Applied Mathematical Sciences, Vol. 1, 2007, no. 5, 219 - 225

Adomian Decomposition Method for Approximating
the Solution of the Parabolic Equations
M. Javidi® and A. Golbabai’

® Department of Mathematics, Faculty of Science
Razi University, Kermanshah 67149, Iran

b Department of Mathematics
Iran University of Science and Technology
Narmak, Tehran, 16844, Iran

Abstract

In this paper, the Adomian decomposition method for solving the
linear and nonlinear parabolic equations is implemented with appropri-
ate initial conditions. In comparison with existing techniques, the de-
composition method is highly effective in terms of accuracy and rapid
convergence. The numerical results obtained by this way have been
compared with the exact solution to show the efficiency of the method.
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1 Introduction

Over the last 10 years or so many mathematical method that are aimed at
solving nonlinear ordinary and partial differential equations have appeared in
the research literature [12]. However, most of them require a tedious analy-
sis or a large computer memory to handle this problems. In the beginning
of the 1980s, a so-called Adomian decomposition method was introduced by
Adomian [1, 2] for solving the nonlinear problems. It is well known that this
methods avoids linearization and provides an efficient numerical solution with
high accuracy [5, 8, 10, 13].

In this paper, parabolic equations was solved by using Adomian decomposition
method. The numerical results are compared with the exact solutions. It is
shown that the errors are very small.
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2 Analysis of the method

In this section, we demonstrate the main algorithm of Adomian decomposition
method on linear and nonlinear parabolic equations with initial condition,
namely we consider:

% N % +@(u) +g(z,1),  (2,1) € [a,0] < (0,T), @

with the initial condition
u(z,0) = f(z), (2)

where @ is a function of u. We are looking for the solution satisfying Eqgs.(1)-
(2). The decomposition method consists of approximating the solution of
(1)-(2) as an infinite series

u(z,t) = iun(x,t) (3)

and decomposing P as

CD(U) = ZATL(umula"'aun)a (4>
n=0
where A,s are the Adomian polynomials given by
A=~ (o3 atu) 01,2 )
n— U a=05 n=0,1,2,---.
nlda™" = Fla=0

Applying the decomposition method [7, 9], Eq. (1) can be written as
Liu = Lygu + ®(u) + g(x, 1), (6)

pa 2
where L, = % and L., = %.

Assuming the inverse of operatorL; exists it can be take as

t
L) = /0 (.)dt.
Therefore, applying on both sides of Eq. (6) with L; ! yields
u(z,t) = u(z,0) + L' (Losw) + L7 (P(w) + Ly (g(z, 1)). (7)

Using Eq. (3) and (4) it follows that

i Un(2,t) = u(x,0) + L7 (g(z, 1)) + L;l(i Unge) + Ltl(i) A,). (8)
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Therefore, one determines the iterates in the following recursive way:

Uo(xa t) = U(ZE, t) + L)t_l(g(x7t))v (9)
Upi1(2,1) = Ly (Unge + Ap), n=0,1,2,---.

The convergence of this series has been established, using fixed point theorem
[3, 4]. However, in practice, all terms of the series >0 ,u,(x,t) can not be
determined, so we use an approximation of the solution from the truncated
series

Un(z,t) = M (2, 1) with limy, oo Ups(a,t) = u(z, t).

3 Applications

In this section, we consider the application of the decomposition method to
the Eq.(1) with the initial condition (2) by using (5), (9) for two examples.
Example 1. This problem was used by Hopkins and Wait [6] to provide an
example of a problem with a nonlinear source term:

ou  Pu .

E:@—i_e +e ) ($7t)€[0,1]>< (071]7 (1())
with the initial condition u(z,0) = In(x + 2). In this example we have ®(u) =
e +e 2 g(r,t) = 0 and f(z) = In(z + 2). Adomian polynomials can be
derived as follows

Ay = e U0 4 g 2u0,
Ay = uy(—e U0 — e 2u0),
Az = (—ug + 3ui)e™ + (—2uy + 2ui) — Jgugui)e ", (11)
Ay = (—F5us + s5urus + 55 (6ugus + 4uj)
H(—gua + gruaus + 57 (Gurus + 4ud — guui)e™

and so on, the rest of the polynomials can be constructed in similar manner.
By using (9) we have

up = In(z + 2),
Uy = %ﬁ?
Uy = 7_152
= 2@+2)2
__ & 12
Us = 312 (12)
. (71)n+1tn
Up = Tl(l‘+2)" )

and so on. Therefore from (3) we have

(71)n+ltn

2 3
u(z,t) =In(z +2) + 55 — 2(;”)2 + 3(;+2)3 +o+ S+
=In(r +2) +In(55 + 1) (13)
=In(z+t+2)
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Example 2
This problem was used by Lawson and et. al. [11] as the form:

% - % +(? = 1=pu+(pe+e™) (z.6)€[0.1]x (0,1  (14)

with the initial condition
u(z,0) = 2sin(rz)

In this example we have ®(u) = (72 — 1 — p)u, g(z,t) = pe~t + e P and
f(z) = 2sin(mx). By using (9) we have

uy=[2 —pet — %e’pt +p+ %] sin(mx),
ur = —(1+p)2t +pet + He ™ + (p+ 1)t — (p+ )] sin(mz),
uy = (14 p)*[t? —3pe‘t — s P 4 (p+ )g— —3(p+
ug = —(1 +p) [t + pe~t + 14e‘pt+(p+}o)g—!
~(p+ )% + (0 + )t — (p + o) sin(ma),

Uy = (1) (1 +p)" 25 + (1) pe ™ + (1) e + (p+ 1) 5
n—1 .
—(p+ By o (CD) T A+ )t (<1) (p + et sin(ma)

and so on. Therefore from (3) we have

u(z,t) =[2—pet — %e‘pt +p+ 1] sin(mx)

+p)[2t +pet + e " (p+ L )t—(p+ )] sin(7rz)

FPPIE —pet — e 4 (pt ! 2 (p+ )t 0+ 5 pe)]sin(mz)
+p)3[§+pe*t+ 14e*pt+(p+ D5~ (p+ 2+ 0+ Bt

+ pi)] sin(mz) + -+ -+ +(—=1)"(1 —i—p) [Qtl + ( 1)"+1p

—1)rH e pt+(p+ D=+ ) gy

+H(=)"2(p+ )5+ (- 1)" 1(zo+pn)t+( " (p+ —rr)] sin(m)
+--= (et +eP)sinma

(16)

4 Numerical implementation of ADM

In order to verify numerically whether the proposed methodology lead to accu-
rate solutions, we will evaluate the ADM solutions using the M-terms approx-
imation for some examples of the parabolic equations solved in the previous
section. To show the efficiency of the present method for our problem in com-
parison with the exact solution we report absolute errors which is defined by
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where v is the exact solution and Uy, = SM Jw,,(z,t). For M = 5,10,20 we
achieved a very good approximation with the actual solution of M-terms only
of the decomposition series derived above. However, many terms can be cal-
culated in order to achieve a high level accuracy of the decomposition method
with help of Matlab.
Example 1. Table 1 shows absolute error for test problem 1 for various values
of z, t and M. As this Table shows errors are very small.
Example 2. Table 2 shows absolute error for test problem 2 for various values
of z, t, p and M. As this Table shows errors are very small.

Tablel.Absolute error for various values of z , t and M for test problem 1.

z/t 0.2 0.4 0.6 0.8 1
M=5
0.2 8.7288E —8  5.2113E—6  5.5632E —5  2.9414F — 4 0.0011
0.4 52100E —8  3.1268E —6  3.3532E —5 1.7801E —4  6.4360E — 4
0.6 3.2306E —8  1.9530E —6 2.1027E—5 1.1202E—4  4.0630E — 4
0.8 2.0859F —8  1.2624E —6  1.3640E —5 7.2800E —5  2.6512E —4
1.0 1.3842E —8  8.4059E—7 9.1099E—6 48819E—5 1.7801E — 4
M =10
02  29388E—13 b5.5942E —10 4.5169E —8  1.0028E —6  1.0989F — 5
04  1.1369E —13 2.1740E—10 1.7638E —8 3.9323E —7  4.3255E — 6
06  46851E—14 9.1057E—11 7.4176E—9 16601E—7 1.8321E —6
0.8  21094E — 14 4.0656E —11 3.3245E—9  7.4639E —8  8.2616E —7
1.0 9.9920E—15 1.9182E—11 15736E—9 3.5433E—8  3.9323E —7
M =20
02  22204E—16 3.3307TE—16 5.2625E —14 2.1011E —11 2.1403E — 9
04  1.1102E—16 6.6613E —16 9.1038E —15 3.4535E — 12 3.5318E — 10
0.6  4.4409E —16 2.2204F —16 1.5543E —15 6.5525E — 13  6.7235E — 11
0.8  22204E—16 2.2204F —16 2.2204E —16 1.4078E —13 1.4458E — 11
1.0  22204E—16 6.6613E —16 6.6613E —16 3.4195E — 14 3.4537F — 12

Table2. Absolute error for various values of x , t, p and M for test problem 2.



224 M. Javidi, A. Golbabai

o]t 0.2 0.4 0.6 0.8 1

M=20p=1
0.2 4.9449F — 13  3.5554F — 12 5.4122F — 10 2.3279FE — 11 2.4691F — 10
0.4 8.0003F — 13 5.7551F — 12 8.7571F —10 3.7667TF —11 3.9951F — 10
0.6 8.0025F — 13 5.7527F — 12 &.7571E — 10 3.7667F — 11 3.9951F — 10
0.8 4.9438F — 13  3.5553F — 12 5.4122F — 10 2.3280F — 11 2.4691F — 10
1.0 1.0304F — 28 7.4077E — 28 1.1276F — 25 4.8503F — 27 1.1444F — 26

M=10,p=2
0.2 1.0967F — 10 2.0841FE — 7 1.7609F — 5 4.0750F — 4 0.0046
0.4 1.7745F — 10 3.3721E — 7 2.8492F — 5 6.5934F — 4 0.0075
0.6 1.7745F — 10 3.3721FE — 17 2.8492F — 5 6.5934F — 4 0.0075
0.8 1.0967F — 10 2.0841F — 7 1.7609F — 5 4.0750F — 4 0.0046
1.0 2.2850F — 26 4.3421F —23 3.6689F — 21 8.8901F —21 9.6653FE — 19

M=20p=3
0.2 3.8205F — 4 5.1061F — 4 6.6805F — 5 2.8638F — 4 3.1596F — 4
0.4 6.1817F — 4 8.2618F — 4 1.0809F — 4 4.6338F — 4 5.1124F — 4
0.6 6.1817TF — 4 8.2618F — 4 1.0809F — 4 4.6338F — 4 5.1124F — 4
0.8 3.8205F — 4 5.1061F — 4 6.6805FE — 5 2.8638F — 4 3.1596F — 4
1.0 7.9600F — 20 1.0639F — 19 1.3919FE —20 5.9668F — 20 6.5830F — 20

5 Conclusions

In this paper, we have proposed an efficient method for solving system of
parabolic equations, with high convergence and small error. As seen in Tables
1-2, errors are very small and they are very better than the results of another
papers cited in this article.
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