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Abstract

The problems of delay-dependent robust stability and stabilization of a class
of uncertain, linear discrete-time singular systems with state-delay are exam-
ined. The parametric uncertainties are assumed to be time-invariant and norm-
bounded appearing in the state and delay matrices. A new system representa-
tion is developed to derive new delay-dependent stability criteria without relying
on overbounding. A solution to delay-dependent state-feedback stabilization is
obtained. Seeking computational convenience, all the developed results are cast
in the format of linear matrix inequalities (LMIs) and a numerical example is
presented.
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1 Introduction

Singular systems appear frequently in several applications including large-scale sys-

tems, power systems, economic systems, to name a few [9, 10]. The designations

singular systems, descriptor systems, implicit systems [1], generalized state-space

systems [7], differential-algebraic systems [5] or semistate systems are interchange-

ably used in the research studies. In recent years, robust stability and robust stabi-

lization problems of singular systems have been under investigation [6, 14, 15, 16].
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From these results, it becomes clear that the robust stability problem for singular

systems is more involved than the counterpart in state-space systems. Unlike ordi-

nary state-space systems, singular systems require, in addition stability robustness,

consideration of regularity and absence of impulses (case of continuous systems) or

causality (case of discrete systems) simultaneously [6, 8].

On another research front, it becomes quite evident that delays occur in physi-

cal and man-made systems due to various reasons including finite capabilities of

information processing among different parts of the system, inherent phenomena

like mass transport flow and recycling and/or by product of computational delays

[2, 12]. Considerable discussions on delays and their stabilization/destabilization

effects in control systems have attracted the interests of numerous investigators in

recent years, see [12] and their references. Recent related results on discrete delay

systems are presented in [3, 11, 13]

The class of discrete-time singular has been examined for robust stabilization in

[15, 16]. From the literature, it seems that the stabilization problem for discrete-

time singular and state-delay and bounded-but-unknown parametric uncertainties is

not fully investigated and most of the existing results are established under special

conditions. In this paper, we focus on the stabilization problem using state-feedback

controller. A new expanded state-space representation is developed which converts

the singular time-delay system into an equivalent singular system in which all the

original system matrices are grouped into the new system matrix and the original

delay system becomes easier to handle. The benefit gained is that we do not require

overbounding of the quantities involved. These advantages simplify the derivation

of new delay-dependent stability and state-feedback stabilization results. All the

results are formulated as linear matrix inequalities. A numerical example is worked

out to illustrate the theoretical developments.

Notations: In the sequel, the Euclidean norm is used for vectors. We use W t,

W−1, λ(W ) and ||W || to denote, respectively, the transpose, the inverse, the eigen-

values and the induced norm of any square matrix W and W > 0 (W < 0) stands

for a symmetrical and positive- (negative-) definite matrix W . The n-dimensional

Euclidean space and the space of bounded sequences are denoted by IRn×n and �2,

respectively. The symbol • will be used in some matrix expressions to induce a

symmetric structure, that is if given matrices L = Lt and R = Rt of appropriate
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dimensions, then [
L •
N R

]
=

[
L N t

N R

]

Sometimes, the arguments of a function will be omitted when no confusion can arise.

Fact 1: Given a scalar ε > 0 and matrices Σ1, Σ2 and Φ such that Φt Φ ≤ I,

then

Σ1ΦΣ2 + Σt
2Φ

tΣt
1 ≤ ε−1 Σ1Σt

1 + ε Σt
2Σ2

2 Problem Statement and Definitions

We consider the following class of discrete-time singular systems with state-delay

and parametric uncertainties:

E xk+1 = AΔoxk +AΔdxk−d +Bouk, x0 = ψ0 (2.1)

where xk ∈ IRn is the state vector; uk ∈ IRp is the control input and d ≤ d ≤ d̄ is

an unknown integer representing the delay and d, d̄ are known bounds. The matrix

E ∈ IRn×n may be singular; we assume that rank E = r ≤ n. The matrices

AΔo ∈ IRn×n and AΔd ∈ IRn×n are represented by

[AΔo AΔd] = [Ao Ad] +MΔk[Na Nd] (2.2)

where Ao ∈ IRn×n, Bo ∈ IRn×p, Ad ∈ IRn×n, M ∈ IRn×nm, Γ ∈ IRn×r, Na ∈
IRnn×n andNd ∈ IRnn×n are real and known constant matrices with Δk is a bounded

matrix of uncertainties satisfying Δt
kΔk < I. The uncertainties that satisfy (2.2)

are referred to as admissible uncertainties.

For the time being we set Δk ≡ 0, uk ≡ 0, AΔd ≡ 0, xk−d ≡ 0 to yield the free

nominal singular system

E xk+1 = Aoxk (2.3)

For system (2.3), we recall the following definitions and results:

Definition 2.1 [9, 14, 16]:

1. System (2.3) is said to be regular if det(zE −Ao) is not identically zero.

2. System (2.3) is said to be causal if it is regular and deg(det(zE − Ao)) =

rank(E).
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3. System (2.3) is said to be stable if all the roots of det(zE −Ao) lies inside the

unit disk with center at the origin.

4. System (2.3) is said to be admissible if it is regular, causal and stable.

Next we consider the free nominal singular delay system

E xk+1 = Aoxk +Adxk−d (2.4)

Extending on Definition (2.1), we provide the following

Definition 2.2 System (2.4) is said to be regular and causal if the pair (E,Ao) is

regular and causal. System (2.4) is said to be admissible if it is regular, causal and

asymptotically stable.

The objective of this paper is to develop delay-dependent methodologies for robust

stability and stabilization for the class of uncertain, discrete-time singular delay

systems of the type (2.1). This will be accomplished in Section 3 (delay-dependent

stability) and Section 4 (delay-dependent stabilization) through the establishment of

a new expanded state-space representation in which converts the singular time-delay

system into an equivalent singular system in which the system matrix contains all

the matrices of the original and the delay state has simple, certain and fixed matrix

even if the original delay matrix is uncertain.

3 Delay-Dependent Stability

In the sequel, we employ the difference operator Dk
Δ= xk+1 − xk along with xk−d =

xk − ∑k−1
j=k−d Dj to rewrite system (2.1):

E xk+1 = AΔoxk +AΔdxk−d +Bouk

= (AΔo +AΔd)xk −AΔd

k−1∑
j=k−d

Dj +Bouk

Together with the definition of Dk, we get

0 = (AΔo +AΔd − E)xk − E Dk −AΔd

k−1∑
j=k−d

Dj +Bouk (3.1)

Define σk =
∑k−1

j=k−d Dj, then it follows that

σk+1 = σk + Dk −Dk−d
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Introducing

ξk = [xt
k Dt

k σt
k]

t, AΔod = AΔo +AΔd

we readily obtain the new expanded state-space system

(Σ2) :

⎡
⎢⎣ I 0 0

0 0 0
0 0 I

⎤
⎥⎦ ξk+1

=

⎡
⎢⎣ I I 0
AΔod − E −E −AΔd

0 I I

⎤
⎥⎦ ξk +

⎡
⎢⎣ 0 0 0

0 0 0
0 −I 0

⎤
⎥⎦ ξk−d +

⎡
⎢⎣ 0
Bo

0

⎤
⎥⎦uk

U ξk+1 = ĀΔξ ξk + Āξd ξk−d + B̄ouk (3.2)

where the initial conditions are characterized by

ξ0 =

⎡
⎢⎣ x0

D0

σ0

⎤
⎥⎦ =

⎡
⎢⎣

ψ0

(Ao − E)ψ0 −Adψ−d0∑−1
j=−d̄

Dxj

⎤
⎥⎦ (3.3)

Remark 3.1 In short, if xk is a solution of uncertain delay system (2.3) with

Δk ≡ 0 and uk ≡ 0, then ξk is a solution of the new expanded state-space sys-

tem (3.2) subject to (3.3) and the reverse is true. This is the essence of descriptor

transformation. It is significant to observe that in system (3.2) the delay matrix has

a simple, certain and fixed matrix even although the original delay matrix AΔd is

uncertain. In addition, all the matrices of the original singular system are grouped

into the new system matrices and henceforth we call it the ”Compact Form (CF)”.

We rewrite the CF matrix

ĀΔξ = Āξo + M̄ Δk N̄ (3.4)

with

Āξo =

⎡
⎢⎣ I I 0
Aod − E −E −Ad

0 I I

⎤
⎥⎦ , M̄ =

⎡
⎢⎣ 0
M
0

⎤
⎥⎦ ,

N̄ = [Nad 0 −Nd], Nad = Na +Nd, Aod = Ao +Ad

Now to derive tractable conditions for stability, we introduce the following Lyapunov

functional

V (ξk) = Va(ξk) + Vb(ξk) + Vc(ξk) + Vd(ξk) (3.5)
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with

Va(ξk) = ξt
kU

tPUξk, 0 < Pt = P ∈ IR3n×3n

Vb(ξk) =
k−1∑

j=k−d

ξt
j Ī

tW Īξj , 0 <Wt = W ∈ IRn×n, Ī = [I 0 0]

Vc(ξk) =
−d+1∑

p=−d̄+2

k−1∑
j=k+p−1

ξt
j Ĩ

tQĨξj, 0 < Qt = Q ∈ IRn×n, Ĩ = [0 I 0]

Vd(ξk) =
−d∑

p=−d̄+1

k−1∑
j=k+p

[(j − p− k + 1)ξt
j Ĩ

tQĨξj]

where

P Δ=

⎡
⎢⎣ Px Pf 0

• Pd 0
• • Ps

⎤
⎥⎦ , 0 < Px = Pt

x ∈ IRn×n, 0 < Pd = Pt
d ∈ IRn×n, 0 < Ps = Pt

s ∈ IRn×n

We consider Vk and evaluate the first difference of the functionals Va, Vb, Vc and

Vd. For Va, we have

Va(ξk+1) − Va(ξk) = ξt
k+1U

tPUξt
k+1 − ξt

kU
tPUξt

k

= [ĀΔξξk + Āξdξk−d]tP[ĀΔξξk + Āξdξk−d] − ξt
kU

tPUξt
k

= ξt
k[Ā

t
ΔξPĀΔξ − U tPU ]ξt

k + ξt
k−dĀ

t
ξdPĀξdξ

t
k−d + 2ξt

kĀ
t
ΔξPĀξdξk−d

(3.6)

For Vb, we have

Vb(ξk+1) − Vb(ξk) =
k∑

j=k+1−d

ξt
j Ī

tW Īξj −
k−1∑

j=k−d

ξt
j Ī

tW Īξj

= ξt
kĪ

tW Īξk − ξt
k−dĪ

tW Īξk−d (3.7)

For Vc, we have

Vc(ξk+1) − Vc(ξk) =
−d+1∑

p=−d̄+2

k∑
j=k+p

ξt
j Ĩ

tQĨξj −
−d+1∑

p=−d̄+2

k−1∑
j=k+p−1

ξt
j Ĩ

tQĨξj

=
−d+1∑

p=−d̄+2

[
ξt
k Ĩ

tQĨξk +
k−1∑

j=k+p

ξt
j Ĩ

tQĨξj − ξt
k+p−1Ĩ

tQĨξk+p−1

−
k−1∑

j=k+p−1

ξt
j Ĩ

tQĨξj
]
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=
−d+1∑

p=−d̄+2

ξt
kĨ

tQĨξk −
−d+1∑

p=−d̄+2

ξt
k+p−1Ĩ

tQĨξk+p−1

= (d̄− d) ξt
k Ĩ

tQĨξk −
k−d∑

j=k−d̄+1

ξt
j Ĩ

tQĨξj (3.8)

For Vd, we have

Vd(ξk+1) − Vd(ξk) =
−d∑

p=−d̄+1

k∑
j=k+p+1

[(j − p− k)ξt
j Ĩ

tQĨξj]

−
−d∑

p=−d̄+1

k−1∑
j=k+p

[(j − p− k + 1)ξt
j Ĩ

tQĨξj ]

= −
−d∑

p=−d̄+1

p ξt
kĨ

tQĨξk −
−d∑

p=−d̄+1

ξt
k+pĨ

tQĨξk+p

= −
k−d∑

j=k−d̄+1

ξt
j Ĩ

tQĨξj +
1
2
(d̄+ d) (d− d̄+ 1) ξt

kĨ
tQĨξk

(3.9)

It follows from (3.5) and (3.6)-(3.9) that

Vk+1 − Vk = ξt
k[Ā

t
ΔξPĀΔξ − U tPU ]ξt

k + ξt
k−dĀ

t
ξdPĀξdξ

t
k−d + 2ξt

kĀ
t
ΔξPĀξdξk−d

+ ξt
k Ī

tW Īξk − ξt
k−dĪ

tW Īξk−d

+ (d̄− d) ξt
kĨ

tQĨξk +
k−d∑

j=k−d̄+1

ξt
j Ĩ

tQĨξj

−
k−d∑

j=k−d̄+1

ξt
j Ĩ

tQĨξj +
1
2
(d̄+ d) (d− d̄+ 1) ξt

kĨ
tQĨξk

= ξt
k[Ā

t
ΔξPĀΔξ − U tPU ]ξt

k + ξt
k−dĀ

t
ξdPĀξdξ

t
k−d + 2ξt

kĀ
t
ΔξPĀξdξk−d

+ ξt
k Ī

tW Īξk − ξt
k−dĪ

tW Īξk−d

+ [d̄+
1
2
(d̄− d) (d̄+ d− 1)] ξt

k Ĩ
tQĨξk

=

[
ξk
ξk−d

]t
⎡
⎢⎣

Āt
ΔξPĀΔξ − U tPU+
ĪtW Ī + d+ ĨtQĨ Āt

ΔξPĀξd

• −ĪtW Ī + Āt
ξdPĀξd

⎤
⎥⎦

[
ξk
ξk−d

]

=

[
ξk
ξk−d

]t

Υ(d+)

[
ξk
ξk−d

]
(3.10)
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By Laypunov theory, asymptotic stability (Vk+1 − Vk < 0,∀ξk �= 0) implies that

Υ(d+) < 0 which by Schur complement is equivalent to

⎡
⎢⎣ −U tPU + ĪtW Ī + d+ ĨtQĨ 0 Āt

ΔξP
• −ĪtW Ī Āt

ξdP
• • −P

⎤
⎥⎦ < 0 (3.11)

Define

X Δ= P−1 =

⎡
⎢⎣ Xx Xf 0

• Xd 0
• • Xs

⎤
⎥⎦ ∈ IR3n×3n, 0 < Xx = X t

x ∈ IRn×n,

0 < Xd = X t
d ∈ IRn×n, Xf ∈ IRn×n (3.12)

and

d+ = d̄+
1
2
(d̄− d) (d̄+ d− 1)

Using the congruence transformation diag[X I X ] and invoking the linearizations

X ĪtW ĪX Δ= M = d†

⎡
⎢⎣ Mx Mf 0

• Md 0
• • 0

⎤
⎥⎦ ,

0 <Mt
x = Mx ∈ IRn×n, Mf ∈ IRn×n, 0 <Mt

d = Md ∈ IRn×n,

d+ X ĨtQĨX Δ= d+ N = d+

⎡
⎢⎣ Nx Nf 0

• Nd 0
• • 0

⎤
⎥⎦ ,

0 < N t
x = Nx ∈ IRn×n, Nf ∈ IRn×n, 0 < N t

d = Nd ∈ IRn×n,

Z = XU tPUX Δ=

⎡
⎢⎣ Zx Zf 0

• Zd 0
• • Zs

⎤
⎥⎦ ,

0 < Zt
x = Zx ∈ IRn×n, Zf ∈ IRn×n, 0 < Zt

d = Zd ∈ IRn×n, 0 < Zt
s = Zs ∈ IRn×n,

inequality (3.11) becomes
⎡
⎢⎣ −Z + M + d+N 0 X Āt

Δξ

• −ĪtW Ī Āt
ξd

• • −X

⎤
⎥⎦ < 0 (3.13)

The following theorem establishes LMI-based sufficient conditions for dealy-dependent

robust stability of system (Σ2).
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Theorem 3.1 System (Σ2) with uk ≡ 0 is delay-dependent robustly stable if there

exist matrices 0 < Xx = X t
x ∈ IRn×n, 0 < Xd = X t

d ∈ IRn×n, 0 < Xs = X t
s ∈

IRn×n, Xf ∈ IRn×n, 0 < Zx = Zt
x ∈ IRn×n, 0 < Zd = Zt

d ∈ IRn×n, Zf ∈ IRn×n, 0 <

Zs = Zt
s ∈ IRn×n, 0 < Mx = Mt

x ∈ IRn×n, 0 < Md = Mt
d ∈ IRn×n, 0 < Nx =

N t
x ∈ IRn×n, 0 < Nd = N t

d ∈ IRn×n, Mf ∈ IRn×n, Nf ∈ IRn×n, 0 < W = Wt ∈
IRn×n and scalars δ > 0, α > 0 such that the following inequality holds for all

admissible uncertainties⎡
⎢⎢⎢⎣

−Z + M + d+N 0 Πa Πn

• −ĪtW Ī − αB Āt
ξd 0

• • −X + δM̄M̄ t 0
• • • −δI

⎤
⎥⎥⎥⎦ < 0 (3.14)

where

Πa =

⎡
⎢⎣ Xx + Xf XxA

t
od −XxE

t −XfE
t Xf

X t
f + Xd X t

fA
t
od −X t

fE
t −XdE

t Xd

0 −XsA
t
d Xs

⎤
⎥⎦ , Πn =

⎡
⎢⎣ XxN

t
ad

X t
fN

t
ad

−XsN
t
d

⎤
⎥⎦(3.15)

Proof: Using (3.4) in (3.13) and manipulating with the aid of Fact 1, it yields⎡
⎢⎣ −Z + M + d+N 0 X Āt

ξo + X N̄ tΔtM̄

• −ĪtW Ī Āt
ξd

• • −X

⎤
⎥⎦

=

⎡
⎢⎣ −Z + M + d+N 0 X Āt

ξo

• −ĪtW Ī Āt
ξd

• • −X

⎤
⎥⎦ +

⎡
⎢⎣ X N̄ t

0
0

⎤
⎥⎦ Δt

k

[
0 0 M̄ t

]

+

⎡
⎢⎣ 0

0
M̄

⎤
⎥⎦ Δk

[
N̄X 0 0

]

≤
⎡
⎢⎣ −Z + M + d+N 0 X Āt

ξo

• −ĪtW Ī Āt
ξd

• • −X

⎤
⎥⎦ + δ−1

⎡
⎢⎣ X N̄ t

0
0

⎤
⎥⎦ [N̄X 0 0]

+δ

⎡
⎢⎣ 0

0
M̄

⎤
⎥⎦ [0 0 M̄ t], δ > 0

=

⎡
⎢⎣ −Z + M + d+N + δ−1X N̄ tN̄X 0 X Āt

ξo

• −ĪtW Ī Āt
ξd

• • −X + δM̄M̄ t

⎤
⎥⎦ (3.16)

By Schur complement, the last inequality in (3.16) becomes⎡
⎢⎢⎢⎣

−Z + M + d+N 0 X Āt
ξo X N̄ t

• −ĪtW Ī Āt
ξd 0

• • −X + δM̄M̄ t 0
• • • −δI

⎤
⎥⎥⎥⎦ < 0, δ > 0 (3.17)
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Let

B =

⎡
⎢⎣ I 0 0

0 I 0
0 0 0

⎤
⎥⎦ , B =

[
0 0
0 B

]
≥ 0 (3.18)

It follows from the S-procedure [4] that there exists α > 0 such that the following

inequality holds
⎡
⎢⎢⎢⎣

−Z + M + d+N 0 X Āt
ξo X N̄ t

• −ĪtW Ī − αB Āt
ξd 0

• • −X + δM̄M̄ t 0
• • • −δI

⎤
⎥⎥⎥⎦ < 0, δ > 0 (3.19)

Algebraic manipulation of LMI (3.19) using (3.4) and (3.12) yields (3.14) as desired.

∇∇∇
In the absence of uncertainties we get the following corollary

Corollary 3.1 System (Σ2) with uk ≡ 0, M ≡ 0, Na ≡ 0 and Nd ≡ 0 is delay-

dependent quadratically stable if there exist matrices 0 < Xx = X t
x ∈ IRn×n, 0 <

Xd = X t
d ∈ IRn×n, 0 < Xs = X t

s ∈ IRn×n, Xf ∈ IRn×n, 0 < Zx = Zt
x ∈ IRn×n, 0 <

Zd = Zt
d ∈ IRn×n, Zf ∈ IRn×n, 0 < Zs = Zt

s ∈ IRn×n, 0 < Mx = Mt
x ∈

IRn×n, 0 < Md = Mt
d ∈ IRn×n, 0 < Nx = N t

x ∈ IRn×n, 0 < Nd = N t
d ∈

IRn×n, Mf ∈ IRn×n, Nf ∈ IRn×n, 0 < W = Wt ∈ IRn×n and a scalar α > 0

satisfying the following inequality⎡
⎢⎣ −Z + M + d+N 0 Πa

• −ĪtW Ī − αB Āt
ξd

• • −X

⎤
⎥⎦ < 0 (3.20)

4 Delay-Dependent State-Feedback Stabilization

Consider system (3.2) and applying the state-feedback control law

u = Ko xk = Ko Ī ξk (4.1)

we obtain the following closed-loop system

(Σ2) : U ξk+1 =

⎡
⎢⎣ I I 0
AΔodk − E −E −AΔd

0 I I

⎤
⎥⎦ ξk + Āξd ξk−d

= ĀΔξkξ + Āξd ξk−d (4.2)
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with

ĀΔξk = (Āξko + M̄ΔN̄) , Āξko =

⎡
⎢⎣ I I 0
Aod +BoKo − E −E −Ad

0 I I

⎤
⎥⎦

It follows from inequality (3.19) that system (4.2) is delay-dependent robustly sta-

bilizable if the following LMI is satisfied for all admissible uncertainties:
⎡
⎢⎢⎢⎣

−Z + M + d+N 0 X Āt
ξko X N̄ t

• −ĪtW Ī Āt
ξd 0

• • −X + δM̄M̄ t 0
• • • −δI

⎤
⎥⎥⎥⎦ < 0 (4.3)

Following the steps of section 3, we get the stabilization result which is summarized

by the following theorem:

Theorem 4.1 System (Σ2) is delay-dependent robustly stabilizable by the feedback

controller (4.1) if there exist matrices 0 < Xx = X t
x ∈ IRn×n, 0 < Xd = X t

d ∈
IRn×n, 0 < Xs = X t

s ∈ IRn×n, Xf ∈ IRn×n, 0 < Zx = Zt
x ∈ IRn×n, 0 < Zd = Zt

d ∈
IRn×n, Zf ∈ IRn×n, 0 < Zs = Zt

s ∈ IRn×n, 0 < Mx = Mt
x ∈ IRn×n, 0 < Md =

Mt
d ∈ IRn×n, 0 < Nx = N t

x ∈ IRn×n, 0 < Nd = N t
d ∈ IRn×n, Mf ∈ IRn×n, Nf ∈

IRn×n, Yx ∈ IRm×n, Yf ∈ IRm×n, 0 < W = Wt ∈ IRn×n and scalars δ > 0, α > 0

such that the following LMI holds for all admissible uncertainties
⎡
⎢⎢⎢⎣

−Z + M + d+N 0 Πb Πn

• −ĪtW Ī − αB Āt
ξd 0

• • −X + δM̄M̄ t 0
• • • −δI

⎤
⎥⎥⎥⎦ < 0 (4.4)

where

Πb =

⎡
⎢⎣ Xx + Xf XxA

t
od + Yt

xB
t
o −XxE

t −XfE
t Xf

X t
f + Xd X t

fA
t
od + Yt

fB
t
o −X t

fE
t −XdE

t Xd

0 −XsA
t
d Xs

⎤
⎥⎦ , Πn =

⎡
⎢⎣ XxN

t
ad

X t
fN

t
ad

−XsN
t
d

⎤
⎥⎦(4.5)

The feedback gain is given by Ko = YxX−1
x .

Proof: Follows from Theorem 3.1 after taking Yx = KoXx and Yf = KoXf . ∇∇∇
In the absence of uncertainties we have the following corollary

Corollary 4.1 System (Σ2) with M ≡ 0, Na ≡ 0 and Nd ≡ 0 is delay-dependent

quadratically stabilizable by the feedback controller (4.1) law if there exist matrices
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0 < Xx = X t
x ∈ IRn×n, 0 < Xd = X t

d ∈ IRn×n, 0 < Xs = X t
s ∈ IRn×n, Xf ∈

IRn×n, 0 < Zx = Zt
x ∈ IRn×n, 0 < Zd = Zt

d ∈ IRn×n, Zf ∈ IRn×n, 0 < Zs =

Zt
s ∈ IRn×n, 0 < Mx = Mt

x ∈ IRn×n, 0 < Md = Mt
d ∈ IRn×n, 0 < Nx = N t

x ∈
IRn×n, 0 < Nd = N t

d ∈ IRn×n, Mf ∈ IRn×n, Nf ∈ IRn×n, Yx ∈ IRm×n, Yf ∈
IRm×n, 0 <W = Wt ∈ IRn×n and a scalar α > 0 satisfying the following LMI⎡

⎢⎣ −Z + M + d+N 0 Πb

• −ĪtW Ī − αB Āt
ξd

• • −X

⎤
⎥⎦ < 0 (4.6)

The feedback gain is given by Ko = YxX−1
x .

4.1 Example

In order to illustrate the validity of our approach, we consider the following discrete-

time singular systems with state-delay

Ao =

[
0 1
−2 −3

]
, Ad =

[
0.01 0.10
0 0.10

]
, Bo =

[
0
1

]
,

M =
[

0.01 0.02
]
, Na =

[
0.02 0.01

]
, Nd =

[
0.01 0.01

]
,

Nb = 0.01, E =

[
1 1
0 0

]
, d = 0, d̄ = 5

We record that the open-lop system is unstable since its eigenvalues are outside the

unit disc. Implementation of the LMI (dceq177) yields the feasible solution

Xx =

[
1.2416 0.1119
0.1119 1.2997

]
, Xf =

[
−0.4575 −0.1602
0.0570 −0.2360

]
,

Xd =

[
0.8779 −0.0480
−0.0480 0.5658

]
, Xs =

[
1.6944 −0.0079
−0.0079 1.4331

]
,

Zx =

[
7.2877 −0.0397
−0.0397 7.3704

]
, Zf =

[
−0.1055 −0.0427
0.0445 −0.0829

]
,

Zd =

[
7.4585 0.0049
0.0049 7.3351

]
, Zs =

[
3.9645 −0.0026
−0.0026 3.5666

]
,

Mx =

[
0.2993 0.0006
0.0006 0.2980

]
, Md =

[
0.2971 0.0002
0.0002 0.2986

]
,

Nx =

[
0.4787 0.0008
0.0008 0.4770

]
, Nd =

[
0.4753 −0.0003
−0.0003 0.4777

]
, δ = 2.1820

These values give the feedback gain as Ko = [1.9760 2.7106] which renders the

closed-loop singular system stable.
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5 Robust Results with Uncertain E-Matrix

All the foregoing robust analysis and design results are valied for nominal E-matrix.

In the case when it is uncertain, then an effective modification has to be introduced.

We limit ourselves to one class of uncertain E-matrix, that is, En = E + MΔtNe

where M ∈ IRn×nm , Ne ∈ IRnn×n are real and known constant matrices with Δt

is a bounded matrix of uncertainties satisfying Δt
tΔt < I. It is obvious that

this class of norm-bounded uncertainties is selected to render the analysis tractable.

Accordingly, the CF matrix becoms

ĂΔξ = Āξo + M̄ Δt N̂ (5.1)

where

Āξo =

⎡
⎢⎣ I I 0
Aod − E −E −Ad

0 I I

⎤
⎥⎦ , M̄ =

⎡
⎢⎣ 0
M
0

⎤
⎥⎦ ,

N̂ = [Nad −Ne −Ne −Nd], Nad = Na +Nd, Aod = Ao +Ad (5.2)

In the following, we list without proof the main delay-dependent robust stability

and stabilization results

Theorem 5.1 System (Σ2) with uncertain E-matrix and uk ≡ 0 is delay-dependent

robustly stable if there exist matrices 0 < Xx = X t
x ∈ IRn×n, 0 < Xd = X t

d ∈
IRn×n, 0 < Xs = X t

s ∈ IRn×n, 0 < X t
f = Xf ∈ IRn×n, Xh ∈ IRn×n, Xg ∈

IRn×n, Md = Mt
d ∈ IRn×n, Me ∈ IRn×n, Mq ∈ IRn×n, Mf ∈ IRn×n, Mx =

Mt
x ∈ IRn×n, 0 < Ms = Mt

s ∈ IRn×n, Ld = Lt
d ∈ IRn×n, Le ∈ IRn×n, Lq ∈

IRn×n, Lf ∈ IRn×n, Lx = Lt
x ∈ IRn×n, 0 < Ls = Lt

s ∈ IRn×n, 0 < N t
d = Nd ∈

IRn×n, 0 < N t
e = Ne ∈ IRn×n, 0 < N t

q = Nq ∈ IRn×n, 0 < N t
f = Nf ∈ IRn×n, 0 <

Nx = Nx ∈ IRn×n, 0 < N t
s = Ns ∈ IRn×n and scalars δ > 0, σ > 0 such that the

following inequalities hold for all admissible uncertainties⎡
⎢⎢⎢⎣

−Z + M + d+N 0 Πa Π̂n

• −ĪtW Ī − αB Āt
ξd 0

• • −X + δM̄M̄ t 0
• • • −δI

⎤
⎥⎥⎥⎦ < 0

X tU t = UX ≥ 0 (5.3)

where

Π̂n =

⎡
⎢⎣ Xx(N t

ad −N t
e) −X t

fN
t
e

Xf (N t
ad −N t

e) −XdN
t
e

−XsN
t
d

⎤
⎥⎦ (5.4)



504 M. S. Mahmoud and A. Ismail

Theorem 5.2 System (Σ2) with uncertain E-matrix is delay-dependent robustly sta-

blizable by the feedback controller (4.1) if there exist matrices 0 < Xx = X t
x ∈

IRn×n, 0 < Xd = X t
d ∈ IRn×n, 0 < Xs = X t

s ∈ IRn×n, 0 < X t
f = Xf ∈ IRn×n, Xh ∈

IRn×n, Xg ∈ IRn×n, Md = Mt
d ∈ IRn×n, Me ∈ IRn×n, Mq ∈ IRn×n, Mf ∈

IRn×n, Mx = Mt
x ∈ IRn×n, 0 < Ms = Mt

s ∈ IRn×n, Ld = Lt
d ∈ IRn×n, Le ∈

IRn×n, Lq ∈ IRn×n, Lf ∈ IRn×n, Lx = Lt
x ∈ IRn×n, 0 < Ls = Lt

s ∈ IRn×n, 0 <

N t
d = Nd ∈ IRn×n, 0 < N t

e = Ne ∈ IRn×n, 0 < N t
q = Nq ∈ IRn×n, 0 < N t

f = Nf ∈
IRn×n, 0 < Nx = Nx ∈ IRn×n, 0 < N t

s = Ns ∈ IRn×n, Ys ∈ IRm×n, Yf ∈ IRm×n

and scalars δ > 0, σ > 0 such that the following LMIs hold for all admissible

uncertainties ⎡
⎢⎣ −Z + M + d+N 0 Πa

• −ĪtW Ī − αB Āt
ξd

• • −X

⎤
⎥⎦ < 0

X tU t = UX ≥ 0 (5.5)

The feedback gain is given by Ko = YsX−1
x .

6 Conclusions

The problems of Delay-dependent robust stability and stabilization of uncertain, lin-

ear discrete-time singular systems with state-delay have been examined. A new sys-

tem representation has been developed to derive new delay-dependent stability crite-

ria without relying on overbounding. A solution to delay-dependent state-feedback

stabilization has thus been obtained. A numerical example has been presented.
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