeness of the structure is still guaranteed, that is, ( )ziG , 11 ,K-,i L= in (4) can 

be reduced to 

( )ziG = ( ) ( )WWVI z, ai Λdiag  (6)

we show this improvement in Figure 1(b). 
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(a) 

 

(b) 
Figure 1: An M -channel KM -tap analysis system: (a) The initial structure. (b) The 
improved structure. 

    By the orthogonal property of 0U and iV , and with the commutative property 

between the diagonal matrix ( )00diag UU , and the butterfly matrix W and the advance 

chain ( )zaΛ , the matrix 0U in 0G can actually be moved to propagate stage ( )zNG for 

11 −≤≤ KN rather than 0G . We propose it as the following proposition. 

Proposition 1: The analysis polyphase matrix ( )zE of any KMM × LPLUFB can be 

factorized as ( )zE = ( ) 0
1

1
GG∏

−=Ki
i z , where 

( )zK 1−G = ( ) ( )WWVU z, aK- Λ10diag  (7) 

0G = ( )WVI ˆ, 0diag  (8) 

and 
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( )ziG = ( ) ( )WWVI z, ai Λdiag for 11 −≤≤ Ni  (9) 

 

    In advance, to simplify the structure, turn all W in ( )ziG by Ŵ through the 

relation W = ( ) ( )JIWJI ,ˆ, diagdiag , this makes each propagate 

stage ( )ziG , 21 −≤≤ Ki with the same the structure form, and hence, a new 

expression of ( )zE is shown in Figure 2, and states in the following proposition: 

 
Figure 2: The simplified lapped transform: all W in ( )ziG , 11 −= ,N,i L is replaced 
by Ŵ . 

Proposition 2: The analysis polyphase matrix of any KMM × LPLUFB ( )zE can be 

factorized as 

( )zE = ( ) ( )∏
−=

∏
+

−=

0

1

1

1 Nj
jN

N

Ki
i z~~z GGG , (10)

where ( )ziG for 121 −++= K,,N,Ni L is the same as (3), and the modified propagate 

stages 

N
~G = ( )WJVU ˆ, N0diag ; (11)

0G~ = ( ) ( )WJVIW ˆ,ˆza 0diagΛ ; (12)

j
~G = ( ) ( )WJJVIW ˆ,ˆz ia diagΛ for 121 −= N,,,j L . (13)
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Proof: After modified W by Ŵ , each stage ( )zjG , N,,,j L21= is of the form 

( )ziG = ( ) ( ) ( )JIWΛWJVI ,ˆzˆ, ai diagdiag , 121 −= ,N,,i L  (14)

Start from Ni = , moving ( )JI ,diag of ( )zNG to the next stage ( )zN 1−G and product with 

the first block ( )JVI 1diag −N, of ( )zN 1−G , this makes  

( )zN 1−G = ( ) ( ) ( )JIWΛWJJVI ,ˆzˆ, aN diagdiag 1−  (15)

The proof of this Proposition is completed after similarly the way for index 

021 ,,, N-N-i L= term by term. 

 

    In (12), JVN is the rotation of NV with axis the first column of NV ; while 0JV is 

the rotation of 0V with axis the first row in (13); and in (14), JJVi is the rotation 

of iV with axis the antidiagonal. 

    Since all these matrices iU , iV and J are arbitrary ( ) ( )22 /M/M × orthogonal 

matrices, for simplicity, we replace JVN , 0JV and JJVi in (12), (13) and (14), 

by N
~V , 0V~ and i

~V , respectively. 

Take some special cases of i
~V , which result in a great improvement of simplifying 

process before coding. 

Proposition 3: As state in the Proposition 2, take ( )zN-1E = ( )∏
−=

0

1Nj
j z~G , under 

condition i
~V = I− for all =i 1210 −N,,,, L , then ( )zG~i = ⎥⎦

⎤
⎢⎣
⎡

0J
J0 z and hence the cascade 

product of two cascade stages ( ) ( )zG~zG~ ii 1+ = Iz , for =i 2210 −N,,,, L . And hence, the  
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analysis polyphase matrix 

( )zE =
( )

( )

1

1
1

1

if 2 ,

f 2 1.

N
k

i N
i K

N
k

i N
i K

z z N k

zz z N k

+

= −
+

= −

⎧ =⎪⎪
⎨

⎡ ⎤⎪ = +⎢ ⎥⎣ ⎦⎪⎩

∏

∏

G G

0 JG G J 0

%

%  (16)

 

Theorem 1: Given any orthogonal matrix 0E , the polyphase matrix ( )zE of 

any KMM ×  ( M even, K integer) linear phase paraunitary filter bank satisfying (1) 

can be factorized as 

( )zE = ( ) 0
1

2
10 GGGE ∏

−=
−′

Ki
iK z  (17)

or 

( )zE = ( )
1

0 0
1

i
i K

z
= −

′∏ G G E  (18)

where ( )zK 1−′G = ( )zK
T

10 −GE and 0G′ = T
00EG′ . 

Proof: It is simply using the orthogonality of 0E . To (17), since the final 

stage ( )zK 1−G = ( )zK
T

100 −GEE , while for the (18) initial stage 0G = 000 EEG T . 

Though it states only on the final and initial stage, in fact, we can embed any 

orthogonal operation 0E at any stage N between stage 0 and 1−K . 

III. SPLIT RADIX ALGORITHM OF DCT 

The popular DCT in JPEG and MPEG is the eight-point type-II DCT. Because of its 

practical value, numerous fast DCT-II algorithms have been proposed [7], the most 

effective are ones based on sparse matrix even partly recursive factorizations, i.e.,  
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an even M -point DCT-II can be implemented via an 2/M -point DCT-II and 

an 2/M - point DCT-IV it is a close neighbor of the optimal solution in the search 

space.  

    All lapped transforms can be viewed as post- and pre-processing of the DCT 

coefficients with the quantizer Q in between, as shown in Fig. 4(a). A more intuitive 

viewpoint is depicted in Fig. 4(b), where the pre- and post-filter are outside the 

existing framework. This way, we have a chance at improving coding performance 

while achieving standard-compliance with minimal software/ hardware 

modifications. 

 

Figure 4: The pre/post processing structure. (a) DCT as a preprocessing , and (b) 
as a postprocessing of a lapped transform. 

    For even integer 4≥n , consider a finite length signal x = ( )Tnx,,x,x 110 −L , 

define the even-odd permutation matrix nP on x by  

xPn ≡ ( )Tnn x,,x,x,x,,x,x 131220 −− LL  (19)

Proposition 4: (First order factorization) Let 4≥M be an even integer, the 

matrix II
MC  can be factorized in the form 
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II
MC = ( ) ( )WJICCP ˆdiagdiag /MM/

IV
/M

II
/M

T
n 2222  (20)

Proof: First, assume mM 2= , for some integer 2≥m . We permute the row of 

II
MC by multiplying with MP and write the result as a block matrix 

II
MM CP = ⎥⎦

⎤
⎢⎣
⎡

1110
0100

AA
AA

 (21)

where the four matrices are defined as 

00A = ( ) ( ) ( ) 1

0
2

1222
2

1
m-

j,i
M

jicosi
/M

=⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧ +⋅ πε  (22)

    01A = ( ) ( ) ( ) 121

0
2

1222
2

1
−==

==⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧ +⋅

mj,m-i

mj,i
M

jicosi
/M

πε  (23)

    10A = ( ) ( )( ) 1

0
2

121212
2

1
−

=⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧ ++

+
m

j,i
M

jicosi
/M

πε  

 
(24)

        11A = ( ) ( ) ( ) 121

0
2

121212
2

1
−=−

==⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧ +⋅+

+
mj,m

mj,i
M

jicosi
/M

πε         (25)

 

    In which, ( )iMε = 21 fo M,i 0= ; and1for 11 −= M,,i L . It can be found out that 

00A = II
nC  and 10A = VI

nC . To the two blocks 01A and 11A , by changing index j-nj =′ , 

and using identities ( )θπ −kcos 2 = θcos and ( )[ ]θπ −+12kcos = θcos− for integer k . We 

have 

01A = JC  II
m  (26)

11A = JC  VI
n-  (27)
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And hence,  

2 2

2 2

2

2

1
2

1
2

II II
II M/ M/

IV IVM M
M/ M/

II
M/

IV
M/

⎡ ⎤= ⎢ ⎥−⎣ ⎦
⎡ ⎤ ⎡ ⎤= ⎢ ⎥ −⎢ ⎥⎣ ⎦⎣ ⎦

C C JP C C C J

C 0 I J
I J0 C

 

             = WJ0
0I

C0
0C ˆ
IV
M/

II
M/   

2

2
⎥⎦
⎤

⎢⎣
⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
 (28)

Since 1−
MP = T

MP , finally we complete the proof 

II
MC = ( ) ( )WJICCP ˆdiagdiag /MM/

IV
/M

II
/M

T
n 2222 . 

 

Example 1: For 4=n , we have the factorization of II
4C as 

II
4C = ( ) ( )WJICCP ˆdiagdiag IVIIT

22224  

Indeed,  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

01-10
1-001
0110
1001

 

8
2

8
200

8
2

8
200

001-1
0011

 
1000
0010
0100
0001

2
1

4
ππ

ππ

cos-sin

sincosIIC  (29)

 

To factorize DCT-IV, we need to introduce some matrices using in this paper. First 

denote the modified identity matrices MI′ , MI ′′ and the forward shift matrix MV by 

( )( ) 1
0

1diag
−

=
−≡′

M
iMM iεI , ( )( ) 1

0
11diag

−
=

−+≡′′
M
iMM iεI  (30)

( )( ) 1
0

1diag
M-
i

-
M i =≡D , ( )[ ] 1

01 −
=−−≡ M

j,iM jiδV  (31)

the modified addition matrices: 
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( ) MM IA ≡0  ( )1MA ≡ ( )11
111

111
2

1
MM

MM
T
M

MMM diag JI
DIV

DVI
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

′′−

′
 (32)

Furthermore, we define cosine and sine vectors by 

MC ≡ ( ) 1

08
12 −

=
⎥⎦
⎤

⎢⎣
⎡ + M

iM
kcos π

, MS ≡ ( ) 1

08
12 −

=
⎥⎦
⎤

⎢⎣
⎡ + M

iM
ksin π

 (33)

And the cross-shaped twiddle matrices: 

( )0MT ≡ ⎥
⎦

⎤
⎢
⎣

⎡

11
11

2
1

MM
MM

-JI
JI  ( )1MT ≡ ( ) 1 1 1 1

1 1
1 1 1 1

 
M M M M

M M
M M M M

diag diagdiag diag diag
⎡ ⎤
⎢ ⎥−⎣ ⎦

C J J SI D J S J C  (34)

    We present the factorization of DCT-IV IV
MC for even integer 4≥M in the 

following subsection. 

Proposition 5: For even integer 42 ≥= mM , the matrix IV
MC can be factorized in the 

form: 

IV
MC = ( ) ( ) ( )11 M

II
m

II
mM

T
M diag TCCAP  (35)

In which, ( )1MA is the modified addition matrix 

( )1MA ≡ ( )mm
mm

T
m

mmm diag JI
DIV

DVI
⎥
⎦

⎤
⎢
⎣

⎡

′′−
′

2
1

 (36)

and the cross-shaped twiddle matrix is 

( )1MT ≡ ( )  
m m m m

m m
m m m m

diag diagdiag diag diag
⎡ ⎤
−⎢ ⎥⎣ ⎦

C J J SI D J S J C  (37)

Proof: First, we permute the rows of IV
MC by multiplying with MP and write the 

results as block matrix 

IV
MM CP = ⎥⎦

⎤
⎢⎣
⎡

1110
0100

AA
AA

 (38)

where these four blocks are defined as 
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00A =
( )( ) 1

04
12141 −

=⎭
⎬
⎫

⎩
⎨
⎧ ++ m

j,iM
jicos

m
π

 (39)

01A =
( )( ) 1

04
12141 −

=⎭
⎬
⎫

⎩
⎨
⎧ +++ m

j,iM
jMicos

m
π

 (40)

10A =
( )( ) 1

04
12341 −

=⎭
⎬
⎫

⎩
⎨
⎧ ++ m

j,iM
jicos

m
π

 (41)

11A =
( )( ) 1

04
12341 −

=⎭
⎬
⎫

⎩
⎨
⎧ +++ m

j,iM
jMicos

m
π

 (42)

It can be proved easily that 

( )       
2

1
00 mm

II
mmmm

II
mm Sdiag-Cdiag JSDVCIA ′=  (43)

and 

( )mm
II
mmmm

II
m

T
m diag SCdiag       

2
1

10 JSD ICVA ′′+=  (44)

To the other two matrices 01A and 11A , it is more complex than the two matrices 

above, and needs more trigonometric identities, such as use ( )( )2cos /πα + =  αsin− to 

expand these two matrices, these transpose the order of column vector MC and MS . 

( )( )

( )

( )

( ) ( )
1

0

1

0

1

0

1

0
01

4
12121

4
12121

22
-

4
12121

4
12141

−

=

−

=

−

=

−

=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡ ++
+⎟

⎠
⎞

⎜
⎝
⎛ +
+=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡ ++
+⎟

⎠
⎞

⎜
⎝
⎛ +
+=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
+

++
+⎟

⎠
⎞

⎜
⎝
⎛ ++

=

⎭
⎬
⎫

⎩
⎨
⎧ +++

=

m

j,i

i

m

j,i

m

j,i

m

j,i

π
M

jM
M
jiicos

m
-

π
M

jM
M
jiicos

m

π
M

jM
M

jMicos
m

M
πjMicos

m

ππ

A
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( ) ( )

( ) ( )
1

0

1

0

4
12121

4
121211

4
12121

4
121211

−

=

−

=

⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ +

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ +

=

⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ ++

⎟
⎠
⎞

⎜
⎝
⎛ +

⎟
⎠
⎞

⎜
⎝
⎛ ++

⎟
⎠
⎞

⎜
⎝
⎛ +

=

m

j,i

 i i

m

j,i

 i i

π
M

j-M-cosπ 
M
j isin-π-

M
j-M-sinπ 

M
j icos-

m

π
M

jMsinπ 
M
j isin-π-

M
jMcosπ 

M
j icos-

m
 

= ( ) ( ){ }mm
II
mmmmm

II
mmm CdiagSdiag JSVDJCID       

2
1

−′  (45)

Analogous the way, we get block 

11A = ( ) ( ){ }mm
II
mmmmmm

II
m

T
m CdiagSdiag JSDIJJCV         

2
1 ′′−  (46)

And hence, the block form of IV
MM CP become 

IV
MM CP = ⎥⎦

⎤
⎢⎣
⎡

⎥
⎦

⎤
⎢
⎣

⎡
⎥⎦

⎤
⎢⎣

⎡
′′

′
mmmm

mmmm
II
m

II
m

mm
T
m

mmm
diag Cdiag S-

Sdiagdiag C
- JJ

JJ
S0

0C
DIV
DVI

    
    

  
 

2
1

 (47) 

Finally, we complete the proof by moving MP  from the left to the right. 

The Corollary next, demonstrates the propagate property of DCT-II and DCT–IV 

[5], which results in the Split Radix Algorithm of DCT-II and DCT–IV. 

Corollary (Second order factorization) Let M be an integer 8≥M with 0≡M mod 4 

be given. Then the matrices II
MC , and VI

MC can be factorized as follows 

II
MC = ( ) ( )( ) ( ) ( ) ( )( ) ( )0 1  ,0   ,  ,  , 1  ,, 2244442222 MM/M/

II
M/

II
M/

IV
M/

II
M/M/M/

T
M/

T
M/

T
M diagdiagdiagdiag TTTCCCCAIPPP  (48)

IV
MC = ( ) ( ) ( ) ( ) ( )( )[ ] ( )1 1 ,0  , , ,  , 1 22444422 MM/M/

IV
M/

II
M/

IV
M/

II
M/

T
M/

T
M/M

T
M diagdiagdiag TTTCCCCPPAP  (49)

 

    Let 3 ,2 ≥= mM m , and let m-s
sM 2= , 110 ,m-,,s L= . In the first order 

factorization, we have II
MC split into IV

M
II
M CC

11
⊕ (proposition 4). Recursive 

application, the second order factorization (proposition 5), IV
M

II
M CC

11
⊕ is split  
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into II
M

II
M

IV
M

II
M CCCC

2222
⊕⊕⊕ , to the s order factorization, we illustrate the expand 

procedure of the split radix DCT-II and DCT-IV in the Figure 5 for the third order 

factorization. 
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Figure 5. The Split Radix Expansion of DCT-II (a), and DCT–IV (b). 

Example 2: The 8-point DCT-II II
8C has the second order factorization as 
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⎥
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( )⎥⎦
⎤

⎢⎣
⎡

144
44

A0
0I

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
T

T

4

4
P0
0P

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

II

II

IV

II

C
C

C
C

2222

2222

2222

2222

000
000
000
000

( )
( )⎥⎦
⎤

⎢⎣
⎡

1
0

44
44

T0
0T ( )08TT

8P=

 

We show the procedure in Figure 6(a), there are four rotation angles and three 

butterfly matrices in the factorizing procedure. 

Example 3: The second factorization of 8-point DCT-IV IV
8C is 
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We depict the procedure in Figure 6(b), there are four rotation angles and three 

butterfly matrices in the factorizing procedure.. 

 

Figure 6. The structure of Split-Radix algorithm: (a) 8-point DCT-II. (b) 8-point 
DCT-IV. 

At the end of this section, follows from the Theorem in section II, we embed DCT 

C , which is been radix split for purposes, into the N th stage N
~G , 10 −≤≤ KN ,  
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such that 

N
~G = ( )WVUCC ˆ~, N

T ′0diag  (50)

and hence, the M -channel KM -tap analysis system ( )zE can be factorized as 

( )zE = ( ) ( )∏
−=

∏
+

−=
′

0

1

1

1 Nj
jN

N

Ki
i zˆ~z GGG  (51)

we demonstrate the structure of ( )zE in Fig. 7. 

x
M↓

M↓

M↓

M↓

M↓

M↓

M↓

M↓

-

z

z

z

z

z

z

z

21 / 0V

z

z

z

z

-

-

-

-

-

-

-

-

-

-

-

-

1N-V

21/

21/

21/

21/

-

21/

21/

21/

-

-

21 /

21 /

21 /

21 /

-

21 /

21 /

21 /

-

-

NV
~

0U

TC
-

-

-

-

C

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

z

z

z

z

-

-

-

-

-

-

-

-

1K-G

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

 
Figure 7. An M -channel KM -tap Split-Radix analysis system. 

IV. CONCLUSION 

In this paper, we generalize the structure of linear phase paraunitary filter banks 

through elementary matrices operations. Then, by the special characteristic of 

discrete cosine transform, we adopt split radix algorithm in the processing. These 

properties not only improve the complexity of coding algorithm for a finite signal 

before quantized but also due to the compactness property and the recursive radix 

sparse matrix factorizations property of the discrete cosine transform, it is indeed 

support an effective and simplified lapped structure of linear phase paraunitary 

filter banks. 
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