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Abstract

In this paper, we present a new method for solving of the parabolic
partial differential equation (PPDEs) with Neumann boundary condi-
tions by using the collocation formula for calculating spectral differenti-
ation matrix for Chebyshev-Gauss-Lobatto point. Firstly, theory of ap-
plication of spectral collocation method on parabolic partial differential
equation presented. This method yields a system of ordinary differential
equations (ODEs). Secondly, we use forth order Runge-Kutta formula
for the numerical integration of the system of ODE. The numerical re-
sults obtained by this way have been compared with the exact solution
to show the efficiency of the method.
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1 Introduction

We consider the parabolic partial differential equation ( see [12]) of the form:

∂U

∂t
(x, t) =

∂2U

∂x2
(x, t) + f(t, x, U(x, t)), a ≤ x ≤ b, t ≥ 0, (1)

with the initial condition

U(x, 0) = ϕ(x) (2)
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and the Neumann boundary conditions

∂U

∂x
(a, t) = g1(t),

∂U

∂x
(b, t) = g2(t), t ≥ 0, (3)

In order to solve (1)-(3) numerically, many researchers have used various nu-
merical methods to solve the partial differential equation. Javidi [11] intro-
duced spectral collocation method for the solution of the generalized Burger-
Fisher equation. Darvishi and Javidi [8] studied a numerical solution of Burger’s
equation by pseudospectral method and Darvish’s preconditioning. Soufyane
and Boulmalf [14] Solution of linear and nonlinear parabolic equations by the
decomposition method. Sapagovas [13] introduced hypothesis on the solvabil-
ity of parabolic equations with nonlocal conditions.
In this paper, parabolic partial differential equation was solved by combination
of pseudospectral collocation method and forth order Runge-Kutta method.
The numerical results are compared with the exact solutions. It is shown that
the absolute error are very small.

2 Pseudospectral Chebyshev method

One of the methods to solve partial differential equations is the spectral col-
location method or the pseudospectral method (see [5, 6]). Pseudospectral
methods have become increasingly popular for solving differential equations
and also very useful in providing highly accurate solutions to differential equa-
tions. In this method, such an approximation of uM(x) to u(x) is presented
that uM(xi) = u(xi) for some collocation point xi. After setting uM in the
differential equation, we have to use derivative(s) of uM at the collocation
point. A straightforward implementation of the spectral collocation methods
involves the use of spectral differentiation matrices to compute derivatives at
the collocation points, in which

−→
U = {u(xi)} is the vector consisting of values

of uM at the M +1 collocation points and
−→
U′ = {u′(xi)} consists of the values

of the derivatives at the collocation points, then the collocation derivative ma-

trix D is the matrix mapping
−→
U −→ −→

U′. The entries of derivative matrix D
can be computed analytically. To obtain optimal accuracy this matrices must
be computed carefully. In [4, 5, 9, 15] the authors describe the subject very
well. Let u(x) be a function on [−1, 1]. We interpolate u(x) by the polynomial
uM(x) of degree at most M of the form:

uM(x) =
M∑

j=0

�j(x)u(xj). (4)

In the Chebyshev-Gauss-Lobatto points: xj = cos( jπ
M

), j = 0, 1, . . . , M, with
�j(x), j = 0, 1, . . . , M are polynomial of degree at most M such that:

�j(xk) = δjk, j, k = 0, 1, . . . , M.
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It can be shown that[5]:

�j(x) =
(−1)j+1(1 − x2)T ′

M(x)

cjM2(x − xj)
, j = 0, 1, . . . , M, (5)

where c0 = cM = 2, cj = 1, j = 1, 2, . . . , M − 1 and TM(x) the Chebyshev
polynomial.i.e

TM (x) = cos(M cos−1 x).

The derivatives of the approximate solution uM(x) are then estimated at the
collocation points by differentiating (9) and evaluating the resulting expression
[5]. This yields

u
(n)
M (x) =

M∑
j=0

�
(n)
j (x)u(xj), n = 1, 2, . . . , (6)

or in matrix notation

U(n) = D(n)U, n = 1, 2, . . . ,

where

U(n) = [u
(n)
M (x0), u

(n)
M (x1), . . . , u

(n)
M (xM )]T , U = [u(x0), u(x1), . . . , u(xM)]T

where D(n) is the (M + 1)× (M + 1) matrix whose entries are given by d
(n)
kj =

�
(n)
j (xk), j, k = 0, 1, . . . , M. The first-order Chebyshev differentiation matrix

D(1) = D = (dkj) is given by (see [1, 2, 4, 6, 7]):

dkj =

⎧⎪⎪⎨⎪⎪⎩
− ck

2cj

(−1)j+k

sin((k+j) π
2M

) sin((k−j) π
2M

)
, k �= j,

−1
2
cos(kπ

M
)(1 + cot2(kπ

M
)), k = j, k �= 0, M,

d00 = −dMM = 2M2+1
6

·
(7)

3 Solution of parabolic equation

We will describe the pseudospectral Chebyshev method for (1). Let M be
a nonnegative integer and denote by Xi = cos( iπ

M
), i = 0, 1, 2, · · · , M , the

Chebyshev-Causs-Lobatto points in the interval [−1, 1] and put:

U(x, t) = V (X, t), x = cX + d, xi = cXi + d, i = 0, 1, · · · , M,

where

c =
b − a

2
, d =

b + a

2
.

Then from (1), we have

∂V

∂t
(X, t) =

1

c2

∂2V

∂X2
(X, t) + f(t, cX + d, V (X, t)), −1 ≤ X ≤ 1, t ≥ 0, (8)
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with the following initial and boundary conditions

V (X, 0) = ϕ(cX + d), X ∈ [−1, 1] (9)

and

∂V

∂X
(−1, t) = cg1(t),

∂V

∂X
(1, t) = cg2(t), t ≥ 0. (10)

We discretize (8) in space by the method of lines replacing ∂V
∂X

(Xi, t)

and ∂2V
∂X2 (Xi, t) by pseudospectral approximations given by

∂V

∂X
(Xi, t) ≈

M∑
j=0

d
(1)
ij V (Xj , t) , i = 1, · · · , M − 1 (11)

and

∂2V

∂X2
(Xi, t) ≈

N∑
j=0

d
(2)
ij V (Xj, t) , i = 1, · · · , M − 1. (12)

Here
D(n) = [d

(n)
ij ]Mi,j=0 , n = 1, 2,

are differentiation matrices of order n. Put Vi(t) = V (Xi, t). By substituting
(11) and (12) into (8)-(10) we obtain

V ′
i (t) = 1

c2
(
∑M

j=0 d
(2)
ij Vj(t)) + f(t, cX + d, Vi(t)), Vi(0) = ϕ(cXi + d), (13)

M∑
j=0

d
(1)
MjVj(t) = cg1(t),

M∑
j=0

d
(1)
0j Vj(t) = cg2(t). (14)

We can write the equations (14) as follows:⎧⎨⎩ dM0V0(t) + dMMVM(t) = cg1(t) − ∑M−1
j=1 d

(1)
MjVj(t)

d00V0(t) + d0MVM(t) = cg2(t) − ∑M−1
j=1 d

(1)
0j Vj(t)

(15)

Now we solve the algebric system (15) related to V0(t) andVM(t) as follows

V0(t) =

∣∣∣∣∣∣∣∣
cg1(t) − ∑M−1

j=1 d
(1)
MjVj(t) dMM

cg2(t) − ∑M−1
j=1 d

(1)
0j Vj(t) d0M

∣∣∣∣∣∣∣∣ /
∣∣∣∣∣ dM0 dMM

d00 d0M

∣∣∣∣∣ (16)

=
d0M(cg1(t) − ∑M−1

j=1 d
(1)
MjVj(t)) − dMM(cg2(t) − ∑M−1

j=1 d
(1)
0j Vj(t))

dM0d0M − d00dMM
(17)
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and

VM(t) =

∣∣∣∣∣∣∣∣
dM0 cg1(t) − ∑M−1

j=1 d
(1)
MjVj(t)

d00 cg2(t) − ∑M−1
j=1 d

(1)
0j Vj(t)

∣∣∣∣∣∣∣∣ /
∣∣∣∣∣ dM0 dMM

d00 d0M

∣∣∣∣∣ , (18)

=
dM0(cg2(t) − ∑M−1

j=1 d
(1)
0j Vj(t)) − d00(cg1(t) − ∑M−1

j=1 d
(1)
MjVj(t))

dM0d0M − d00dMM

(19)

By substituting (17) and (19) into (13) we obtain

V ′
i (t) = 1

c2
(di0 × d0M (cg1(t)−

∑M−1

j=1
d
(1)
Mj

Vj(t))−dMM (cg2(t)−
∑M−1

j=1
d
(1)
0j Vj(t))

dM0d0M−d00dMM

+
∑M−1

j=1 d
(2)
ij Vj(t)

+diM × dM0(cg2(t)−
∑M−1

j=1
d
(1)
0j Vj(t))−d00(cg1(t)−

∑M−1

j=1
d
(1)
MjVj(t))

dM0d0M−d00dMM
)

+f(t, cX + d, Vi(t)), i = 1, 2, . . . , M − 1.

(20)

Then the system (20) can be rewritten in the following form:

{
V ′(t) = F (t, V (t)),

V (0) = V0,
(21)

Where

V (t) = [V1(t), V2(t), · · · , VM−1(t))]
T , V0 = [V1(0), V2(0), · · · , VM−1(0)]T ,

V ′(t) = [V ′
1(t), V

′
2(t), · · · , V ′

M−1(t))]
T ,

F (t, V (t)) = [F1(t, V (t)), F2(t, V (t)), · · · , FM−1(t, V (t))]T

and

Fi(t, V (t)) = 1
c2

(di0 × d0M (cg1(t)−
∑M−1

j=1
d
(1)
MjVj(t))−dMM (cg2(t)−

∑M−1

j=1
d
(1)
0j Vj(t))

dM0d0M−d00dMM

+
∑M−1

j=1 d
(2)
ij Vj(t)

+diM × dM0(cg2(t)−
∑M−1

j=1
d
(1)
0j Vj(t))−d00(cg1(t)−

∑M−1

j=1
d
(1)
Mj

Vj(t))

dM0d0M−d00dMM
)

+f(t, cX + d, Vi(t)),

(22)

Equations (21) form a system of ordinary differential equations (ODEs) in
time. Therefore, to advance the solution in time, we use ODE solver such as
the Runge-Kutta methods of order four.
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4 Numerical results

In this section we obtain numerical solutions of parabolic PDEs in the form
(1) with the initial condition (2) and Neumann boundary conditions (3). To
show the efficiency of the present method for our problem in comparison with
the exact solution we report absolute error which is defined by

Uij = |Û(xi, tj) − U(xi, tj)|,

in the point (xi, tj), where Û(xi, tj) is the solution obtained by equation(21)
solved by forth order Runge-Kutta method and U(xi, tj) is the exact solution.
For computational work we select the following problems. In the problem 1-3
we are taken M = 16,Δt = 0.0001.
Problem 1. The first test problem is selected from [3]. This problem is the
heat equation with Neumann boundary conditions:

∂U

∂t
=

∂2U

∂x2
, (x, t) ∈ [0, 1] × (0, 0.25], (23)

with the boundary conditions ∂U
∂x

(x, t) = πe−π2t cos(πx) at x = 0 and x =
1. The initial condition is consistent with the analytic solution U(x, t) =
e−π2t sin(πx). In Table 1 we shows absolute error Uij for problem 1.
Problem 2. This problem was used by Hopkins and Wait [10] to provide
an example of a problem with a nonlinear source term and with Neumann
boundary conditions:

∂U

∂t
=

∂2U

∂x2
+ exp(−U) + exp(−2U), (x, t) ∈ [0, 1] × (0, 50], (24)

with boundary conditions ∂U
∂x

(x, t) = 1
x+t+2

at x = 0 and x = 1. The initial
condition is consistent with the analytic solution U(x, t) = ln(x + t + 2). In
Table 2 we shows absolute error Uij for problem 2.

Table1. Absolute error for various values of x and t

xi/tj 0.05 0.10 0.15 0.20 0.25
x[2] 2.0327e − 11 1.2412e − 11 7.5695e − 12 4.6261e − 12 2.8301e − 12
x[5] 8.3306e − 13 5.0926e − 13 3.1007e − 13 1.8390e − 13 1.0635e − 13
x[8] 1.2568e − 13 6.7724e − 14 4.4048e − 14 3.3584e − 14 2.6673e − 14
x[11] 1.8952e − 13 1.2146e − 13 7.1665e − 14 3.7151e − 14 1.6487e − 14
x[14] 3.0196e − 12 1.8453e − 12 1.1260e − 12 6.9297e − 13 4.2917e − 13
x[16] 2.0330e − 11 1.2414e − 11 7.5716e − 12 4.6279e − 12 2.8314e − 12

Table2. Absolute error for various values of x and t
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xi/tj 1 10 20 35 50
x[1] 1.7186e − 11 2.7669e − 10 6.7247e − 10 1.3729e − 09 2.1506e − 09
x[4] 1.1879e − 13 7.9581e − 13 2.3230e − 12 8.5665e − 12 2.1764e − 11
x[7] 1.0236e − 13 7.6605e − 13 2.2857e − 12 8.5238e − 12 2.1718e − 11
x[10] 8.5487e − 14 7.3630e − 13 2.2480e − 12 8.4817e − 12 2.1672e − 11
x[13] 7.8160e − 14 7.2475e − 13 2.2311e − 12 8.4661e − 12 2.1652e − 11
x[16] 8.7708e − 14 7.2875e − 13 2.2355e − 12 8.4719e − 12 2.1659e − 11
x[17] 4.8586e − 12 7.4457e − 11 1.7924e − 10 3.6948e − 10 5.8987e − 10

Problem 3. This problem is selected from [12]. The problem is

∂U

∂t
=

∂2U

∂x2
+ (π2 − 1)U − pU + (pe−t + e−pt) sinπx, (x, t) ∈ [0, 1] × (0, 1],(25)

with boundary conditions ∂U
∂x

(x, t) = π(e−t + e−pt) cosπx at x = 0 and x = 1.
The initial condition is consistent with the analytic solution U(x, t) = (e−t +
e−pt) sinπx. The solution of this problem contains both a slow transient e−t,
and a rapid transient e−pt where p = 5000, characteristic of stiff problems. In
Table 3 we shows absolute error Uij for problem 3.

Table3. Absolute error for various values of x and t

xi/tj 0.2 0.4 0.6 0.8 1
x[1] 1.1187e − 07 1.1187e − 07 1.1187e − 07 1.1187e − 07 1.1187e − 07
x[4] 6.9987e − 12 5.7301e − 12 4.6914e − 12 3.8410e − 12 3.1447e − 12
x[7] 2.2376e − 11 1.8320e − 11 1.5000e − 11 1.2281e − 11 1.0054e − 11
x[10] 2.5856e − 11 2.1169e − 11 1.7332e − 11 1.4190e − 11 1.1618e − 11
x[13] 1.2073e − 11 9.8841e − 12 8.0925e − 12 6.6255e − 12 5.4245e − 12
x[16] 1.4935e − 12 1.2228e − 12 1.0011e − 12 8.1967e − 13 6.7108e − 13
x[17] 1.1187e − 07 1.1187e − 07 1.1187e − 07 1.1187e − 07 1.1187e − 07

5 Conclusions

In this paper, we have proposed an efficient spectral collocation for parabolic
partial differential equation with Neumann boundary conditions, with highly
convergence and very small error. As seen in Table 1-3, errors are very small
and they are very better than the results of another papers cited in this article.
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