The Dual of a Space of Cauchy Transforms

Y. Abu Muhanna and Z. Abdulhadi

Department of Mathematics American University of Sharjah P.O. Box 26666, Sharjah, United Arab Emirates ymuhanna@aus.edu, zhadi@aus.edu

Abstract. Let F_{α} , $\alpha \geq 0$ be the class of Cauchy transforms of order α equipped with the bounded variation norm. The bounded linear functionals on F_{α} are characterized and an inclusion between duals is given.

Mathematics Subject Classification: 30E20, 30D99

Keywords: Cauchy transform, bounded linear functional, compact linear functional, Borel measure

1. INTRODUCTION

Let **T** be the unit circle and **M** be the set of all complex-valued Borel measures on **T**. For $\alpha > 0$ and $z \in \mathbf{D}$, we define the space of weighted Cauchy transforms F_{α} to be the family of all functions f(z) such that

(1.1)
$$f(z) = \int_{\mathbf{T}} K_x^{\alpha}(z) d\mu(x)$$

where the Cauchy kernel $K_x(z)$ is given by

$$K_x(z) = \frac{1}{1 - \overline{x}z}$$

and where μ in (1.1) varies over all measures in **M**. The class F_{α} is a Banach space with respect to the norm

$$\|f\|_{F_{\alpha}} = \inf \|\mu\|_{\mathbf{M}}$$

where the infimum is taken over all Borel measures μ satisfying (1.1). $\|\mu\|$ denotes the total variation norm of μ . For detailed information about the space F_{α} , see [2, 3, 4, 5].

Let W_{α} denote the space of all bounded linear functionals on F_{α} . Recall that L is called a bounded linear functional on F_{α} if L is linear and

$$|L(f)| \le A ||f||_{F_{\alpha}}$$

for all $f \in F_{\alpha}$. Let W_{α}^* denote the subspace of W_{α} which consist of all bounded functional that preserves weak convergence. This means that if a sequence $\{f_n\}$ and f in F_{α} with corresponding measures, as in (1.1), $\{\mu_n\}$ converges weakly to μ then $L(f_n) \to L(f)$ for each $L \in W_{\alpha}^*$.

It is known, [3], that $||z^n||_{F_{\alpha}} \leq cn^{\alpha-1}$, for $0 \leq \alpha < 1$ and that $||z^n||_{F_{\alpha}}$ is bounded when $\alpha \geq 1$.

Let

$$b_n = L(z^n)$$

Hence

$$\limsup_{n\to\infty} \left| b_n^{1/n} \right| \le 1$$

So the functions

(1.3)
$$g(z) = \sum_{0}^{\infty} b_n z^n,$$
$$g_{\alpha}(z) = \sum_{0}^{\infty} A_n(\alpha) b_n z^n$$

are analytic in *D*. Clearly, $L(\sum_{0}^{k} a_n z^n) = \sum_{0}^{k} a_k b_k$.

In Theorem 1, we characterize all bounded linear functionals on F_{α} and in Theorem 3, we show that $W_{\alpha} \subset W_{\beta}^* \subset W_{\beta}$, where $0 \leq \beta < \alpha$.

2. Bounded linear functionals on F_{α}

In this section, we shall express a bounded linear functional L in terms of g_{α} . As a first step we have:

Lemma 1. If $K_x^{\alpha}(\rho z) = \sum_{0}^{\infty} A_n(\alpha) \rho^n \overline{x}^n z^n$, $\rho < 1$ then

(2.1)
$$L(K_x^{\alpha}(\rho z)) = \sum_{0}^{\infty} A_k(\alpha) b_k \rho^k \overline{x}^k = g_{\alpha}(\rho \overline{x}).$$

322

Proof. Let

(2.2)
$$d\sigma_{\rho}(y) = \operatorname{Re} \frac{1}{1 - \overline{y\rho}} \frac{dt}{\pi},$$
$$d\sigma_{n\rho}(y) = \operatorname{Re} \sum_{0}^{k} \overline{y}^{k} \rho^{k} \frac{dt}{\pi}$$
$$K_{xn}^{\alpha}(\rho z) = \sum_{0}^{n} A_{n}(\alpha) \rho^{k} \overline{x}^{k} z^{k}$$
where $y = e^{it}$. Then $K_{xn}^{\alpha}(\rho z) = \int_{\mathbf{T}} K_{xy}^{\alpha}(z) d\sigma_{n\rho}(y)$ and $K_{x}^{\alpha}(\rho z) = \int_{\mathbf{T}} K_{xy}^{\alpha}(z) d\sigma_{\rho}(y)$ Hence $\|K_{x}^{\alpha}(\rho z) - K_{xn}^{\alpha}(\rho z)\|_{F_{\alpha}} \leq \int \left|\operatorname{Re} \sum_{n+1}^{\infty} \overline{y}^{k} \rho^{k}\right| \frac{dt}{\pi} \to 0$, as $n \to \infty$. Hence, as L is continuous, the result follows.

Lemma 2. Let f be as in (1.1), then

$$L(f) = \int_{\mathbf{T}} L(K_x^{\alpha}(z)) d\mu(x)$$

Proof. Let $d\lambda_n = \sum_{0}^{n} \mu_j \chi_{x_j} \to d\mu$ in the total variation norm and let $f_n = \int_{\mathbf{T}} K_x^{\alpha}(z) d\lambda_n(x)$. Then $f_n \to f$ in F_{α} and, as $d\lambda_n$ is a finite sum,

$$L(f_n) = \int_{\mathbf{T}} L(K_x^{\alpha}(z)) d\lambda_n(x) \to L(f).$$

Since $L(K_x^{\alpha}(z))$ is bounded,

$$\left| \int_{\mathbf{T}} L(K_x^{\alpha}(z)) d\lambda_n(x) - \int_{\mathbf{T}} L(K_x^{\alpha}(z)) d\mu(x) \right| \le C \|\mu - \lambda_n\|$$

and hence $L(f) = \int_{\mathbf{T}} L(K_x^{\alpha}(z)) d\mu(x)$.

Lemma 3. $g_{\alpha}(z) = \sum_{0}^{\infty} A_n(\alpha) b_n z^n$ is a bounded function in D.

Proof. By (2.1) and (2.2), $L(K_x^{\alpha}(\rho z)) = \sum_{0}^{\infty} A_k(\alpha) b_k \rho^k \overline{x}^k = \int_{\mathbf{T}} L(K_{xy}^{\alpha}(z)) d\sigma_{\rho}(y)$. Since $K_x^{\alpha}(z)$ is uniformly bounded by 1 in F_{α} , $L(K_x^{\alpha}(\rho z))$ is also uniformly bounded in C. Hence $g_{\alpha}(z)$ is a bounded function.

The first three lemmas lead to the following proposition:

323

Proposition 4. $g_{\alpha}(\overline{x}) = \lim_{\rho \to 1} g_{\alpha}(\rho \overline{x}) = L(K_x^{\alpha}(z)), \text{ for all } x \text{ with } |x| = 1.$

Proof. Lemma 1 imply that $g_{\alpha}(\rho \overline{x}) = \int_{\mathbf{T}} L(K_{xy}^{\alpha}(z)) d\sigma_{\rho}(y)$. This, the fact that $g_{\alpha}(z)$ is bounded and $d\sigma_{\rho}(y) = \operatorname{Re} \frac{1}{1 - \overline{y\rho}} \frac{dt}{\pi}$ imply that $L(K_{x}^{\alpha}(z)) = g_{\alpha}(\overline{x})$.

A consequence of Proposition 1 is:

Corollary 5. Let f be as in (1.1), $f(z) = \sum_{0}^{\infty} a_k z^k$ and L a bounded linear functional on F_{α} . Then

(2.3)
$$L(f) = \int_{\mathbf{T}} g_{\alpha}(\overline{x}) d\mu(x) = \lim_{\rho \to 1} \sum_{0}^{\infty} A_{k}(\alpha) b_{k} a_{k} \rho^{k},$$

where $g_{\alpha} \in H^{\infty}$, defined as in (1.3), has radial limits at all $x \in T$.

In the converse direction of Corollary 1, we have

Lemma 6. Let g and g_{α} be related as in (1.3). If $g_{\alpha} \in H^{\infty}$ with radial limits at all $x \in T$ then g generates a bounded linear functional on F_{α} .

Proof. Define $L(K_x^{\alpha}(z)) = g_{\alpha}(\overline{x})$ and if f as in (1), $L(f) = \int_{\mathbf{T}} g_{\alpha}(\overline{x}) d\mu(x)$. Clearly L is linear and as g_{α} is bounded $|L(f)| \leq ||g_{\alpha}||_{H^{\infty}} ||f||_{F_{\alpha}}$.

In conclusion, Corollary 1 and Lemma 4 lead to the following theorem which characterizes the dual of F_{α} :

Theorem 7. The dual of $F_{\alpha} = W_{\alpha} = \{g : g_{\alpha} \in H^{\infty} \text{ with radial limits at all } x \in T\}$ and $W_{\alpha}^* = \{g : g_{\alpha} \text{ is continuous on } \overline{D}\}.$

Remark 1. The dual of $F_1 = W_1 = \{g : g \in H^{\infty} \text{ with radial limits at all } x \in T\}.$

Remark 2. The dual of $F_2 = W_2 = \{g : g \text{ is analytic on } \overline{D}\} = \text{The dual of } F_{\alpha},$ for all $\alpha > 2$. This is the same as the dual of the space of all analytic functions

equipped with the topology of uniform convergence on compact subsets of D.

Dual of F_{α}

3. Some Properties of W_{α}

We start this section with the statement of the well known Abel's Theorem:

Theorem 8. (Abel's Theorem) If $\sum_{1}^{\infty} c_n$ is convergent, with $\left|\sum_{1}^{\infty} c_n\right| \leq M$ and $\{d_n\}$ is a decreasing positive sequence converging to 0 then $\left|\sum_{s+1}^{u} c_n d_n\right| \leq 2Md_{s+1}$ and hence $\sum_{1}^{\infty} c_n d_n$ converges.

As a consequence of Abel's Theorem we have:

Lemma 9. Let g and g_{α} be as in (1.3) with $\alpha > 1$. If $g_{\alpha} \in H^{\infty}$ then g is continuous on \overline{D} .

Proof. Let $d_n = \frac{1}{A_n(\alpha)}$, where $\alpha > 1$. Then d_n is decreasing to 0. Let $c_n = A_n(\alpha)b_n z^n$. Then apply Abel's Theorem to get

$$\left|\sum_{s+1}^{u} c_n d_n\right| = \left|\sum_{s+1}^{u} b_n z^n\right| \le 2 \left\|g_\alpha\right\|_{\infty} d_{s+1} \to 0.$$

and consequently

$$\left|\sum_{s+1}^{u} b_n e^{int}\right| \le 2 \left\|g_\alpha\right\|_{\infty} d_{s+1} \to 0$$

Hence $\sum_{1}^{\infty} b_n z^n$ is uniformly convergent on \overline{D} . Therefore, it is continuous.

Here is another important consequence of Abel's Theorem.

Lemma 10. If $g_{\alpha} \in H^{\infty}$ for any $\alpha \geq 0$ then g_{β} is continuous for any $\beta < \alpha$. *Proof.* Let $d_n = \frac{A_n(\beta)}{A_n(\alpha)}$ and $c_n = A_n(\alpha)b_n z^n$. Then it can be shown that d_n decreases to 0. Hence, by Abel's Theorem,

$$\left|\sum_{s+1}^{u} c_n d_n\right| = \left|\sum_{s+1}^{u} A_n(\beta) b_n z^n\right| \le 2 \left\|g_\alpha\right\|_{\infty} d_{s+1} \to 0$$

and that

$$\left|\sum_{s+1}^{u} A_n(\beta) b_n e^{int}\right| \le 2 \left\|g_\alpha\right\|_{\infty} d_{s+1} \to 0$$

Hence $\sum_{1}^{\infty} A_n(\beta) b_n z^n$ is uniformly convergent on \overline{D} . Hence, it is continuous.

As a consequence of the last lemma, we have:

Theorem 11. $W_{\alpha} \subset W_{\beta}^* \subset W_{\beta}$, where $0 \leq \beta < \alpha$.

Finally we have the following property of W_{α} , $\alpha > 0$.

Theorem 12. If $g \in W_{\alpha}$ and $g_{\alpha} \in F_{\alpha}$ then $\sum_{0}^{\infty} A_{n}(\alpha) |b_{n}|^{2} < \infty$.

Proof. Let g, g_{α} be as in (1.3) and that L is the corresponding linear functional. In specific, $L(z^n) = b_n$ and $g_{\alpha} = \sum_{1}^{\infty} A_n(\alpha) b_n r e^{int} \in F_{\alpha}$ is bounded. Hence $\overline{g_{\alpha}(\overline{z})} = \sum_{1}^{\infty} \frac{1}{n} \overline{b_n} z^n \in F_{\alpha}$ is bounded. Apply L to $\overline{g_{\alpha}(\overline{z})}$ to conclude the result.

Remark 3. The result implies, for $\alpha = 0$, that the area of the image of g_0 is finite.

References

- [1] J. Garnett, Bounded Analytic Functions, Academic Press, New York 1980.
- [2] D. J. Hallenbeck and K. Samotij, On Cauchy integrals of logarithmic potentials and their multipliers, J. Math. Anal. Appl., 174 (1993), 614-634.
- [3] D. J. Hallenbeck, T. H. MacGregor and K. Samotij, Fractional Cauchy transforms, inner functions and multipliers, Proc. London Math. Soc. (3) 72 (1996) 157-187.
- [4] R. A. Hibschweiler and T. H. MacGregor, Closure properties of families of Cauchy-Stieltjes transforms, Proc. Amer. Math. Soc. Vol. 105, No. 3 (1989), 615-621.
- [5] T. H. MacGregor, Analytic and univalent functions with integral representations involving complex measures, Indiana Univ. J. 36, (1987), 109-130

Received: August 25, 2006