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Abstract

Consider the even-order nonlinear neutral delay differential equation
dn

dtn [(x(t)− p(t)g(x(t− τ))]−Q(t)h(x(t− σ)) = 0, t ≥ t0, where p,Q ∈
C([t0,∞), R), τ > 0, σ ≥ 0. We obtain a linearized oscillation result
by an associate linear equation in the case when the coefficient p(t)
takes values in the interval (−1, 0), and thereby establish new criteria
as proposed in an earlier open problem.

Keywords: Even-order; neutral differential equation; linearization; oscil-
lation

1. Introduction

During last ten years, the linearized oscillation theory for nonlinear neutral

delay differential equations has been extensively developed, for example see [1−
9]. Roughly speaking, it has been proved that, under appropriate hypotheses,

certain nonlinear neutral delay differential equations have the same oscillatory

character as an associated linear equation.

1Supported by the NNSF of China (no. 10571050) and the key project of Education
Department of Hunan Province (03A023).
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Consider the even-order nonlinear neutral differential equation

dn

dtn
[x(t) − p(t)g(x(t − τ))] − Q(t)h(x(t − σ)) = 0, t ≥ t0, (1)

where n is an even number and

p, Q ∈ C([t0,∞), R), g, h ∈ C(R, R), τ > 0, σ ≥ 0. (2)

The first linearized oscillation result of Eq.(1) was established by Chuanxi

and Ladas [3], where the coefficient p(t) takes values in the interval (0, 1).

The question naturally arises as to how one may establish the corresponding

linearized oscillation results of (1) for the case when p(t) takes values outside

the interval (0, 1). Also see the open problem 6.12.7 in [4]. About the study of

the above problem, to the present time, the cases when −∞ < p(t) ≤ −1 and

p(t) ≥ 1 have been considered in [9] . However, the case −1 < p(t) < 0 has

not yet been handled. Our aim in this paper is to answer the above problem

for the case when−1 < p(t) < 0. Our main result is the following theorem.

Theorem A Assume that (2) holds and that

lim sup
t→∞

p(t) = −P0 ∈ (−1, 0), lim inf
t→∞ p(t) = −p0 ∈ (−1, 0), (3)

lim
t→∞Q(t) = q ∈ (0,∞), (4)

0 ≤ g(u)

u
≤ 1 for u �= 0 and lim

u→0

g(u)

u
= 1, (5)

uh(u) > 0 for u �= 0 and lim
u→0

h(u)

u
= 1. (6)

If every bounded solution of the linear equation

dn

dtn
[y(t) + p−1

0 y(t − τ)] − qy(t − σ) = 0 (7)

oscillates, then every bounded solution of Eq.(1) also oscillates.

The proof of the above Theorem will be given in section 2.

Let ρ = max{τ, σ}. By a solution of Eq.(1) we mean a function x ∈
C([t1 − ρ,∞), R) for some t1 ≥ t0, such that x(t) − p(t)g(x(t − τ)) is n times

continuously differentiable on [t1,∞) and (1) is satisfied for t ≥ t1.

Let t1 ≥ t0 and let ϕ ∈ C([t1 − ρ, t1], R) be a given initial function, and let

zk, k = 0, 1, ..., n−1, be given initial constants. Using the method of steps one

can see that Eq. (1) has a unique solution x ∈ C([t1 − ρ,∞), R) such that

x(t) = ϕ(t) for t ∈ [t1 − ρ, t1]
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and
dk

dtk
[ϕ(t) − p(t)g(ϕ(t − τ))]t=t1 = zk for k = 0, 1, 2, ..., n − 1.

As usual, a solution of Eq.(1) is called oscillatory if it has arbitrarily large

zeros and nonoscillatory if it is eventually positive or eventually negative.

In the sequel, for convenience, when we write a functional inequality with-

out specifying its domain of validity we assume that it holds for all sufficiently

large t.

2. Proof of Theorem A

The following lemmas will be useful in the proof of Theorem A.

Lemma 1 Let n be even and assume that

p ∈ (0, 1), τ, q ∈ (0,∞) and σ ∈ [0,∞). (8)

If every bounded solution of the linear equation

dn

dtn
[x(t) + p−1x(t − τ)] − qx(t − σ) = 0 (9)

oscillates, then there exists an ε ∈ (0, q) such that every bounded solution of

the equation

dn

dtn
[(x(t) + (p−1 + ε)x(t − τ)] − (q − ε)x(t − σ) = 0 (10)

also oscillates.

Proof. By lemma 4 in [3], the hypothesis that every bounded solution of

Eq.(9) oscillates implies that the characteristic equation of Eq.(9)

f(λ) = λn + p−1λne−λτ − qe−λσ = 0

has no real roots ∈ (−∞, 0). This and f(0) = −q < 0 imply that

f(λ) < 0 for all λ ∈ (−∞, 0]

and hence τ < σ. Clearly, f(−∞) = −∞ and so

f(λ) ≤ sup
ξ∈(−∞,0]

f(ξ) := m < 0 for all λ ∈ (−∞, 0].

Next we set

δ =
1

3
q and g(λ) = δ(−λne−λt − e−λσ).
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Then it is easy to see that

f(λ) − g(λ) = λn(1 + (p−1 + δ)e−λt) − (q − δ)e−λσ → −∞ as λ → −∞,

which implies that there exists a λ0 < 0 such that

f(λ) − g(λ) ≤ 1

2
m for λ ≤ λ0.

Let

μ = sup
λ∈[λ0,0]

(λne−λτ + e−λσ)

and set

ε = min{δ,−1

2
mμ}.

To complete the proof, by lemma 4 in [3] it suffices to show that the charac-

teristic equation

λn + (p−1 + ε)λne−λτ − (q − ε)e−λσ = 0 (11)

has no real roots in (−∞, 0]. In fact, because n is even, we have for λ ≤ λ0

λn + (p−1 + ε)λne−λτ − (q − ε)e−λσ = f(λ) + ε(λne−λτ + e−λσ)

≤ f(λ) + δ(λne−λτ + e−λσ)

= f(λ) − g(λ) ≤ 1

2
m < 0.

and for λ0 ≤ λ ≤ 0

λn + (p−1 + ε)λne−λτ − (q − ε)e−λσ = f(λ) + ε(λne−λτ + e−λσ)

≤ m + με ≤ m − 1

2
m =

1

2
m < 0.

The proof is complete.

Lemma 2 [3] Consider the equation

dn

dtn
[x(t) − P (t)x(t − τ)] − Q(t)x(t − σ) = 0, (12)

where n is even,and

P, Q ∈ C((t0,∞), R), Q(t) ≥ 0 for t ≥ t0 and τ > 0, σ ≥ 0. (13)

Assume that there are numbers p1 and p2 such that

p1 ≤ P (t) ≤ p2 < −1 (14)
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and that ∫ ∞

t0
Q(s)ds = ∞. (15)

Let x(t) be an eventually bounded positive solution of Eq.(12) and set

y(t) = x(t) − P (t)x(t − τ).

Then eventually

y(n)(t) ≥ 0, (−1)iy(n−i)(t) > 0 for i = 1, 2, ..., n. (16)

lim
t→∞ y(i)(t) = 0 for i = 0, 1, ...n − 1. (17)

Now we are ready to prove Theorem A by using the Banach Contraction

Principle.

Proof of Theorem A . Assume that Eq.(1) has a bounded nonoscillatory

solution x(t). We will assume that x(t) is eventually positive. The case when

x(t) is eventually negative is similar and will be omitted. Choose t1 ≥ t0 to be

such that

x(t − τ) > 0, x(t − σ) > 0 for t ≥ t1.

Set

Z(t) = x(t) − p(t)g(x(t − τ)). (18)

Then Z(t) > 0 and

Z(n)(t) = Q(t)h (x(t − σ)) ≥ 0 for t ≥ t1. (19)

So, Z(i)(t)(i = 0, 1, ..., n−1) are eventually positive or eventually negative and

so either

Z(n−1)(t) < 0, (20)

or

Z(n−1)(t) > 0. (21)

We claim that (20) holds. Otherwise (21) holds which implies that there exists

β > 0 such that eventually

Z(n−1)(t) ≥ β.

This yields Z(t) → ∞, which is a contradiction because of the bounded nature

of x(t) and p(t). Hence (20) holds. Let

lim
t→∞Z(n−1)(t) = α ∈ (−∞, 0].
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Integrating (19) from t ≥ t1 to ∞, we have

α − Z(n−1)(t) =
∫ ∞

t
Q(s)h(x(s − σ))ds,

which, together with (4) and (6), yields

lim inf
t→∞ x(t) = 0. (22)

Now we claim that

lim sup
t→∞

x(t) = 0. (23)

Indeed, let limt→∞ Z(t) = L, then L ∈ [0,∞), and from (22), there exists a

sequence λn, such that

lim
n→∞ λn = ∞, lim

n→∞ x(λn) = 0. (24)

Set

Z(t)−Z(t− τ) = x(t)−p(t)g(x(t− τ))−x(t− τ)+p(t− τ)g(x(t−2τ)). (25)

By replacing t with λn in (25), we have

Z(λn) − Z(λn − τ) = x(λn) − p(λn)g(x(λn − τ))

−x(λn − τ) + p(λn − τ)g(x(λn − 2τ))

≤ x(λn) − [p(λn) + 1]x(λn − τ),

that is

x(λn) + Z(λn − τ) − Z(λn) ≥ [p(λn) + 1]x(λn − τ)

and so

0 = lim
n→∞[x(λn) + Z(λn − τ) − Z(λn)]

≥ lim inf
n→∞ [p(λn) + 1]x(λn − τ)

≥ (1 − p0) lim inf
n→∞ x(λn − τ).

Since −p0 ∈ (−1, 0), x(t) is eventually positive, there exists a sequence λnk

such that

lim
t→∞ x(λnk

− τ) = 0. (26)

By replacing t with λnk
in (18), from (24),(26), we have

L = lim
k→∞

Z(λnk
) = lim

k→∞
[x(λnk

) − p(λnk
)g(x(λnk

− τ))] = 0.
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From the definition of Z(t), we have

0 = lim
t→∞Z(t) ≥ lim sup

t→∞
x(t).

Since x(t) is eventually positive, it follows that

lim
t→∞ supx(t) = 0.

Which, together with (22), yields

lim
t→∞x(t) = L = 0. (27)

Next we rewrite Eq. (1) in the form

dn

dtn
(x(t) + P ∗(t)x(t − τ)) − Q∗(t)x(t − σ) = 0, (28)

where

P ∗(t) = −p(t)g(x(t − τ))/x(t − τ), Q∗(t) = Q(t)h(x(t − σ))/x(t − σ).

From (3)–(6) and (27) we have

lim sup
t→∞

P ∗ ≤ p0, lim
t→∞ Q∗(t) = q. (29)

According to the definition of Z(t), we can rewrite Eq. (28) in the form

Z(n)(t) + P ∗(t − σ)
Q∗(t)

Q∗(t − τ)
Z(n)(t − τ) = Q∗(t)Z(t − σ). (30)

Since every bounded solution of Eq. (7) oscillates, by Lemma 1 it follows that

there is an ε ∈ (0, q) such that

λn + (p−1 + ε)λne−λτ − (q − ε)e−λσ < 0 for all λ ∈ (−∞, 0]. (31)

For this ε > 0, let α ∈ (0, 1) be such that αq > q − ε, and let β > 1 be such

that

αq > β(q − ε) or
q

β
>

(q − ε)

α
.

From (29) we see that there exists t2 > t1 + σ such that

P ∗(t − σ) · Q∗(t)
Q∗(t − τ)

< p0 + ε < p−1
0 + ε, Q∗(t) >

q

β
for t ≥ t2. (32)
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Substituting this into (30),we get

Z(n)(t) + (p−1
0 + ε)Z(n)(t − τ) >

q

β
Z(t − σ), t ≥ t2. (33)

Set

G(t) =
(
Z(n)(t) + (p−1

0 + ε)Z(n)(t − τ)
)
/Z(t − σ), (34)

then we have by (33)

G(t) >
q

β
for t ≥ t2. (35)

From (34) we see that

Z(n)(t) + (p−1
0 + ε)Z(n)(t − τ) = G(t)Z(t − σ). (36)

Integrating both sides of (36) from t ≥ t2 to ∞ n− 1 times and using Lemma

2, we get

Z ′(t) + (p−1
0 + ε)Z ′(t − τ) +

1

(n − 2)!

∫ ∞

t
(s − t)n−2G(s)Z(s − σ)ds = 0.

In what follows, for the sake of convenience, we set

a = p−1
0 + ε, H(t) =

1

(n − 2)!

∫ ∞

t
(s − t)n−2G(s)Z(s − σ)ds.

Then we have

Z ′(t) + aZ ′(t − τ) + H(t) = 0.

Integrating this from t to ∞, we get

Z(t) + aZ(t − τ) =
∫ ∞

t
H(u)du,

or equivalently

Z(t) = −1

a
Z(t + τ) +

1

a

∫ ∞

t+τ
H(u)du.

Integrating it, we obtain

Z(t) =
k∑

i=1

(−1)i+1a−i
∫ ∞

t+iτ
H(u)du + (−1)ka−kZ(t + kτ).

Since a > 1 and Z(t) → 0 as t → ∞, we let k → ∞ to obtain

Z(t) =
∞∑
i=1

(−1)i+1a−i
∫ ∞

t+iτ
H(u)du
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=
∞∑
i=1

i∑
j=1

(−1)j+1a−j
∫ t+(i+1)τ

t+iτ
H(u)du

=
∞∑
i=1

∫ t+(i+1)τ

t+iτ

1 − (−a)−i

1 + a
H(u)du

=
∞∑
i=1

∫ t+(i+1)τ

t+iτ

1

1 + a
{1 − (−a)−[(u−t)/τ ]}H(u)du

=
1

1 + a

∫ ∞

t+τ
{1 − (−a)−[(u−t)/τ ]}H(u)du.

That means

Z(t) =
1

(1 + p−1
0 + ε)(n − 2)!

∫ ∞

t+τ
{1 − (−p−1

0 − ε)−[(u−t)/τ ]}

×
∫ ∞

u
(s − u)n−2G(s)Z(s − σ)dsdu,

where [·] denotes the greatest integer function. This together with (35) and

(32) yields

Z(t) ≥ q − ε

α(1 + p−1
0 + ε)(n − 2)!

∫ ∞

t+τ
{1 − (−p−1

0 − ε)−[(u−t)/τ ]}
×

∫ ∞

u
(s − u)n−2Z(s − σ)dsdu, t ≥ t2.

(37)

From (31) we know that τ < σ. Now, let X be the set of all continuous

and bounded functions on [t2 + τ − σ,∞) with the sup-norm. Then X is a

Banach space. Set

A = {w ∈ X : 0 ≤ w(t) ≤ 1, for t ≥ t2 + τ − σ}.

Clearly, A is bounded, closed and convex subset of X. Define a mapping

S : A → X as follow:

(Sw)(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

q − ε

(1 + p−1
0 + ε)(n − 2)!Z(t)

∫ ∞

t+τ
{1 − (−p−1

0 − ε)−[(u−t)/τ ]}
×

∫ ∞

u
(s − u)n−2Z(s − σ)w(s − σ)dsdu, t ≥ t2,

(Sw)(t2) + er(t2−t) − 1, t2 + τ − σ ≤ t ≤ t2,

where r = (ln(2 − α))/(σ − τ) > 0.

Since for any w ∈ A and t ≥ t2 we have by (37)

0 ≤ (Sw)(t) ≤ q − ε

(1 + p−1
0 + ε)(n − 2)!Z(t)

∫ ∞

t+τ
{1 − (−p−1

0 − ε)−[(u−t)/τ ]}

×
∫ ∞

u
(s − u)n−2Z(s − σ)dsdu ≤ α ≤ 1,
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it follows that 0 ≤ (Sw)(t) ≤ 1 for all t ≥ t2+τ−σ and so S maps A into itself.

Next we claim that S is a contradiction on A. In fact, for any w1, w2 ∈ A and

t ≥ t2 we have

|(Sw1)(t) − (Sw2)(t)|
≤ q − ε

(1 + p−1
0 + ε)(n − 2)!Z(t)

∫ ∞

t+τ
{1 − (−p−1

0 − ε)−[(u−t)/τ ]}

×
∫ ∞

u
(s − u)n−2Z(s − σ)|w1(s − σ) − w2(s − σ)|dsdu

≤ α||w1 − w2||,
and for t2 + τ − σ ≤ t ≤ t2 we have

|(Sw1)(t) − (Sw2)(t)| = |(Sw1)(t2) − (Sw2)(t2)| ≤ α||w1 − w2||.
Hence

||Sw1 − Sw2|| = sup
t≥t2+τ−σ

|(Sw1)(t) − (Sw2)(t)| ≤ α||w1 − w2||.

Since 0 < α < 1, it follows that S is a contradiction on A. Therefore, by the

Banach Contradiction Principle S has a fixed point w ∈ A, i.e.

w(t) =
q − ε

(1 + p−1
0 + ε)(n − 2)!Z(t)

∫ ∞

t+τ
{1 − (−p−1

0 − ε)−[(u−t)/τ ]}

×
∫ ∞

u
(s − u)n−2Z(s − σ)w(s − σ)dsdu, t ≥ t2,

(38)

and for t2 + τ − σ ≤ t < t2 we have

w(t) = w(t2) + er(t2−t) − 1 > 0.

Now, we set

y(t) = Z(t)w(t).

Then y(t) is a positive continuous function on [t2 + τ − σ,∞) and satisfies for

t ≥ t2

y(t) =
q − ε

(1 + p−1
0 + ε)(n − 2)!

∫ ∞

t+τ
{1 − (−p−1

0 − ε)−[(u−t)/τ ]}

×
∫ ∞

u
(s − u)n−2y(s − σ)dsdu.

This implies that for t ≥ t2 + τ

y(t) + (p−1
0 + ε)y(t − τ) =

q − ε

(n − 2)!

∫ ∞

t

∫ ∞

u
(s − u)n−2y(s − σ)dsdu.
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Differentiating it n times, we get

dn

dtn
(y(t) + (p−1

0 + ε)y(t − τ)) = (q − ε)y(t − σ), t ≥ t2 + τ,

which contradicts (31) and so the proof is complete.
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