A Linearized Oscillation Result for Even-order Neutral Differential Equations ${ }^{1}$

Guoping Chen ${ }^{1,2}$, Ziran Zou ${ }^{1}$ and Jianhua Shen ${ }^{1,3}$
${ }^{1}$ Department of Mathematics, Hunan Normal University
Changsha, Hunan 410081, P.R. China
${ }^{2}$ Department of Mathematics, Jishou University
Jishou, Hunan 416000, P.R. China
${ }^{3}$ Department of Mathematics, College of Huaihua
Huaihua, Hunan 418008, P.R. China
jhshen2ca@yahoo.com

Abstract

Consider the even-order nonlinear neutral delay differential equation $\frac{d^{n}}{d t^{n}}\left[(x(t)-p(t) g(x(t-\tau))]-Q(t) h(x(t-\sigma))=0, \quad t \geq t_{0}\right.$, where $p, Q \in$ $C\left(\left[t_{0}, \infty\right), R\right), \tau>0, \sigma \geq 0$. We obtain a linearized oscillation result by an associate linear equation in the case when the coefficient $p(t)$ takes values in the interval $(-1,0)$, and thereby establish new criteria as proposed in an earlier open problem.

Keywords: Even-order; neutral differential equation; linearization; oscillation

1. Introduction

During last ten years, the linearized oscillation theory for nonlinear neutral delay differential equations has been extensively developed, for example see [19]. Roughly speaking, it has been proved that, under appropriate hypotheses, certain nonlinear neutral delay differential equations have the same oscillatory character as an associated linear equation.

[^0]Consider the even-order nonlinear neutral differential equation

$$
\begin{equation*}
\frac{d^{n}}{d t^{n}}[x(t)-p(t) g(x(t-\tau))]-Q(t) h(x(t-\sigma))=0, \quad t \geq t_{0} \tag{1}
\end{equation*}
$$

where n is an even number and

$$
\begin{equation*}
p, Q \in C\left(\left[t_{0}, \infty\right), R\right), \quad g, h \in C(R, R), \quad \tau>0, \quad \sigma \geq 0 \tag{2}
\end{equation*}
$$

The first linearized oscillation result of Eq.(1) was established by Chuanxi and Ladas [3], where the coefficient $p(t)$ takes values in the interval $(0,1)$. The question naturally arises as to how one may establish the corresponding linearized oscillation results of (1) for the case when $p(t)$ takes values outside the interval $(0,1)$. Also see the open problem 6.12.7 in [4]. About the study of the above problem, to the present time, the cases when $-\infty<p(t) \leq-1$ and $p(t) \geq 1$ have been considered in [9]. However, the case $-1<p(t)<0$ has not yet been handled. Our aim in this paper is to answer the above problem for the case when $-1<p(t)<0$. Our main result is the following theorem.

Theorem A Assume that (2) holds and that

$$
\begin{gather*}
\limsup _{t \rightarrow \infty} p(t)=-P_{0} \in(-1,0), \quad \liminf _{t \rightarrow \infty} p(t)=-p_{0} \in(-1,0), \tag{3}\\
\lim _{t \rightarrow \infty} Q(t)=q \in(0, \infty) \tag{4}\\
0 \leq \frac{g(u)}{u} \leq 1 \text { for } u \neq 0 \text { and } \lim _{u \rightarrow 0} \frac{g(u)}{u}=1 \tag{5}\\
u h(u)>0 \text { for } u \neq 0 \text { and } \lim _{u \rightarrow 0} \frac{h(u)}{u}=1 . \tag{6}
\end{gather*}
$$

If every bounded solution of the linear equation

$$
\begin{equation*}
\frac{d^{n}}{d t^{n}}\left[y(t)+p_{0}^{-1} y(t-\tau)\right]-q y(t-\sigma)=0 \tag{7}
\end{equation*}
$$

oscillates, then every bounded solution of Eq.(1) also oscillates.
The proof of the above Theorem will be given in section 2 .
Let $\rho=\max \{\tau, \sigma\}$. By a solution of Eq.(1) we mean a function $x \in$ $C\left(\left[t_{1}-\rho, \infty\right), R\right)$ for some $t_{1} \geq t_{0}$, such that $x(t)-p(t) g(x(t-\tau))$ is n times continuously differentiable on $\left[t_{1}, \infty\right)$ and (1) is satisfied for $t \geq t_{1}$.

Let $t_{1} \geq t_{0}$ and let $\varphi \in C\left(\left[t_{1}-\rho, t_{1}\right], R\right)$ be a given initial function, and let $z_{k}, k=0,1, \ldots, n-1$, be given initial constants. Using the method of steps one can see that Eq. (1) has a unique solution $x \in C\left(\left[t_{1}-\rho, \infty\right), R\right)$ such that

$$
x(t)=\varphi(t) \text { for } t \in\left[t_{1}-\rho, t_{1}\right]
$$

and

$$
\frac{d^{k}}{d t^{k}}[\varphi(t)-p(t) g(\varphi(t-\tau))]_{t=t_{1}}=z_{k} \quad \text { for } \quad k=0,1,2, \ldots, n-1
$$

As usual, a solution of Eq.(1) is called oscillatory if it has arbitrarily large zeros and nonoscillatory if it is eventually positive or eventually negative.

In the sequel, for convenience, when we write a functional inequality without specifying its domain of validity we assume that it holds for all sufficiently large t.

2. Proof of Theorem A

The following lemmas will be useful in the proof of Theorem A.
Lemma 1 Let n be even and assume that

$$
\begin{equation*}
p \in(0,1), \quad \tau, q \in(0, \infty) \quad \text { and } \quad \sigma \in[0, \infty) \tag{8}
\end{equation*}
$$

If every bounded solution of the linear equation

$$
\begin{equation*}
\frac{d^{n}}{d t^{n}}\left[x(t)+p^{-1} x(t-\tau)\right]-q x(t-\sigma)=0 \tag{9}
\end{equation*}
$$

oscillates, then there exists an $\varepsilon \in(0, q)$ such that every bounded solution of the equation

$$
\begin{equation*}
\frac{d^{n}}{d t^{n}}\left[\left(x(t)+\left(p^{-1}+\varepsilon\right) x(t-\tau)\right]-(q-\varepsilon) x(t-\sigma)=0\right. \tag{10}
\end{equation*}
$$

also oscillates.
Proof. By lemma 4 in [3], the hypothesis that every bounded solution of Eq.(9) oscillates implies that the characteristic equation of Eq.(9)

$$
f(\lambda)=\lambda^{n}+p^{-1} \lambda^{n} e^{-\lambda \tau}-q e^{-\lambda \sigma}=0
$$

has no real roots $\in(-\infty, 0)$. This and $f(0)=-q<0$ imply that

$$
f(\lambda)<0 \text { for all } \lambda \in(-\infty, 0]
$$

and hence $\tau<\sigma$. Clearly, $f(-\infty)=-\infty$ and so

$$
f(\lambda) \leq \sup _{\xi \in(-\infty, 0]} f(\xi):=m<0 \text { for all } \lambda \in(-\infty, 0] .
$$

Next we set

$$
\delta=\frac{1}{3} q \quad \text { and } g(\lambda)=\delta\left(-\lambda^{n} e^{-\lambda t}-e^{-\lambda \sigma}\right) .
$$

Then it is easy to see that

$$
f(\lambda)-g(\lambda)=\lambda^{n}\left(1+\left(p^{-1}+\delta\right) e^{-\lambda t}\right)-(q-\delta) e^{-\lambda \sigma} \rightarrow-\infty \text { as } \lambda \rightarrow-\infty,
$$

which implies that there exists a $\lambda_{0}<0$ such that

$$
f(\lambda)-g(\lambda) \leq \frac{1}{2} m \text { for } \lambda \leq \lambda_{0}
$$

Let

$$
\mu=\sup _{\lambda \in\left[\lambda_{0}, 0\right]}\left(\lambda^{n} e^{-\lambda \tau}+e^{-\lambda \sigma}\right)
$$

and set

$$
\varepsilon=\min \left\{\delta,-\frac{1}{2} m \mu\right\}
$$

To complete the proof, by lemma 4 in [3] it suffices to show that the characteristic equation

$$
\begin{equation*}
\lambda^{n}+\left(p^{-1}+\varepsilon\right) \lambda^{n} e^{-\lambda \tau}-(q-\varepsilon) e^{-\lambda \sigma}=0 \tag{11}
\end{equation*}
$$

has no real roots in $(-\infty, 0]$. In fact, because n is even, we have for $\lambda \leq \lambda_{0}$

$$
\begin{aligned}
\lambda^{n}+\left(p^{-1}+\varepsilon\right) \lambda^{n} e^{-\lambda \tau}-(q-\varepsilon) e^{-\lambda \sigma} & =f(\lambda)+\varepsilon\left(\lambda^{n} e^{-\lambda \tau}+e^{-\lambda \sigma}\right) \\
& \leq f(\lambda)+\delta\left(\lambda^{n} e^{-\lambda \tau}+e^{-\lambda \sigma}\right) \\
& =f(\lambda)-g(\lambda) \leq \frac{1}{2} m<0 .
\end{aligned}
$$

and for $\lambda_{0} \leq \lambda \leq 0$

$$
\begin{aligned}
\lambda^{n}+\left(p^{-1}+\varepsilon\right) \lambda^{n} e^{-\lambda \tau}-(q-\varepsilon) e^{-\lambda \sigma} & =f(\lambda)+\varepsilon\left(\lambda^{n} e^{-\lambda \tau}+e^{-\lambda \sigma}\right) \\
& \leq m+\mu \varepsilon \leq m-\frac{1}{2} m=\frac{1}{2} m<0
\end{aligned}
$$

The proof is complete.
Lemma 2 [3] Consider the equation

$$
\begin{equation*}
\frac{d^{n}}{d t^{n}}[x(t)-P(t) x(t-\tau)]-Q(t) x(t-\sigma)=0 \tag{12}
\end{equation*}
$$

where n is even, and

$$
\begin{equation*}
P, Q \in C\left(\left(t_{0}, \infty\right), R\right), \quad Q(t) \geq 0 \quad \text { for } t \geq t_{0} \quad \text { and } \tau>0, \quad \sigma \geq 0 \tag{13}
\end{equation*}
$$

Assume that there are numbers p_{1} and p_{2} such that

$$
\begin{equation*}
p_{1} \leq P(t) \leq p_{2}<-1 \tag{14}
\end{equation*}
$$

and that

$$
\begin{equation*}
\int_{t_{0}}^{\infty} Q(s) d s=\infty \tag{15}
\end{equation*}
$$

Let $x(t)$ be an eventually bounded positive solution of Eq.(12) and set

$$
y(t)=x(t)-P(t) x(t-\tau) .
$$

Then eventually

$$
\begin{gather*}
y^{(n)}(t) \geq 0, \quad(-1)^{i} y^{(n-i)}(t)>0 \quad \text { for } \quad i=1,2, \ldots, n . \tag{16}\\
\lim _{t \rightarrow \infty} y^{(i)}(t)=0 \quad \text { for } \quad i=0,1, \ldots n-1 . \tag{17}
\end{gather*}
$$

Now we are ready to prove Theorem A by using the Banach Contraction Principle.

Proof of Theorem A. Assume that Eq.(1) has a bounded nonoscillatory solution $x(t)$. We will assume that $x(t)$ is eventually positive. The case when $x(t)$ is eventually negative is similar and will be omitted. Choose $t_{1} \geq t_{0}$ to be such that

$$
x(t-\tau)>0, \quad x(t-\sigma)>0 \quad \text { for } t \geq t_{1}
$$

Set

$$
\begin{equation*}
Z(t)=x(t)-p(t) g(x(t-\tau)) \tag{18}
\end{equation*}
$$

Then $Z(t)>0$ and

$$
\begin{equation*}
Z^{(n)}(t)=Q(t) h(x(t-\sigma)) \geq 0 \quad \text { for } \quad t \geq t_{1} \tag{19}
\end{equation*}
$$

So, $Z^{(i)}(t)(i=0,1, \ldots, n-1)$ are eventually positive or eventually negative and so either

$$
\begin{equation*}
Z^{(n-1)}(t)<0 \tag{20}
\end{equation*}
$$

or

$$
\begin{equation*}
Z^{(n-1)}(t)>0 . \tag{21}
\end{equation*}
$$

We claim that (20) holds. Otherwise (21) holds which implies that there exists $\beta>0$ such that eventually

$$
Z^{(n-1)}(t) \geq \beta
$$

This yields $Z(t) \rightarrow \infty$, which is a contradiction because of the bounded nature of $x(t)$ and $p(t)$. Hence (20) holds. Let

$$
\lim _{t \rightarrow \infty} Z^{(n-1)}(t)=\alpha \in(-\infty, 0] .
$$

Integrating (19) from $t \geq t_{1}$ to ∞, we have

$$
\alpha-Z^{(n-1)}(t)=\int_{t}^{\infty} Q(s) h(x(s-\sigma)) d s
$$

which, together with (4) and (6), yields

$$
\begin{equation*}
\liminf _{t \rightarrow \infty} x(t)=0 \tag{22}
\end{equation*}
$$

Now we claim that

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} x(t)=0 \tag{23}
\end{equation*}
$$

Indeed, let $\lim _{t \rightarrow \infty} Z(t)=L$, then $L \in[0, \infty)$, and from (22), there exists a sequence λ_{n}, such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \lambda_{n}=\infty, \quad \lim _{n \rightarrow \infty} x\left(\lambda_{n}\right)=0 \tag{24}
\end{equation*}
$$

Set

$$
\begin{equation*}
Z(t)-Z(t-\tau)=x(t)-p(t) g(x(t-\tau))-x(t-\tau)+p(t-\tau) g(x(t-2 \tau)) \tag{25}
\end{equation*}
$$

By replacing t with λ_{n} in (25), we have

$$
\begin{aligned}
Z\left(\lambda_{n}\right)-Z\left(\lambda_{n}-\tau\right)= & x\left(\lambda_{n}\right)-p\left(\lambda_{n}\right) g\left(x\left(\lambda_{n}-\tau\right)\right) \\
& -x\left(\lambda_{n}-\tau\right)+p\left(\lambda_{n}-\tau\right) g\left(x\left(\lambda_{n}-2 \tau\right)\right) \\
\leq & x\left(\lambda_{n}\right)-\left[p\left(\lambda_{n}\right)+1\right] x\left(\lambda_{n}-\tau\right)
\end{aligned}
$$

that is

$$
x\left(\lambda_{n}\right)+Z\left(\lambda_{n}-\tau\right)-Z\left(\lambda_{n}\right) \geq\left[p\left(\lambda_{n}\right)+1\right] x\left(\lambda_{n}-\tau\right)
$$

and so

$$
\begin{aligned}
0 & =\lim _{n \rightarrow \infty}\left[x\left(\lambda_{n}\right)+Z\left(\lambda_{n}-\tau\right)-Z\left(\lambda_{n}\right)\right] \\
& \geq \liminf _{n \rightarrow \infty}\left[p\left(\lambda_{n}\right)+1\right] x\left(\lambda_{n}-\tau\right) \\
& \geq\left(1-p_{0}\right) \liminf _{n \rightarrow \infty} x\left(\lambda_{n}-\tau\right)
\end{aligned}
$$

Since $-p_{0} \in(-1,0), x(t)$ is eventually positive, there exists a sequence $\lambda_{n_{k}}$ such that

$$
\begin{equation*}
\lim _{t \rightarrow \infty} x\left(\lambda_{n_{k}}-\tau\right)=0 \tag{26}
\end{equation*}
$$

By replacing t with $\lambda_{n_{k}}$ in (18), from (24),(26), we have

$$
L=\lim _{k \rightarrow \infty} Z\left(\lambda_{n_{k}}\right)=\lim _{k \rightarrow \infty}\left[x\left(\lambda_{n_{k}}\right)-p\left(\lambda_{n_{k}}\right) g\left(x\left(\lambda_{n_{k}}-\tau\right)\right)\right]=0 .
$$

From the definition of $Z(t)$, we have

$$
0=\lim _{t \rightarrow \infty} Z(t) \geq \limsup _{t \rightarrow \infty} x(t)
$$

Since $x(t)$ is eventually positive, it follows that

$$
\lim _{t \rightarrow \infty} \sup x(t)=0
$$

Which, together with (22), yields

$$
\begin{equation*}
\lim _{t \rightarrow \infty} x(t)=L=0 \tag{27}
\end{equation*}
$$

Next we rewrite Eq. (1) in the form

$$
\begin{equation*}
\frac{d^{n}}{d t^{n}}\left(x(t)+P^{*}(t) x(t-\tau)\right)-Q^{*}(t) x(t-\sigma)=0 \tag{28}
\end{equation*}
$$

where

$$
P^{*}(t)=-p(t) g(x(t-\tau)) / x(t-\tau), \quad Q^{*}(t)=Q(t) h(x(t-\sigma)) / x(t-\sigma)
$$

From (3)-(6) and (27) we have

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} P^{*} \leq p_{0}, \quad \lim _{t \rightarrow \infty} Q^{*}(t)=q \tag{29}
\end{equation*}
$$

According to the definition of $Z(t)$, we can rewrite Eq. (28) in the form

$$
\begin{equation*}
Z^{(n)}(t)+P^{*}(t-\sigma) \frac{Q^{*}(t)}{Q^{*}(t-\tau)} Z^{(n)}(t-\tau)=Q^{*}(t) Z(t-\sigma) \tag{30}
\end{equation*}
$$

Since every bounded solution of Eq. (7) oscillates, by Lemma 1 it follows that there is an $\varepsilon \in(0, q)$ such that

$$
\begin{equation*}
\lambda^{n}+\left(p^{-1}+\varepsilon\right) \lambda^{n} e^{-\lambda \tau}-(q-\varepsilon) e^{-\lambda \sigma}<0 \text { for all } \lambda \in(-\infty, 0] \tag{31}
\end{equation*}
$$

For this $\varepsilon>0$, let $\alpha \in(0,1)$ be such that $\alpha q>q-\varepsilon$, and let $\beta>1$ be such that

$$
\alpha q>\beta(q-\varepsilon) \text { or } \frac{q}{\beta}>\frac{(q-\varepsilon)}{\alpha} .
$$

From (29) we see that there exists $t_{2}>t_{1}+\sigma$ such that

$$
\begin{equation*}
P^{*}(t-\sigma) \cdot \frac{Q^{*}(t)}{Q^{*}(t-\tau)}<p_{0}+\varepsilon<p_{0}^{-1}+\varepsilon, \quad Q^{*}(t)>\frac{q}{\beta} \text { for } t \geq t_{2} \tag{32}
\end{equation*}
$$

Substituting this into (30), we get

$$
\begin{equation*}
Z^{(n)}(t)+\left(p_{0}^{-1}+\varepsilon\right) Z^{(n)}(t-\tau)>\frac{q}{\beta} Z(t-\sigma), t \geq t_{2} \tag{33}
\end{equation*}
$$

Set

$$
\begin{equation*}
G(t)=\left(Z^{(n)}(t)+\left(p_{0}^{-1}+\varepsilon\right) Z^{(n)}(t-\tau)\right) / Z(t-\sigma) \tag{34}
\end{equation*}
$$

then we have by (33)

$$
\begin{equation*}
G(t)>\frac{q}{\beta} \text { for } t \geq t_{2} \tag{35}
\end{equation*}
$$

From (34) we see that

$$
\begin{equation*}
Z^{(n)}(t)+\left(p_{0}^{-1}+\varepsilon\right) Z^{(n)}(t-\tau)=G(t) Z(t-\sigma) \tag{36}
\end{equation*}
$$

Integrating both sides of (36) from $t \geq t_{2}$ to $\infty n-1$ times and using Lemma 2 , we get

$$
Z^{\prime}(t)+\left(p_{0}^{-1}+\varepsilon\right) Z^{\prime}(t-\tau)+\frac{1}{(n-2)!} \int_{t}^{\infty}(s-t)^{n-2} G(s) Z(s-\sigma) d s=0
$$

In what follows, for the sake of convenience, we set

$$
a=p_{0}^{-1}+\varepsilon, \quad H(t)=\frac{1}{(n-2)!} \int_{t}^{\infty}(s-t)^{n-2} G(s) Z(s-\sigma) d s
$$

Then we have

$$
Z^{\prime}(t)+a Z^{\prime}(t-\tau)+H(t)=0
$$

Integrating this from t to ∞, we get

$$
Z(t)+a Z(t-\tau)=\int_{t}^{\infty} H(u) d u
$$

or equivalently

$$
Z(t)=-\frac{1}{a} Z(t+\tau)+\frac{1}{a} \int_{t+\tau}^{\infty} H(u) d u
$$

Integrating it, we obtain

$$
Z(t)=\sum_{i=1}^{k}(-1)^{i+1} a^{-i} \int_{t+i \tau}^{\infty} H(u) d u+(-1)^{k} a^{-k} Z(t+k \tau)
$$

Since $a>1$ and $Z(t) \rightarrow 0$ as $t \rightarrow \infty$, we let $k \rightarrow \infty$ to obtain

$$
Z(t)=\sum_{i=1}^{\infty}(-1)^{i+1} a^{-i} \int_{t+i \tau}^{\infty} H(u) d u
$$

$$
\begin{aligned}
& =\sum_{i=1}^{\infty} \sum_{j=1}^{i}(-1)^{j+1} a^{-j} \int_{t+i \tau}^{t+(i+1) \tau} H(u) d u \\
& =\sum_{i=1}^{\infty} \int_{t+i \tau}^{t+(i+1) \tau} \frac{1-(-a)^{-i}}{1+a} H(u) d u \\
& =\sum_{i=1}^{\infty} \int_{t+i \tau}^{t+(i+1) \tau} \frac{1}{1+a}\left\{1-(-a)^{-[(u-t) / \tau]}\right\} H(u) d u \\
& =\frac{1}{1+a} \int_{t+\tau}^{\infty}\left\{1-(-a)^{-[(u-t) / \tau]}\right\} H(u) d u
\end{aligned}
$$

That means

$$
\begin{aligned}
Z(t)= & \frac{1}{\left(1+p_{0}^{-1}+\varepsilon\right)(n-2)!} \int_{t+\tau}^{\infty}\left\{1-\left(-p_{0}^{-1}-\varepsilon\right)^{-[(u-t) / \tau]}\right\} \\
& \times \int_{u}^{\infty}(s-u)^{n-2} G(s) Z(s-\sigma) d s d u
\end{aligned}
$$

where [.] denotes the greatest integer function. This together with (35) and (32) yields

$$
\begin{align*}
Z(t) & \geq \frac{q-\varepsilon}{\alpha\left(1+p_{0}^{-1}+\varepsilon\right)(n-2)!} \int_{t+\tau}^{\infty}\left\{1-\left(-p_{0}^{-1}-\varepsilon\right)^{-[(u-t) / \tau]}\right\} \tag{37}\\
& \times \int_{u}^{\infty}(s-u)^{n-2} Z(s-\sigma) d s d u, \quad t \geq t_{2} .
\end{align*}
$$

From (31) we know that $\tau<\sigma$. Now, let X be the set of all continuous and bounded functions on $\left[t_{2}+\tau-\sigma, \infty\right)$ with the sup-norm. Then X is a Banach space. Set

$$
A=\left\{w \in X: 0 \leq w(t) \leq 1, \text { for } t \geq t_{2}+\tau-\sigma\right\}
$$

Clearly, A is bounded, closed and convex subset of X. Define a mapping $S: A \rightarrow X$ as follow:

$$
(S w)(t)=\left\{\begin{array}{l}
\frac{q-\varepsilon}{\left(1+p_{0}^{-1}+\varepsilon\right)(n-2)!Z(t)} \int_{t+\tau}^{\infty}\left\{1-\left(-p_{0}^{-1}-\varepsilon\right)^{-[(u-t) / \tau]}\right\} \\
\times \int_{u}^{\infty}(s-u)^{n-2} Z(s-\sigma) w(s-\sigma) d s d u, \quad t \geq t_{2} \\
(S w)\left(t_{2}\right)+e^{r\left(t_{2}-t\right)}-1, \quad t_{2}+\tau-\sigma \leq t \leq t_{2}
\end{array}\right.
$$

where $r=(\ln (2-\alpha)) /(\sigma-\tau)>0$.
Since for any $w \in A$ and $t \geq t_{2}$ we have by (37)

$$
\begin{aligned}
0 \leq(S w)(t) \leq & \frac{q-\varepsilon}{\left(1+p_{0}^{-1}+\varepsilon\right)(n-2)!Z(t)} \int_{t+\tau}^{\infty}\left\{1-\left(-p_{0}^{-1}-\varepsilon\right)^{-[(u-t) / \tau]}\right\} \\
& \times \int_{u}^{\infty}(s-u)^{n-2} Z(s-\sigma) d s d u \leq \alpha \leq 1,
\end{aligned}
$$

it follows that $0 \leq(S w)(t) \leq 1$ for all $t \geq t_{2}+\tau-\sigma$ and so S maps A into itself. Next we claim that S is a contradiction on A. In fact, for any $w_{1}, w_{2} \in A$ and $t \geq t_{2}$ we have

$$
\begin{aligned}
\mid\left(S w_{1}\right)(t)- & \left(S w_{2}\right)(t) \mid \\
\leq & \frac{q-\varepsilon}{\left(1+p_{0}^{-1}+\varepsilon\right)(n-2)!Z(t)} \int_{t+\tau}^{\infty}\left\{1-\left(-p_{0}^{-1}-\varepsilon\right)^{-[(u-t) / \tau]}\right\} \\
& \times \int_{u}^{\infty}(s-u)^{n-2} Z(s-\sigma)\left|w_{1}(s-\sigma)-w_{2}(s-\sigma)\right| d s d u \\
\leq & \alpha\left\|w_{1}-w_{2}\right\|,
\end{aligned}
$$

and for $t_{2}+\tau-\sigma \leq t \leq t_{2}$ we have

$$
\left|\left(S w_{1}\right)(t)-\left(S w_{2}\right)(t)\right|=\left|\left(S w_{1}\right)\left(t_{2}\right)-\left(S w_{2}\right)\left(t_{2}\right)\right| \leq \alpha| | w_{1}-w_{2}| |
$$

Hence

$$
\left\|S w_{1}-S w_{2}\right\|=\sup _{t \geq t_{2}+\tau-\sigma}\left|\left(S w_{1}\right)(t)-\left(S w_{2}\right)(t)\right| \leq \alpha\left\|w_{1}-w_{2}\right\|
$$

Since $0<\alpha<1$, it follows that S is a contradiction on A. Therefore, by the Banach Contradiction Principle S has a fixed point $w \in A$, i.e.

$$
\begin{align*}
w(t) & =\frac{q-\varepsilon}{\left(1+p_{0}^{-1}+\varepsilon\right)(n-2)!Z(t)} \int_{t+\tau}^{\infty}\left\{1-\left(-p_{0}^{-1}-\varepsilon\right)^{-[(u-t) / \tau]}\right\} \tag{38}\\
& \times \int_{u}^{\infty}(s-u)^{n-2} Z(s-\sigma) w(s-\sigma) d s d u, \quad t \geq t_{2}
\end{align*}
$$

and for $t_{2}+\tau-\sigma \leq t<t_{2}$ we have

$$
w(t)=w\left(t_{2}\right)+e^{r\left(t_{2}-t\right)}-1>0
$$

Now, we set

$$
y(t)=Z(t) w(t)
$$

Then $y(t)$ is a positive continuous function on $\left[t_{2}+\tau-\sigma, \infty\right)$ and satisfies for $t \geq t_{2}$

$$
\begin{aligned}
y(t)= & \frac{q-\varepsilon}{\left(1+p_{0}^{-1}+\varepsilon\right)(n-2)!} \int_{t+\tau}^{\infty}\left\{1-\left(-p_{0}^{-1}-\varepsilon\right)^{-[(u-t) / \tau]}\right\} \\
& \times \int_{u}^{\infty}(s-u)^{n-2} y(s-\sigma) d s d u .
\end{aligned}
$$

This implies that for $t \geq t_{2}+\tau$

$$
y(t)+\left(p_{0}^{-1}+\varepsilon\right) y(t-\tau)=\frac{q-\varepsilon}{(n-2)!} \int_{t}^{\infty} \int_{u}^{\infty}(s-u)^{n-2} y(s-\sigma) d s d u
$$

Differentiating it n times, we get

$$
\frac{d^{n}}{d t^{n}}\left(y(t)+\left(p_{0}^{-1}+\varepsilon\right) y(t-\tau)\right)=(q-\varepsilon) y(t-\sigma), \quad t \geq t_{2}+\tau
$$

which contradicts (31) and so the proof is complete.

REFERENCES

1. G. Ladas and C. Qian, Linearized oscillations for odd-order neutral differential equations. J. Differential Equations, 88(1990), 238-247.
2. Q. Chuanxi and G. Ladas, Linearized oscillations for equations with positive and negative coefficients. Hiroshima Math. J., 20 (1990), 331-340.
3. Q. Chuanxi and G. Ladas, Linearized oscillations for even-order neutral differential equations. J. Math. Anal. Appl., 159 (1991), 237-250.
4. I. Györi and G. Ladas, Oscillation Theory of Delay Differential Equations with Applications. Clarendon Press, Oxford, 1991.
5. G. Ladas, Linearized Oscillation for Neutral Equations, Lecture Notes in Pure and Applied Mathematics, Differential Equations. Marcel Dekker, Inc., New York, 1990, pp. 379-387.
6. J.S. Yu and M. P. Chen, Linearized oscillation for first order neutral delay differential equations, Panamer. Math. J., 2 (1993), 90-105.
7. J.H. Shen, J.S. Yu and X.Z. Qian, A linearized oscillation result for oddorder neutral differential equations, J. Math. Anal. Appl., 185 (1994), 365-374.
8. Q. Chuanxi and G. Ladas, Oscillations of neutral differential equations with variable coefficients, Appl. Anal., 32 (1989), 215-228.
9. J.H. Shen, J.S. Yu, Linearized oscillation results for even-order neutral differential equations, Czechoslavak. Math. J., 51 (126) (2001),1-13.

Received: August 21, 2006

[^0]: ${ }^{1}$ Supported by the NNSF of China (no. 10571050) and the key project of Education Department of Hunan Province (03A023).

