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1. Introduction

Let T be the unit circle and M be the set of all complex–valued Borel
measures on T. For α > 0 and z ∈ D, we define the space of weighted Cauchy
transforms Fα to be the family of all functions f(z) such that

f(z) =

∫

T

Kα
x (z)dμ(x)(1.1)

where the Cauchy kernel Kx(z) is given by

Kx(z) =
1

1 − xz

and where μ in (1.1) varies over all measures in M. The class Fα is a Banach
space with respect to the norm

‖f‖Fα = inf ‖μ‖M(1.2)

where the infimum is taken over all Borel measures μ satisfying (1.1). ‖μ‖
denotes the total variation norm of μ. For detailed information about the
space Fα, see [2, 3, 4, 5].
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Let Wα denote the space of all bounded linear functionals on Fα. Recall that
L is called a bounded linear functional on Fα if L is linear and

|L(f)| ≤ A‖f‖Fα

for all f ∈ Fα. Let W ∗
α denote the subspace of Wα which consist of all

bounded fuctional that preserves weak convergence. This means that if a
sequence {fn} and f in Fαwith corresponding measures, as in (1.1), {μn}
converges weakly to μ then L(fn) → L(f) for each L ∈ W ∗

α.

It is known, [3], that ‖zn‖Fα ≤ cnα−1, for 0 ≤ α < 1 and that ‖zn‖Fα is
bounded when α ≥ 1.

Let

bn = L(zn).

Hence

lim sup
n→∞

∣∣b1/n
n

∣∣ ≤ 1.

So the functions

g(z) =

∞∑
0

bnzn,

gα(z) =

∞∑
0

An(α)bnzn(1.3)

are analytic in D. Clearly, L(
k∑
0

anzn) =
k∑
0

akbk.

In Theorem 1, we characterize all bounded linear functionals on Fα

and in Theorem 3, we show that Wα ⊂ W ∗
β ⊂ Wβ, where 0 ≤ β < α.

2. Bounded linear functionals on Fα

In this section, we shall express a bounded linear functional L in terms
of gα. As a first step we have:

Lemma 1. If Kα
x (ρz) =

∞∑
0

An(α)ρnxnzn, ρ < 1 then

L(Kα
x (ρz)) =

∞∑
0

Ak(α)bkρ
kxk = gα(ρx).(2.1)
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Proof. Let

dσρ(y) = Re
1

1 − yρ

dt

π
,(2.2)

dσnρ(y) = Re
k∑
0

ykρk dt

π

Kα
xn(ρz) =

n∑
0

An(α)ρkxkzk

where y = eit. Then Kα
xn(ρz) =

∫
T

Kα
xy(z)dσnρ(y) and Kα

x (ρz) =
∫
T

Kα
xy(z)dσρ(y).

Hence ‖Kα
x (ρz) − Kα

xn(ρz)‖Fα ≤ ∫ ∣∣∣∣Re
∞∑

n+1

ykρk

∣∣∣∣ dt

π
→ 0, as n → ∞. Hence,

as L is continuous, the result follows.

Lemma 2. Let f be as in (1.1), then

L(f) =

∫

T

L(Kα
x (z))dμ(x).

Proof. Let dλn =
n∑
0

μjχxj
→ dμ in the total variation norm and let fn =∫

T

Kα
x (z)dλn(x). Then fn → f in Fα and, as dλn is a finite sum,

L(fn) =

∫

T

L(Kα
x (z))dλn(x) → L(f).

Since L(Kα
x (z)) is bounded,∣∣∣∣∣∣
∫

T

L(Kα
x (z))dλn(x) −

∫

T

L(Kα
x (z))dμ(x)

∣∣∣∣∣∣ ≤ C‖μ − λn‖

and hence L(f) =
∫
T

L(Kα
x (z))dμ(x).

Lemma 3. gα(z) =
∞∑
0

An(α)bnzn is a bounded function in D.

Proof. By (2.1) and (2.2), L(Kα
x (ρz)) =

∞∑
0

Ak(α)bkρ
kxk =

∫
T

L(Kα
xy(z))dσρ(y).

Since Kα
x (z) is uniformly bounded by 1 in Fα, L(Kα

x (ρz)) is also uniformly
bounded in C. Hence gα(z) is a bounded function.

The first three lemmas lead to the following proposition:
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Proposition 4. gα(x) = lim
ρ→1

gα(ρx) = L(Kα
x (z)), for all x with |x| = 1.

Proof. Lemma 1 imply that gα(ρx) =
∫
T

L(Kα
xy(z))dσρ(y). This, the fact that

gα(z) is bounded and dσρ(y) = Re
1

1 − yρ
dt
π

imply that L(Kα
x (z)) = gα(x).

A consequence of Proposition 1 is:

Corollary 5. Let f be as in (1.1), f(z) =
∞∑
0

akz
k and L a bounded linear

functional on Fα. Then

L(f) =

∫

T

gα(x)dμ(x) = lim
ρ→1

∞∑
0

Ak(α)bkakρ
k,(2.3)

where gα ∈ H∞, defined as in (1.3), has radial limits at all x ∈ T.

In the converse direction of Corollary 1, we have

Lemma 6. Let g and gα be related as in (1.3). If gα ∈ H∞ with radial limits
at all x ∈ T then g generates a bounded linear functional on Fα.

Proof. Define L(Kα
x (z)) = gα(x) and if f as in (1), L(f) =

∫
T

gα(x)dμ(x).

Clearly L is linear and as gα is bounded |L(f)| ≤ ‖gα‖H∞ ‖f‖Fα
.

In conclusion, Corollary 1 and Lemma 4 lead to the following theorem
which characterizes the dual of Fα :

Theorem 7. The dual of Fα = Wα = {g : gα ∈ H∞ with radial limits at all
x ∈ T} and

W ∗
α = {g : gα is continuous on D}.

Remark 1. The dual of F1 = W1 = {g : g ∈ H∞ with radial limits at all
x ∈ T}.

Remark 2. The dual of F2 = W2 = {g : g is analytic on D} =The dual of Fα,
for all α > 2.This is the same as the dual of the space of all analytic functions

equipped with the topology of uniform convergence on compact subsets of D.
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3. Some Properties of Wα

We start this section with the statement of the well known Abel’s The-
orem:

Theorem 8. ( Abel’s Theorem) If
∞∑
1

cn is convergent, with

∣∣∣∣
∞∑
1

cn

∣∣∣∣ ≤ M and

{dn} is a decresing positive sequence converging to 0 then

∣∣∣∣
u∑

s+1

cndn

∣∣∣∣ ≤ 2Mds+1

and hence
∞∑
1

cndn converges.

As a consequence of Abel’s Theorem we have:

Lemma 9. Let g and gα be as in (1.3) with α > 1. If gα ∈ H∞ then g is
continuous on D.

Proof. Let dn = 1
An(α)

, where α > 1. Then dn is decreasing to 0. Let cn =

An(α)bnzn. Then apply Abel’s Theorem to get∣∣∣∣∣
u∑

s+1

cndn

∣∣∣∣∣ =

∣∣∣∣∣
u∑

s+1

bnzn

∣∣∣∣∣ ≤ 2 ‖gα‖∞ ds+1 → 0.

and consequently ∣∣∣∣∣
u∑

s+1

bneint

∣∣∣∣∣ ≤ 2 ‖gα‖∞ ds+1 → 0.

Hence
∞∑
1

bnzn is uniformly convergent on D. Therefore, it is continuous.

Here is another important consequence of Abel’s Theorem.

Lemma 10. If gα ∈ H∞ for any α ≥ 0 then gβ is continuous for any β < α.

Proof. Let dn =
An(β)

An(α)
and cn = An(α)bnzn. Then it can be shown that dn

decreases to 0. Hence, by Abel’s Theorem,∣∣∣∣∣
u∑

s+1

cndn

∣∣∣∣∣ =

∣∣∣∣∣
u∑

s+1

An(β)bnzn

∣∣∣∣∣ ≤ 2 ‖gα‖∞ ds+1 → 0

and that ∣∣∣∣∣
u∑

s+1

An(β)bneint

∣∣∣∣∣ ≤ 2 ‖gα‖∞ ds+1 → 0

Hence
∞∑
1

An(β)bnzn is uniformly convrgent on D. Hence, it is continuous.
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As a consequence of the last lemma, we have:

Theorem 11. Wα ⊂ W ∗
β ⊂ Wβ, where 0 ≤ β < α.

Finally we have the following property of Wα, α > 0.

Theorem 12. If g ∈ Wα and gα ∈ Fα then
∞∑
0

An(α) |bn|2 < ∞.

Proof. Let g, gα be as in (1.3) and that L is the corresponding linear functional.

In specific, L(zn) = bn and gα =
∞∑
1

An(α)bnreint ∈ Fα is bounded. Hence

gα(z) =
∞∑
1

1
n
bnzn ∈ Fα is bounded. Apply L to gα(z) to conclude the result.

Remark 3. The result implies, for α = 0, that the area of the image of g0 is
finite.
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