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Abstract

In this paper we present a new Monte Carlo algorithm for finding
the solution of Dirichlet partial differential equations (DPDE). Here, we
show the solution of a given DPDE, can be found by a new efficient and
accurate Monte Carlo algorithm. The Monte solution is obtained based
on the inverse of A which is calculated based on inversion of B. Also,
the solution of linear system for DPDE can be obtained efficiently by
the algorithm presented in this paper. The given results by new algo-
rithm significantly more accurate than the other numerical algorithms
presented in the area of the Monte Carlo methods.
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1 Introduction

Dirichlet problem is one of the most famous problems in the area of partial
differential equations (PDE). The iterative numerical solution can be found in
[2]. In this paper, we present the new accurate Monte Carlo solution which is
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more accurate than the results given by any Monte Carlo algorithms presented
in [1] and [5-7]. It is well known that the Dirichlet PDE (DPDE) system is
applied to find a partial differentiable equation over a given domain D ⊆ Rn

with boundary R, for (x, y) ∈ D satisfy in

∇2u =
∂2u

∂x2
+

∂2u

∂y2
= f(x, y) (1)

and u(x, y) = g(x, y) for (x, y) ∈ R , where g = g(x, y) is some prescribed
function. Equation (1) with f(x, y) �= 0, is called the Poisson equation, also
with f(x, y) = 0, it is known as the Laplac equation. To obtain the methods
of numerical computation, we replace the PDE in a given equation. With
applying Taylor formula we have:

u(x + h, y) = u(x, y) + h
∂u(x, y)

∂x
+

1

2
h2 ∂2u(x, y)

∂x2
+

1

6
h3 ∂3u(x, y)

∂x3
+ ... (2)

u(x − h, y) = u(x, y) − h
∂u(x, y)

∂x
+

1

2
h2∂2u(x, y)

∂x2
− h3 1

6

∂3u(x, y)

∂x3
+ ... (3)

Subtracting two recent equations (2)and (3) is shown that:

∂u(x, y)

∂x
≈ 1

2h
[u(x + h, y) − u(x − h, y)].

Similarly, we have

∂u(x, y)

∂y
≈ 1

2k
[u(x, y + k) − u(x, y − k)].

Adding the equations (2)and (3) and ignore the terms based on h4, h5, ... we
have:

u(x + h, y) + u(x − h, y) ≈ 2u(x, y) + h2 ∂2u(x, y)

∂x2
.

Then we obtain

∂2u(x, y)

∂x2
≈ 1

h2
[u(x + h, y) − 2u(x, y) + u(x − h, y)]

Similarly,

∂2u(x, y)

∂x2
≈ 1

k2
[u(x, y + k) − 2u(x, y) + u(x, y − k)]

If we substitute equations (2)and (3) into the Poisson equations (1) and con-
sidering h=k we obtain:

u(x + h, y) + u(x, y + h) + u(x − h, y) + u(x, y − h) − 4u(x, y) = h2f(x, y)
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This is a difference equation corresponding to (3). Hence for the Laplace
equation (2) the corresponding difference equation is:

u(x + h, y) + u(x, y + h) + u(x − h, y) + u(x, y − h) − 4u(x, y) = 0

h is called the mesh size. In the solving of Dirichlet problem in a region R
we first choose h and introduce in R a grid consisting of equidistant horizontal
and vertical straight lines of distance h. Their intersections are called mesh
points or nodes. This easily concludes a linear system where the number of
unknown variables is equal to the number of mesh points in R. Also, the
coefficient matrix of linear system is sparse. In practice, this matrix is large,
since for obtaining the solution of the linear systems we need high accuracy
results. But it is clear that it will cause for large dimensions computations,
storage problem of the entries of the given coefficient matrix. Then we have to
use numerical methods. Here we explain how we can use a stochastic method,
which is called Monte Carlo method, to find the solution of linear system
caused in DPDE.
Let we have R = {(x, y)|a < x < b, c < y < d}, the first important things
are selecting the numbers m and n and the increments of steps h and k with
h = (b−a)

n
and k = (d−c)

m
. Then we can consider a partition on the [a,b] to n

equal parts with width h and another partition on [c,d] with m equal parts
with width k so. Thus we have a grid with meshes on the pairs (xi, yj) where
xi = a+ ih, yi = b+jk with i = 0, 1, ..., n, j = 0, 1, ..., m. For i = 0, 1, ..., n, j =
0, 1, ..., m and boundary conditions: u(x0, yj) = g(x0, yj), u(xn, yj) = g(xn, yj),
for all j = 0, 1, ..., m; and u(xi, y0) = g(xi, y0), u(xi, ym) = g(xi, ym), for all
i = 1, ..., n−1, also, it is easily can be proved that i = 1, ..., n−1, j = 1, ..., m−1
(the method considered in the following is concluded by solving of the difference
equations, which is called the method of difference central)[2]:

2[(
h

k
)2 + 1]wi,j − (wi+1,j + wi−1,j) − (

h

k
)2(wi,j+1 + wi,j−1) = −h2f(xi, yj) (4)

and for j = 0, 1, ..., m :

w0,j = g(x0, yj), wn,j = g(xn, yj)

wi,0 = g(xi, y0), wi,m = g(xi, ym)

where wi,j is the estimated value of u(xi, yj) . With regards to equation (4)
for all the points (xi, yj) where they are the corner of the boundary mesh, we
have a linear system with (n − 1) × (m − 1) of difference equations and the
number of unknown variables are (n − 1) × (m − 1) and its variables are wi,j

to u(xi, yj) for the interior points of grid. If we consider the rearrangement of
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the given linear system by the method of Varga [2], for i = 1, 2, ..., m − 1 and
j = 1, 2, ..., n − 1 by setting:

l = i + (m − 1 − j)(n − 1)

wi = wi,j and Pl = (xi, yj).

This arrangement of the equations (4), will provide a numbering of mesh
points from the left to right and from up to down of the grid.

2 Generalizing of the Monte Carlo for Solving

Linear Systems

We suppose
Bx = f, (5)

where B is a n × n non-singular matrix and f is a given vector. For an
identity matrix I, if we consider A = I − B , we can rewrite SLAE (5) as
then we can convert (5) to its iterative form xk+1 = Axk + f,. In Monte
Carlo calculations for SLAE, we use the maximum norm of matrix A given by
||A|| = maxi

∑n
j=1 |aij| then with

ρ(A) ≤ ||A|| < 1 (6)

(where ρ(A) is the spectral radius of A) xk tends to the unique solution x =
(I − A)−1f . The number of Markov chains is given by

N ≥ (0.6745
ε

. ||f ||
(1−||A||))

2, and the length of Markov chain by T = k <
log( δ

||f || )
log||A|| [1,8].

Generally, the required random selected elements of the matrix A are defined
by its non-zero elements. These elements can be selected via the following
Markov chain,

s0 → s1 → ... → sk, (7)

where si, i = 1, 2, ..., k belongs to the state space S = {1, 2, ..., n}. Also,
consider that for α, β,p0 = P (s0 = α) and P (sj+1 = β|sj = α) = pαβ which are
the initial distribution and one step transition probability of Markov chain (7),
respectively. Probabilities pαβ define a transition probability matrix P = [pij]
[3]. We say that the distribution (p1, ..., pn)t is acceptable for vector g, and the
distribution pαβ is acceptable for A if:
pα > 0 where gα �= 0, pα ≥ 0 when gα = 0
and
pαβ > 0 when aαβ �= 0, pαβ ≥ 0 and aαβ ≥ 0 where aαβ = 0.
In the case of MC without absorption state we require

∑n
β=1 pαβ = 1 , for all

α = 1, 2, ..., n. We define:

W0 = 1, Wj = Wj−1

asj−1sj

psj−1sj

. (8)
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Let Tk[g] =
gs0

ps0

∑k
j=0 Wjfsj

then E[Tk(g)] =< g, xk+1 > and with above

condition (6) we have limk→∞ E[Tk(g)] =< g, x >[7]. Considering N paths
sm
0 → sm

0 → ... → sm
k m = 1, 2, ..., Non the coefficient matrix (even the

matrix should be inverted) we have the Monte Carlo estimated solution by:

Θ̂ = 1
N

∑N
s=1 T

(s)
k (g) ≈< g, xk+1 > and if we consider g = (0, 0, ..., 0, 1︸ ︷︷ ︸

i

, 0, ..., 0)t,

then we have Θ̂ = 1
N

∑N
s=1 T

(s)
k (g) ≈ xi, now, we consider a linear system that

we transfer (5) to the form x(k+1) = Ax(k) + f, the condition (6) is not valid.
Then the Monte Carlo solution cannot be converged to the unique exact solu-
tion of the linear system (5). The way to find the solution of linear system (5)
is that we transfer (5) to an equivalent linear system such as

x = Tx + h (9)

where ρ(T ) ≤ ||T || < 1 and the solution of (9) is the same as solution of
x = Ax + f . Here, we explain that how we can reach to the system (9).

3 Monte Carlo Method for Matrix Inversion

Let us assume that all the conditions for MC methods for the solution of SLAE,
which we used in section 2 are valid here too. In previous section, we discussed
the solution of SLAE by MC methods, but we aim to obtain the inverse of an
arbitrary non-singular matrix by MC. Thus, we require a review of the general
MC idea to find the inverse matrix by Monte Carlo method.

3.1 Naive Monte Carlo Method For MI

Consider a SLAE (5). Under condition (6) and with x0 =
−→
0 and for k =

0, 1, 2, ..., T 0 = I,

x(k+1) =
k∑

m=0

Amf

converges for any non-singular matrix A and

lim
k→∞

xk = lim
k→∞

k∑
m=0

Amf = (I − A)−1f = x.

(where B−1 = [b−1
ij ]i,j=1,2,...,n = I + A + ... + Am + ..., and the ith coordinate

of x is xi =
∑n

k=1 b−1
ik f ). By setting fk = ek = (0, ..., 0, 1︸ ︷︷ ︸

k

, 0, ..., 0)t we have

xi = a−1
ij . And the corresponding unbiased estimator is:

Tl(b
−1
ik ) =

∑
m|im=r

Wm.
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Therefore, the Monte Carlo inverse for the entries of matrix B, for k = 1, 2, ..., n
is given by:

b−1
ik ≈ 1

N

N∑
s=1

[
∑

m|im=r

W (s)
m ].

where (m|im = r) means that summation only obtain for all im = r will be
obtained. The number of Markov Chains in the case of matrix inversion can
be obtained by and N ≥ (0.6745

ε
. 1
(1−||A||))

2 and T = k ≤ logδ
log||A|| [1].

The solution of a linear system and the elements of inverse matrix of a non
singular matrix given by discussed MC method is merely under sufficient con-
dition of converging (6). The main important aim of this paper is considering
the case that the condition (6) is not valid.

3.2 MC Method for finding the MI of a general nonsin-

gular Matrix

Suppose that B is an arbitrary non-singular matrix and we are aiming to
find an accurate inversion by Monte Carlo methods. It is clear that we can
efficiently obtain the inverse of a diagonally dominant matrix [1,5,6]. The main
aim of this research is to obtain the inverse of matrix B based on a split with
the main part being a diagonally dominant matrix. The question is, how this
transformation can be done for all types of matrices? We note that if the
following concepts do not depend on diagonally dominant matrices, then the
matrix B below can be any arbitrary matrix. In [1,9] it has been obtained
the inverse and the solution of the systems based on a diagonally dominant
coefficient matrix. Thus if we follow these concepts for general cases, via
the following split we reach to obtain the inversion of a diagonally dominant
matrix. It means that if we wish to obtain the inverse of a general matrix
by Monte Carlo method, we first obtain the inverse of a diagonally dominant
matrix as explained in the following algorithm. Now, we consider a given non-
singular matrix B, and if we consider A to be a non-singular matrix then we
can perform the following split on B:

if S is a diagonal matrix such that S =
∑n

i=1 Si where Si is a matrix with
rank one and all of its elements are zero with only one non-zero element in
position (i, i) . If we suppose B0 = B, Bn = B + S therefore, the inversion of
Bn is:

B−1
i = B−1

i+1 +
B−1

i+1Si+1B
−1
i+1

1 − trace(Si+1B
−1
i+1)

, i = n − 1, n − 2, ..., 1, 0 (10)

In this case we have applied the fact that we can write the matrix . Now,
we come back to our main aim which is obtaining the inversion of an arbitrary
non-singular matrix B. First, we consider the split B = A−S such that A is a



Monte Carlo Method 459

diagonally dominant matrix based on matrix B. A simple rule of making A as a
diagonally dominant matrix created from B is that we add ||B|| (or a number
bigger than norm of B) to all the diagonal elements of B, the off diagonal
elements remaining unaffected. In this case, the matrix S is a diagonal matrix
with all diagonal elements equal to the norm of B (or another fixed number
bigger than norm of A, depending on matrix A) and all its off diagonal elements
are zero. First, we can obtain the inverse of A which is a diagonally dominant
matrix and secondly we use the above algorithm given in (13). It is clear that if
we consider A as a diagonally dominant matrix with diagonal elements added
to a number greater than ||A||, in the most of the cases, the rate of convergence
of the algorithm is fast and the computation becomes more accurate, also. This
means we can control the norm of matrix. This is the flexibility of this method.

Algorithm

(1) Select N , Number of Markov chains, T = k, the length of Markov
chains, ε and δ.

(2) Read the Matrix Bn from the file.

(2.1) Split Bn = M−K, where M is a diagonal matrix with mii = bii, i =
1, 2, ..., n.

(2.2) Compute C = M−1K.

(2.3) Compute ||C|| and the Number of Markov chains N = (0.6745
ε

. 1
(1−||C||))

2.

(3) For i=1 to n;

(3.1) For j=1 to N;

(3.1.1) Set tk = 0(stopping rule), W0 = 1, SUM [i] = 0.

(3.1.2) Generate a random number and set as i
(s)
0 → i

(s)
1 → ... → i

(s)
k ,

s = 1, 2, ..., N..

(3.1.3) If C[i
(s)]
m−1i

(s)
m ]! = 0.

Loop:

(3.1.3.1) Compute W
(s)
j = W

(s)
j−1

C
i
(s)
m−1

i
(s)
m

p
i
(s)
m−1

i
(s)
m

.

(3.1.3.2) Set i
(s)
m−1 = i(s)m and SUM [i] = SUM [i] + W

(s)
j .

(3.1.3.3) If |Wj | < δ, tk = tk + 1.

(3.1.3.4) If tk ≥ n
End of Loop.

(3.1.4) End If.
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(3.1.5) Else go to step 3.1.2.

(3.2) End of loop j.

(3.3) Compute the average of results.

(4) End of loop i.

(5) Obtain the matrix H = (I − C)−1, then the expecting approximate
matrix Qn = H × M−1.

(6) Compute Qi = Qi+1 + Qi+1Ki+1Qi+1

1−trace(Ki+1Qi+1)
, i = n, n−1, ..., 1, 0, where Kn =

Bn − diag(A).

(7) Set B−1
n = Qn.

(8) End of Algorithm.

Example : Consider a Poisson equation given by ∂2u
∂x2 + ∂2u

∂y2 = (x2 + y2)exy

in the region R with boundaries:

u(0, y) = 1, u(2, y) = e2y, 0 ≤ y ≤ 1

u(x, 0) = 1, u(x, 1) = ex, 0 ≤ y ≤ 2

if we consider h = 2
3
, k = 1

3
we have a grid with 3 horizontal and 3 vertical

straight lines the corresponding linear algebraic equations are:

10w1 − w2 − 4w3 = 1 + 4e
2
3 − 32

81
e

4
9

−w1 + 10w2 − 4w4 = 5e
4
3 − 80

81
e

8
9

−4w1 + 10w3 − w4 = 5 − 20

81
e

2
9

4w2 − w3 + 10w4 = 4 + e
2
3 − 68

81
e

4
9

with exact solution w = exy , then we have:

Node at (x, y) (2
3
, 2

3
) (4

3
, 2

3
) (2

3
, 1

3
) (4

3
, 2

3
)

Exact Solution wi e
4
9 = 1.55962 e

8
9 = 2.43242 e

2
9 = 1.24884 e

4
9 = 1.55962

MC Solution ŵi 1.55961 2.43243 1.24885 1.55963

|wi−ŵi

ŵi
| 1.1×10−5 1.2 ×10−5 1.2×10−5 1.1×10−5

Table1 : Comparing the MC solution and exact solution.
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Curtiss[4] has shown that the iterative methods such as Jacobi, SOR also
Monte Carlo method can be used as an alternative of classical method. But,
as he proved numerically and in theory also, the Monte Carlo method can
be employed for large linear systems. In fact, the efficiency of Monte Carlo
method increasingly will improve. Then the Monte Carlo for large linear sys-
tems especially for linear systems with sparse coefficient matrix using parallel
computations will be advised [6,7,8].

4 Conclusion

The solution of DPDE’s can be solved by classical, iterative and Monte Carlo
methods. Solution of Monte Carlo method efficiently can be obtained by the
algorithm described in this paper. The most suitable way for sparse matrices
computations is Parallel Monte Carlo method. The details of the parallel
Monte Carlo Computations can be found in [8]. In solving the DPDE we use
an especial split as it has been explained here and the MC results shown high
accuracy in computations. If we increase the number of employed Markov
chains in MC computations the accuracy of MC computations will increase,
also. Then we can make a balance between accuracy and number of Markov
chains.
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