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Abstract

Complete results for the delay-dependent robust stability and feedback sta-
bilization of linear neutral systems with unknown-but-bounded uncertainties
are developed. New linear matrix inequalities-based delay-dependent stabil-
ity criteria are derived in a systematic way using a new expanded state-space
representation and a new Lyapunov-Krasovskii functional. The results are es-
tablished without relying on overbounding. Solution to delay-dependent state-
feedback stabilization and H ., synthesis are then obtained. Numerical examples
are presented to illustrate the theory.
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1 Introduction

Stability and stabilization of time-delay systems have been topics of recurring in-
terest over the past decades since delays are often the main causes of instability
and poor performance of dynamic systems and encountered in various engineering
and physical systems. Recently, the problems of robust stability analysis and robust
stabilization of uncertain time-delay systems has been studied, see [11, 10]. It turns

out that the choice of an appropriate Lyapunov-Krasovskii functional (LKF) is cru-
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cial for developing sufficient stability conditions. General LKF forms might lead to
a complicated system of inequalities [9, 6, 7] and therefore approaches to construct
new and effective LKF forms are needed. In this regard, stability criteria for linear
neutral systems can be broadly classified into two categories: delay-independent,
which are applicable to delays of arbitrary size [8] and delay-dependent, which in-
clude information on the size of the delay, see [3, 5, 13] and their references. Several
model transformation methods and parameterization schemes have been used to

derive delay-dependent stability conditions [12].

In this paper, we focus on the robust problems of delay-dependent stability and
delay-dependent stabilization using state-feedback and H, stabilization for linear
neutral systems. A new expanded state-space representation is established which
transforms the time-delay system into an equivalent system in which all the original
system matrices are grouped into the new system matrix and the original delay
system becomes easier to handle. The benefit gained is that we do not require
overbounding of the quantities involved. The equivalence with the original system is
preserved and hence the conservatism of the results will be reduced. Together with
the introduction of a new LKF, these advantages simplify the derivation of new
delay-dependent stability criteria and feedback stabilization results. All the results
are formulated as linear matrix inequalities. A numerical example is worked out to

illustrate the theoretical developments.

Notations: In the sequel, the Euclidean norm is used for vectors. We use W¢,
WL X(W) and ||[W]| to denote, respectively, the transpose, the inverse, the eigen-
values and the induced norm of any square matrix W and W > 0 (W < 0) stands
for a symmetrical and positive- (negative-) definite matrix . The n-dimensional
Euclidean space is denoted by IR™*™ and I stands for unit matrix with appropri-
ate dimension. The symbol e will be used in some matrix expressions to induce a

symmetric structure, that is if given matrices L = L! and R = R! of appropriate

EHEER

Sometimes, the arguments of a function will be omitted when no confusion can arise.

dimensions, then

Fact 1: Given a scalar ¢ > 0 and matrices £1, Yo and ® such that &' & < I,
then

Yo%, + Eeixt < el ont 4 exiy,
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2 Problem Statement and Definitions

We consider the following class of linear neutral systems with parametric uncertain-

ties:
(t) = Apox(t) + Apqx(t — 7) + Dag(t — ¢) + Baou(t) + Tw(t), zo = 6o
z2(t) = Cox(t) + Fyu(t) (2.1)

where z(t) € IR" is the state vector , u(t) € IRP is the control input , w(t) € RY
is the disturbance input , z(¢) € IR? is the observed output and 0 < 7 < 7%, 0 <
1 < * are an unknown constant time delay factors and 7,7 are known bounds.

The matrices Ap, € IR™", Aaqg € IR™™ and Ba, € IR™*P are represented by
[Ano Aad Daq Bao) = [Ao Aq Dy B,]+ MA{N, Ng N, Np] (2.2)

where 4, € R™", B, € R"P, C, € R?™", F, € R?”P, D; € R™", A4 €
R™™ M e R"™"™ T € R"™", N, e R"™*" N, € R"*" Ny R" " and
Ny € IR™*P, are real and known constant matrices with A; is a bounded matrix of
uncertainties satisfying A!A; < I. The uncertainties that satisfy (2.2) are referred

to as admissible uncertainties.

Observe that model (2.1) can represent a time-domain formulation of a partial el-
ement equivalent circuit (PEEC) [1]. The objective of this paper is to develop
delay-dependent methodologies for robust stability and stabilization for the class
of uncertain neutral-delay systems of the type (2.1). This will be accomplished in
Section 3 (delay-dependent stability) and Section 4 (delay-dependent stabilization)
through the establishment of a new expanded state-space representation in which
converts the neutral-delay system into an equivalent system in which the system ma-
trix contains all the matrices of the original and the delay state has simple, certain

and fixed matrix even if the original delay matrix is uncertain.

3 Delay-Dependent Stability

In the sequel, we write system (2.1):

z(t) = y(t) (3.1)
0 = _y(t) + Aon(t) + AAdx(t - T) + Bou(t) + Fw(t)
0 = —y(t)+ (Aao + Ang)z(t) — Aag [/}: y(s) ds] + Dagy(t — 1)

+ Bou(t) + Tw(t) (3.2)
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Define
then it follows that

o(t) = y(t) —y(t —7)

and introducing the new composite vector

we readily obtain the new expanded state-space system

I 00 0 0 I 00 0
(Z): |0 I 0| &) = 0 0 I |€t) + |0 0 —I|¢€t—1)
000 | Apod —Ana T 00 0
[0 0 0 0 0
+ 00 O EE—YP)+ | 0 |ult)+ | 0 | w(?)
| 0 0 Dag B, r
UEt) = Apc&(t) + Aea&(t—T7) + Dpa £(t — )
+  Bou(t) + Tw(t),
2(t) = [Co 0 0[(t) + Fou(t) = Cok(t) + Foult) (3.3)

with Aaod = Aao + Aaq and where the initial conditions are characterized by
t
o= ab ob v ] (34)

Remark 3.1 In short, if x(t) is a solution of uncertain delay system (2.1) with
Ay =0 and u(t) = 0, then £(t) is a solution of the new expanded state-space system
(3.3) subject to (3.4) and the reverse is true. This is the essence of descriptor
transformation. It is significant to observe that in system (3.3) all the matrices of

the original neutral system are grouped into the new system matrices and henceforth
we call it the ”Compact Form (CF)”.

We rewrite the CF matrices

Ape = Ago + M AN, Dpg = Do + M Ay N, (3.5)
where
_ o 0 I . 0 i 00 0
Aeo = 0 0 I |, M=| 0|, D,=10 0 0 |,
Apa —Aa —1 M 0 0 Dy
N = [Nad — Ny 0], Nac = [0 0 Nx], Nyg= Ny + Ny, Apg = Ay + Ad,(36)
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Now to derive tractable conditions for stability, we let u(.) = 0, w(.) = 0 and

introduce the following Lyapunov-Krasovskii functional (LKF):

VE) = Val®) + () + Vild) 1)
with
Va€) = E@UPER), PeR™ U'P=PU=0
we = [ [ eowrviaas v [ dwutuie) aras,
—7 Jt+8 -y Ji+p3

O<ﬁt_ﬁ€IR3nX3n, O<Qt_ﬁ€IR3nX3n

wa:t// &7mw+//id VEC(s) ds dp,
0<St =8 eR™™" (< 2t =2Zc R

t t “t t t t “t t
n = [§&@B) £B-1) &) (=B £B—y) () (3.8)
where
Pe Py 0 . S Sy Sy R Z: Zy Z,
P - o Py 0 |,S8=]| o S Sh , Z= * Z4 2
Py Pn Ps ° o U'FU ° o U'GU
0<P, = PLeRY" 0<Py=PseR™, P, c R"", 0<Ps =P c R"",
Pg c Rnxn’ Pf c Rnxn’
0 < Zz — Z; c IRSnXBn’ 0 < Zd :Zé c RBnXSn’ Zh c RBnXSn’ Zg c RBnXSn’ Zf c RBnXSn’
0 < Sar _ S; c ]1%3n><3n7 0 < Sd :Sé c I]‘;{Snxﬁln7 Sh c I]‘;{an?)n7 Sg c ]1%3n><3n7 Sf c ]1%3n><3n7
G =diag[G. Ga G, G ' = Q=diag[Q. Qa Q,
F =diag|Fo Fa Fs|, F ' =W = diag]W. Wa Ws] (3.9)
Define
X & 0
X = P_l —_ ° Xd 0 c ]RBYLX?)YL, 0< X;r —_ th c ]RTLXTL, 0< Xs _ Xst c ]RTLXTL,
Xg X, X
0<Xy=X; e R, X, e R™™, X, e R™", 0< X} =Xy e R (3.10)

and introduce the linearizations

M, M; M, No Ny N
XS, x = M = o My M, |, XZX =N=| o N; M.
° ° Mg ° o N,
L, Lp L,
XSy + S+ Z,+Z)JX =L =| o Ly Lo
° o [

»

XtSf = Sf? thf = va Xt[Sg +S;] = ng Xt[ZngZE] = Zg (3.11)
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where the respective dimensions are
ML =M, e RV, My e R My € R™", My = My € RV, M! = M, € R™*",
Me € R™™, N = N € R Ny € R, Ny e RV, Nj = Ng € R™") N € R,
NE=N, e RV, LY =L, e RV, Ly e R, L, e R, L = Lq € RV,
L =L, e R"*", L. e R™™", (3.12)

For convenience, define the following vectors:

Ky = [ MP O 0O 0 O }t, Ko ::[ N 000 0 }t,
_ t _ t
K3 :[0()Ntoo},m:[oo Mtoo},
Ky = [ 7N 0 7°Nt, 0 0 }t, K = [/w*fv 0 ¥*Nt, 0 0 }t(3.13)

The following theorem establishes LMI-based sufficient conditions for delay-dependent
robust stability of system (X2).

Theorem 3.1 System (X2) with u(.) = 0, w(.) = 0 s delay-dependent robustly
stable if there exist matrices 0 < X, = X! € IRV, 0 < Xy = X} € R™™, 0 <
Xy =Xl e R™™ 0 < Xt=X; € RV, X, € RV™, X, € R, Mg= M} €
anXn’ Me c IRan’ Mq c anXn’ Mf c IRan’ Mm — Mtx c anXn’ Ms —
ML e R, Nj=Ng € RV, N} =N, € IR™", NI = Ny € IR™", Nj =Ny €
R™"™ Ny =N, € R", Nl =N, € R™", L, =L, € RV, Ly € R"", L, €
]Rnxn’ ‘Ctd — £d c ZRan’ Eé — £S c ZRan’ Ee c ZRan’ Sf c 1R3n><3n’ Sf c
R30Sy e IR*™3™ and scalars § >0, p >0, € >0, 0 >0, w> 0 such that the
following inequalities hold for all admissible uncertainties

Qg+ B v * T

Qa T*Sf + 1/J*2f + Sg D, — Zg T (}d 7/) S}d Qn 0 T Qn 7/) Qn
. Ta 0 Ty Ay 0 0 00
° ° Ty *DY  Y*D} 0 N!  7t*N! *Nt
. . . —-TW 0 0 0 0 0
* A <0
° ° ° . —*Q 0 0 0 0
° ° ° ° ° —o1 0 0 0
° ° ° ° ° . —ul 0 0
. . . ° . ° ° —el 0
L e ° ° ° ° ) . —ol |
XUt =vUx >0 (3.14)
where
_ -t -
—wl + Xy + X5+ Xn + Xg+ f}:gf(iAf\?it
T* My + "Ny + Lo T My + PNy + Ly Mo+ 0N, + Lo
X, + XA
0 = . sl + X+ X “xoan - %
“ T*Ma+ " Ng + La . d o '
T*Me + V" Ne + Le
—Xs — Xs
° ° —wI—&-(SMMt—I—uMMt
L TMs + PN+ L
[ XeNL, — X}thl 0 0 0 X; X; X;
Q, = XfNéd — XyNE |, Qo=1| =& =& =X |, Q= xXPox (3.15)
L 0 0 0 0 Xs Xs X
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Proof : We consider V (§) and evaluate the derivative of the functionals V,, V} and
V.. For V,, we have

V(&) = OU'PER) + ' PUE®)
= E(O)[P' Anc + ArP|E@) + EP Agat(t — 7) + €'t — 7) AL PE()
+ P Dpgé(t — ) + £t — ) DayPE(R) (3.16)

For Vj,, we get
V() = rEMUFULR) + v HUGUE() — tt E(r)U FUE(r) dr
- /t YU GUE(r) dr
t—
t

< TEUIFULR) + o E(UGUE(E) — (U FUE(r) dr

- / L UGUER) dr (3.17)
t—

For V., we obtain

: ety 1'[s s
e = T[s(tﬂ“ sﬁ]

+
[\
—
| =
coa
L —
I
Ay
S+~
, A
| =
&
\]
2
I—].

* §rUWUEr) dr + / E'(r)U' QUE(r) dr
t—7 t—1p

ey 1'[s s 0 S

< T |:£(t—7') ] [ . 32 ] {g(t ) ] + - E (U WUE(r) dr
ey 1'[ 2z z £(1) oL

Y [f(tﬂ [ . deatw)] +/tw5(’“)UQU£(r)dr
&ty 1T S £(t)

o2 |:§(t_7') ] |:Sh ]I|: Eit—1) ]
ey 1'[2 -] oo 1 - , _

e {ﬂt—w] {Zh]l[i(t—w)]’l_[l 1] (3.18)

It follows from (3.3) with (u(.) = 0,w(.) = 0) and (3.16)-(3.18) that
5 <

‘() [P ne + ALeP|E(t) + EP Agat(t — 7) +€1(t — 7) AL PE() + EP Db (t — ¥)
+ &t = ) DagPE() + T E (U FUE() + 0" (1)U GUE(Y)

o {g A [P P iy

R
o P HZ Z][eé(—ﬁw]*2{&5(—%]t{gﬂf[f@g(—%]
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HONNE £(t)
= E(t—1) T | &(t—1) (3.19)
§(t =) E(t—)
where
[ ) Ta-l-_ ) Tb—l-_ Y.+ ]
T*Atééf;A_Ag-i- T*.Atéffi‘%d-i- T*Atéffp_Ad-i-
P Ay G Ane V* ApeGAga V* ApeGDnd
Td—l— Tt AR
T = . 7 Ay Agat wajcifgpﬁ vt
Ut AggGAca ey A
Tyt
° ° T*DfAd]:AD_Ad"_
¢*DtAngAd

Yo = PAre+ANP + 78 + 0" 2o + Sy + S+ 24 + 2|
T, = 'Ptfigd + T*Sf + ¢*Zf — Sg — S;, T, = 'PtDAd — 24— Z;
Ty = =S —Sh+7Sa+ v 2y, YTy=-2,- 2 (3.20)

By Laypunov-Krasovskii theory, the existence of V(£) > 0 such that (V(£) <
0,V&(t) # 0) guarantees asymptotic stability of system (Xg). This implies that
T < 0. On observing that

Yo = P+ AgP +7"Ss + 0" Ze + S+ Sg+ 2+ 2y + P'MAN + N'ALMP
T+ PUIAN + N'ALIIP

Y. = P'D,+ P MAN, — Z5— ZE
= Yoo+ P'MAN, (3:21)

and by Schur complement and using Fact 1 along with some matrix manipulations,

this stability condition becomes

Yo Tp Yo AL AL, Yoo To Yeo T AL, AL
« Ta 0 Ay WAy ¢ Yo 0 Ay YAy
° o Ty T*DtAd ¢*DtAd = ° o Ty T*Dé ¢*Df)
° ° o« W 0 ° ° o« W 0

° ° ° ° —w*Q ° ° ° ° —l/J*Q

[ PUIAN + NIALIP 0 PLIAN, 7 NYALT o NYALT

° 0 0 0 0

+ . . 0 T*NIAIM  *NEAIM
° ° ° 0 0
° ° ° ° 0
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Tow Tb Tco 7*420 Q;Z)*f_lto
w0l v
< ° e Yy 7DY DL | 4 Skl + 6 Lrorl + pr Kt
° ° o —THW 0
. . . ° —1/}*@
+ ,uilliglig + 5&4&3 + 5*%5/{5 + gmmfl + gflnmé
(Tao Ty To A, @A, N0 N N )
o Ty _0 T*z4_2d ¢*/§d 0 9 0_ 0_
° o Ty T*D!  *D? 0 NI 7*N! o*N!
e o o W 0 0 0 0 0
= ° ° ° ° —1/}*@ 0 0 0 0 <0 (3.22)
° ° ° ° ° -0l O 0 0
° ° ° . . o —ul 0 0
° ° ° ° ° ° ° —el 0
° ° ° ° ° ° ° ° —ol
where

Yoo = Taot OPNINP + uP NP, T; =T+ MM + oM I(3.23)

Let
I oo
B = |01 o0 ,B—lgg >0 (3.24)
00 I

Premultiplying (3.22) by diag[X* I I I I I I I I], postmultiplying the result by
diaglX I 1 11111 I], and applying the S-procedure [2] we arrive at the LMI
(3.14) as desired. \VAYAY)

In the absence of uncertainties we get the following corollary

Corollary 3.1 System (X2) with u(.) = 0, w(.) = 0 is delay-dependent stable if
there exist matrices 0 < X, = X! € IR™™, 0 < Xy = X € RV, 0 < X, =
Xie RV, 0 < Xf = Xy € RV, &), € RV, X, € RV, Mg = M} €
R™"™ M, € R™", M, € R"", My € R"", M, = M}, € R"™", M, =
ML e R, Nj=Ng € RV, N} =N, € IR™", Nt = Ny € IR™", Nj =Ny €
R™", Ny =N, € IRV™, Nt =Ny € R, LY =L, € R™™, Ly € RV, L, €
R™", LY = Ly € R™™, Ll =L, € R™", L. € R™™, S € R™", §; €
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IR33n, Sr € IR3™3" and a scalar w > 0 such that the following inequalities hold

Qg"" B z * *
Yo S wprzpas, Pom B T W
. Ty 0 AL, AL, “0
. . Ty D, *D}
'Y ) [ _T*W 0
| e ° ° . —1/}*@ |
XU = UX > 0 (3.25)

Remark 3.2 The results of Theorem 3.1 and Corollary 3.1 contribute to the
stability theory of time-delay systems in many respects: First, system (X2) is a new
state-space representation in which the system elements are grouped into a com-
pact matriz which greatly simplifies the analysis. Second, the matrix multiplying the
state derivative is constant and singular. Third, the form of the LFK (3.7)-(3.8)
is new and facilitates the derivation of the stability condition without overbounding
expressions, a fact lends our methodology superior to the existing techniques in the

literature

Remark 3.3 By setting Dag =0, ¥ =0, we obtain the class of retarded systems
E, i(t) = Apox(t) + Apaqgx(t — 7) + Baou(t) + Tw(t), xo = 6o
z(t) = Cox(t) + Foult) (3.26)

Delay-dependent stability results for system (3.26)are expressed by the following the-

orems

Theorem 3.2 System (3.26) with u(.) =0, w(.) =0 is delay-dependent robustly
stable if there exist matrices 0 < X, = X! € IR™™, 0 < Xy = X, € RV™, 0 <
Xs =X € RV, 0 < X =Xy € RV, Xy, € RV, X, € RV, My =M} €
R"™", M. € R"™", My, € RV", My e R, M, = M, € RV, M, =
ML e R, Nj=Ng € RV, N} =N, € IR™", Nt = Ny € IR™", Nj =Ny €
R™ ", Ny =N, € RV™, Nt =Ny € R, L =L, € RV, Ly € RV, L, €
anXn’ Lt_: 'Cd c IRan’ [’g — »Cs c IRan’ ['e c IRan’ Sf c IRSnXSn’ Sf c
IR3™<3n Sy € IR3™3" and scalars 6 >0, 1> 0, € >0, 0> 0, w > 0 such that the
following inequalities hold for all admissible uncertainties

Q4+ _

Q, T*Sf n w*zf +(§g D,—2, 1Qq¢ 0 70
. T4 0 ™AL, 0 0 0
. . Ty D! 0 Nt 7*Nt <0
. . ° —W 0 0 0
° ° ° ° —o1 0 0
° ° ° ° . —ul 0
| e ° ° . . —el |
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XU = UX > 0 (3.27)
where
_ - -
—wl + Xy + X+ X + Xy + xe +7f63’40dt
M+ L o M; 4 L “Mda- A
v +7 Mg+ Ly
X + XFAL
6, - . —wl + X + X+ _Xd%f_ Xfﬁ (3.28)
T*Ma+ L Mo+ Lo
_-X‘s - Xs
° ° —wl 4+ MM + pMM*
L T"Ms + L ]

Corollary 3.2 System (8.26) with u(.) = 0, w(.) = 0 is delay-dependent stable
if there exist matrices 0 < Xy, = XL € R™™, 0 < Xy =X, € RV, 0 < X, =
Xy e RV, 0 < Xf = Xp € RV, X € R, X, € R, My = M} €
R, M, € R™", My € RV", My e R"”", M, = M, € RV", M, =
Ml e R, Nj=Ng € RV, N} =N, € IR™", N = Ny € IR™", N} =Ny €
R™ ", Ny =N, € IRV™, Nt =Ny € R, L =L, € RV, Ly € RV, L, €
R™™ LY=Ly € R, L) = L, € RV™, L. € R™", S € IR*™", §; €
IR¥™3n §p € IR¥™3 and a scalar w > 0 such that the following inequalities hold

Qa Qg—i-T*Sf—l—Sg —Zg T*Qd
°
°

* At
Td _0 —T Agd <0
[ ] Tf
° ° ° T*W
XUt = UXx >0 (3.29)

4 Delay-Dependent Stabilization

In the sequel, we consider two stabilization schemes: one uses state feedback and

the other is based on H, control approach.

4.1 State-Feedback Stabilization

Application of the state-feedback control law
u=K,z(t)=K, I £t), IT=[ 0 0] (4.1)
to system (3.3) with wy = 0 yields the following closed-loop system

0 0 T
(Z3): Ut) = 0 0 I | + Aqé(t—7) + Dag&(t—)
Apodk —Apa —1
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Aneké(t) + Aeg €t —7) + Dag &t — 1)
= (Agpe + MAN)E(L) + Aca &t —7) + Daa &(t —1b),

A(t) = Cig(t), Crp = (Co+ FoKo)I (4.2)
with
0 0 I
f_lgk; = 0 0 1

Aod+BoKo —Ad -1

It follows from inequality that system (4.2) is delay-dependent robustly stablizable
by the feedback control law (4.1) if the following LMI is satisfied for all admissible

uncertainties:
_ Tak Tb Tco T*“é}ék ¢*“€lék Nt 0 T*Nt w*Nt -
e Ta 0 Ay YAy O 00 0
. o Ty T*Dé *DY 0 NI 7T*N. ¢*N.
° ° ° —7*W 0 0 0 0 0
° ° ° ° —@b*Q 0 0 0 0 <0 (4.3)
. ° ° ° ° -0 0 0 0
° ° ° ° ° ° —ul 0 0
. . ° . ° ° ° —el 0
| e . ° . ° ° ° ° —ol |
where
Yo = Yap+ 0P MM'P + uPtMM'P
Yar = PAg+AGP+ 1S+ 9" 2o +Sy+ S, + Z4+ Z, (4.4)

Following the steps of section 3, we get the stabilization result which is summarized

by the following theorem:

Theorem 4.1 System (X3) is delay-dependent robustly stablizable by the feedback
controller (4.1) if there exist matrices 0 < X, = XL € R™™, 0 < Xy = X} €
R™™ 0 < X, = X € R™™, 0 < X} = Xy € RV, X, € R™™, X, €
R, Mg = M,y € RV, M, € R™", M, € RV", My € RV", M, =
M. e RV, My = M, € RV, Nj = Ng € RV™, N} = N, € R™™, N} =
Ny € R, Nt =Ny € RV", Ny = N, € RV, N! = N, € R™™", L], =
L, € RV", Ly e R, Lye R, LY=Ly e R, L =L, € R, L, €
R™", 8 € ™3 Sy € IR*3", §; € IR¥™3" and scalars § > 0, p >0, € >
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0, 0 > 0, w > 0 such that the following LMIs hold for all admissible uncertainties

r Qg + S+ = = « « . o ]
Qp T*Sf + 1/J*Zf D, — Zg T S}d w (}d 197% 0 T w Qn
. Ya 0 Ay ¢Ag 00 0 0
° ° Ty DY Y*D? 0 N 7m*N! o¢*N:
. . . W 0 0 0 0 0
* A <0
. . . . —*9 0 0 0 0
. . . ° ° —o1 0 0 0
° ° ° ° ° ° —ul 0 0
° ° ° ° ° ° ° —el 0
L e . . ° . ° . —ol |
XU = UXx >0 (4.5)
where
r Xs + X A! ‘B T
—wl + Xy + Xj+ Xn + Xg+ t nggdj )31
T* My + "Ny + Lo T My + PNy + Ly Fr Mo+ 0N,y + Lo
t At t ot
B T+ Xy + X+ X5+Xf4;,d+)if30
Q. = . M+ 0N+ L —XgAg — Xy, ,(4.6)
¢ ¢ T*Me + " Ne + Le
—Xs — Xs
° ° —wI—I—(SMMt—I—MMMt
L T"Ms + V" Ns + Ls

The feedback gain is given by K, = VX, 1.

Proof: Follows from Theorem 3.1 after taking )V, = K &, and V; = K,Xy. VVV

In the absence of uncertainties we have the following corollary

Corollary 4.1 System (X3) with M =0, N, =0 and Ny = 0 is delay-dependent
robustly stablizable by the feedback controller (4.1) if there exist matrices 0 < X, =
X, € R™", 0 < &g = X) € R, 0< X =& € RV, 0< &} =X
RY™™ X, € RV", X, € RV, Mg = M}, € RV", M. € R"", M,
R™™, My e RV", My, = M, € R", My = M, € R, N} = Ny
R™", N = N € R, N} = Ny € R”™, N; = Ny € RV", N, = N, €
R™™ Nt =Ny e RV", L, =L, € R, Ly € RV, Ly RV, LY=L, €
R LU= L € R™™, L. € R™™, § € R™3" §; € RO Sp € RP"
and a scalar w > 0 such that the following LMIs hold

m M Mm

Qg+ D 2 * *
Qk ’T*Sf + ¢*Zf + Sg D, — Zg T ?d Q;Z) S}d
° Ty 0 T*Aéd w*Aéd
7 « At «pt | <0

° . Ty T*D;  Y*Dy

° ® ® —T*W 0
| . ° ° ° —¢*Q |
X'UN = UX >0 (4.7)
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The feedback gain is given by K, = VX L.

4.2 'H. Synthesis

In the sequel, we extend the results attained in the forgoing section to the case of

Hoo control. Application of (4.1) to system (39) yields the closed-loop system

0 0 I
(B3): UEE) = 0 0 I |+ Aea&pa + Tw(t)
Apodk —Aaa —1

= (Ag + MAN)E®R) + Aea &(t —7) + Dag &(t — o) + Tw(t),
Z(t) = Ckf(t)7 ék: = (Co +FoKo)f (48)

For system (X3), let {z(¢)}, {w(t)} be the trajectories of the observed output and
external disturbances with respective norms ||z(t)||, ||w(t)||. Given a disturbance

attenuation level v > 0, we define the performance index
o
J(w) = / (tz — 7 wlw) ds
0

It is required to achieve J(w) < 0V 0 # {w(t)} € L2, 6y = 0. Equivalently stated,
we seek to develop conditions for the state-feedback controller (4.1) that render
the closed-looped system (4.8) robustly stable for all admissible uncertainties while
satistying [[2()]], < 2 (6.

Proceeding to reach J(w) < 0, we consider V/(€) of (3.7) and evaluate the derivative
V(§) along the trajectories of system (X3). Thus we have

V() + 2 (t)z(t) — 7 w' (tw(t) <
H0) [P%Agk + Azgkﬂ E@) + EP Acal(t — 7) + €' (t — T) AL PE(L) + E'P* Daak(t — 1)

+ &t —)DadPE() + P Tw(t) + w' ()TTPE(E) + 76 (U FUE(t)
+ Y EQUGUE() + € (1) CLCrE() — 7° w'(tw(t)

I IO I R T &(t) ¢ty 1'[s - €0
* T{sw7>][ . Sd}[fa7>}*2{fa7>}[ h}f[ aﬂ:

s ¢
Joewy 1z z £(t) v [z ] o
¥ {f(tw)} [ . def(tz/»)]+2[s(t¢)] {zh][[s(td})]

t

(s(w | (s(w |
. Et—r1 = Et—r1
é-v) | 5| e—v) (4.9)

w(t) w(t)
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where
Tﬁ/)*fftk g}figk T AsanFAcat T ApeFDaat T Apa FT+
A B 54 * A 51 *A T
—|—AC§’£C’;€ ¢ V* A er G Aca V* ApeGDnd " Aper FT
Td+ * At 11 * At T
° T*Agd}:figfr g fléci}—ADfAd—i— T fléci}—rj_
= = w*AngAgid 1/) AgngAd 1/) Agdgr )
Prf+ * Tyt 1
. . 7* Dy FDaa+ g *DDAtdfg}—;r
*DhaGDna v e
—2 I+
° Y [ ) T*ftﬁf‘+
i w*ft?f ]
Th = P'Anck+ AP +7"Se + 0" 20 + Sy + S+ 24+ 2L (4.10)

The following theorem summarizes the corresponding result.

Theorem 4.2 System (X3) is delay-dependent robustly stablizable by the feedback
controller (4.1) with disturbance attenuation vy > 0 if there exist matrices 0 < X,
Xy, € RV, 0 < &g = X) € R, 0< X =&, € RV, 0< &} =4
R™™, X, € RV", X, € RV", Mg = M}, ¢ RV", M, € R"", M,
R, My € R™", M, = M, € R"™", My, = M, ¢ RV", N} = N
R, NE = N, € ™", NS = Ny € R™", Nt = Nj € B, N, = N,
R Nt =N;e R™™ LL =L, € ]fon, Lye IR”f”, Ly € ZR”X”l LhH= Ly
]Rnxn’ Eé — Es c ]Rnxn’ Ee c ]Rnxn’ Sf c ]R3n><3n’ Sf c ]R3n><3n’ Sf c 1R3n><3n
and scalars v >0, § >0, p >0, >0, 0> 0, w> 0 such that the following LMI
holds for all admissible uncertainties

M MmMmmmll

B Q +S = > = * * XtCtJr * * i
% agtlgtz, DomZs T Toa ey gt 0w 0 0 yra
° T4 0 0 T*AZd w*AZd 0 0 0 0 0
. . Ty 0 ™Df  ¢*D} 0 0 NI 7N y*NI
. . . —21 T 0 0 0 0 0 0
. . . . —7*W 0 0 0 0 0 0
. ° . . . —y*Q 0 0 0 0 0
° . . . . . -1 0 0 0 0
° ° ° ° ° . . e J 0 0 0
° ° ° ° ° . . . —ul 0 0
. . . . . . . . . —el 0
L e . ° . . ° . . . . —ol |

<0
XUt = Uux >0 (4.11)

The feedback gain is given by K, = VX, 1.

Proof: It is evedient that J(w) < 0 implies that = < 0 and by following parallel
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development to Theorem (3.1) the latter condition corresponds to

F oo Yo T PT AL @A O N' 0 N' gt ]
° T4 70 0 T*z‘gd w*zﬁgd 0 0 9 07 07
° o Ty 0 ™Dt *D} 0 0 NY  1*N:Y *N:
e o o I T 0 0 0 0 0 0
° . ° ° —*W 0 0 0 0 0 0
e o o . . —*Q 0 0 0 0 0 <0 (4.12)
. ° ° . . ° -1 0 0 0 0
. ° ° . . ° CR——Y 0 0 0
° ° ° ° ° ° ° . —ul 0
° . . ° ° . ° ° ° —el 0

L e ° ° ° ° ° ° ° ° ° —ol |

where

Yoo = Yoo+ SP'MM'P + uP'MM'P, Ty =7"Ts+eMM' + oMM" (4.13)

Premultiplying (3.22) by diag[X* I I I 1111111 I], postmultiplying the result by
diaglX I T11I1111I]I], and applying the S-procedure [2] we arrive at the LMI
(4.11) as desired. VVV

Finally, in the absence of uncertainties we have the following corollary

Corollary 4.2 System (X3) with M =0, N, =0 and Ng = 0 is delay-dependent
stablizable by the feedback controller (4.1) law with disturbance attenuation v > 0
if there exist matrices 0 < Xy, = XL € R™™, 0 < Xy =X, € R, 0 < X, =
Xie RV, 0 < Xf = Xy € RV, &), € RV, X, € RV", Mg = M,
R ", M. € R"™", My, € RV", My e R, M, = M, € RV, M, =
ML e R, Nj=Ng € RV, N} =N, € IR™", Nt = Ny € IR™", N} =Ny €
R™ ", Ny =N, € RV™, Nt =Ny € R, L =L, € R™™, Ly € RV, L, €
R™", LY = Ly € R™™, LY =L, € R™", L. € RV, S € R™", §; €
R30S, € IR¥™ 3™ and scalars v > 0, w > 0 such that the following LMIs hold

m

i 0, + 3, - s A . \ XCo+ ]
Q ’T*Sf + ¢*Zf D, - Zg r T S}d ¢ ?d ygFot
. T, 00 AL g, 0
Ty 0 T*Z_)é ¢*D3 0 <0
° ° ° Yl B 0 0
° ° ° ° —T*W 0 0
° ° ° ° ° —p* Q 0
i ° ° ° ° -1 ]
XU' = Ux >0 (4.14)

The feedback gain is given by K, = Vs X, L.
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5 Examples

In the sequel, some examples are worked out to illustrate the theoretical develop-

ments.

5.1 Example 1

The first example is motivated by a small PEEC model treated in [1], where the
nominal numerical data are

a 1 2 1 0 -3 1 -1 5 2
A, =100x | 3 =9 0 , Ag=100x | =05 —-05 -1 |, Dg= 7 4 0 3
1 2 -6 -05 =15 0 -2 4 1

For a = —7 and applying Corollary 3.1, using the LMI-MATLAB Control Toolbox,
it has been found that a feasible solution is attained for 7* = 1.3527, ¥* = 1.4029
which means that our method guarantees delay-dependent stability for all system
delays less than 7 = 1.3527, ¢ = 1.4029. This result is less conservative that the
results of [1, 5] where 7 were 1 and 0.43 respectively. Note that the result of [1]
is delay-independent and those of [5] is delay-dependent. For o = —2.105 a feasible
solution is attained for 7* = 1.5022, ¥* = 1.5104 which is less conservative that the

result of [13] where 7% was 1.1413.

On taking the parameter uncertainties commonly existing in system application, we

apply Theorem 3.1 with the

0.6 0.4 0 0.5
M=|07|, NN=| 0 |, N;=]08 |, N.=|06 |, a=-2105
0.2 0.3 0.2 0

A feasible solution is attained for 7% = 0.8516, ¥* = 0.9024 which means that our
method guarantees delay-dependent robustly stability for all admissible uncertainties
and for all system delays less than 7 = 0.8516, ¢ = 0.9024. In comparison with [13],

our results are less conservative since their 7* = 0.4064.

5.2 Example 2

Consider a linear neutral system of the type (2.1) with

01 —09 0.2 02 0 02 0 01 0
A, = | 0 05 03], Ay=1]01 —02 01|, Dy=]01 0 02|,
2 0 05 02 01 0 01 0 0.1
01 01 0 0
CO:[010],BO: 00|, NN=| 0 01 0 ,FO:[O 1],
10 0 0 02
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09 0 0 01 0 0 02 0 0
M = 0 09 0 |, N=|0 01 0|, N=]10 01 0
0 0 09 0 0 0.1 0 0 0.1

A feasible solution of Theorem 4.2 is given by

—0.0831 —10.7885 —1.9215
T = 4.9835, ¢* =4.7714

. l ~0.3251 —0.0011 —1.0325 ] = 1435, w = 1.1276,

5.3 Example 3

Consider the linear uncertain system treated in [4, 12] with data
-2 0 -1 0 |l c O ¢ | B0
Ao = lo —0.9]’Ad_[—1 —1]’Dd_[o c]’Nx_lo ﬁ]’

B 1 0 | B0 | B0
o= [3a) e s (g oo

Values of the upper bound on delays 7* and 9* with § = 0.2 and ¢ varying are
listed in Table 1. Observe our system has two delay factors whereas in references
[4, 12] there is only one delay factor. It is clearly evident that our method yields

delay-dependent results that are significantly improved over those of [4, 12].

Upper Bounds 7" | Parameter c 0 0.1 102103 04
Ref [12] 2.43 1224|203 | 1.78 | 1.50
Ref [4] 1.77 1 1.48 | 1.16 | 0.79 | 0.37

Theorem 3.1 | 2.75 | 2.51 | 2.36 | 2.02 | 1.84

Upper Bounds v* | Parameter c 0 0.1 | 02| 03| 04
Ref [12] 2.43 1 2.24 | 2.03 | 1.78 | 1.50
Ref [4] 1.77 | 1.48 | 1.16 | 0.79 | 0.37

Theorem 3.1 | 3.04 | 2.81 | 2.66 | 2.42 | 2.11

Table 1: Upper Bounds on Delays 7" and ¢* g = 0.2

5.4 Example 4

Our last example is characterized by

0 0 -2 —-0.5
A, = [O 1], Ad—[ 0 -1 ], Dy =

1 0 ¢ 102 0 .
M lo 1]’Na_lo 0.2]’Nd_l
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This example was examined in [3, 12]. The upper bound on delays 7* and ¢* for
which the system is stabilized by state feedback was obtained from the feasible
solution of Theorem 4.1 to 7" = 0.8875 and ¥* = 0.7966 and the corresponding
state feedback gain is

K,=| -246 —17.7 |

In [12], 7" = 0.6548.

Application of Corollary 4.1 yields the feasible solution
K, = [ —24.9 —10.9 ] , 7" =1.2158, ¢* = 1.3215

Note in this nominal case that 7* in [3] and [12] was = 0.5865 and 0.9518, respec-
tively.

To sum up from the foregoing examples, our delay-dependent design methodology
stands superior to all previously published results since it significantly reduces the

conservatism and employs new expanded model transformation.

6 Conclusions

For linear neutral systems with norm-bounded uncertainties, this paper has estab-
lished

1) An expanded state-space representation to exhibit the delay-dependent dynamics
while preserving the equivalence with the original system

2) A new delay-dependent stability criteria in a systematic way and without relying
on overbounding by using an appropriate Lyapunov-Krasovskii functional, and

4) A new delay-dependent stabilization using state-feedback and H., approach.

Numerical examples have been presented to illustrate the theoretical developments.

Superiority over existing techniques have been illuminated in all the examples.
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