
Applied Mathematical Sciences, Vol. 1, 2007, no. 11, 517 - 525

A Branch and Bound-PSO Hybrid Algorithm

for Solving Integer Separable

Concave Programming Problems1

Yuelin Gao2,3, Zihui Ren4 and Chengxian Xu2

2 School of Finance and Economics, Xi’an Jiaotong University
Xi’an,710049, China

mxxu@mail.xjtu.edu.cn

3 Department of Information and Computation Science
Northwest Second National College

Yin Chuan 750021, China
gaoyuelin@263.net

4 School of Mathematics and Computer
Ningxia University, Yin Chuan 750021, China

renzihui@etang.com

Abstract

A branch and bound-PSO hybrid algorithm for solving integer sep-
arable concave programming problems is proposed, in which the lower
bound of the optimal value was determined by solving linear program-
ming relax and the upper bound of the optimal value and the best fea-
sible solution at present were found and renewed with particle swarm
optimization (PSO). It is shown by the numerical results that the branch
and bound-PSO hybrid algorithm is better than the branch and bound
algorithm in the computational scale and the computational time and
the computational precision and overcome the convergent difficulty of
particle swarm optimization (PSO).

Keywords: Integer programming; separable concave programming; branch
and bound method; particle swarm optimization; linear programming relax

1The work is supported by the Foundations of National Natural Science in Ningxia (grants
NZ0676) and Post Doctor of China(20060401001), and by the Science Research Projects of
Ministry of Education of China(06JA630056), and Ningxia’s Colleges and Universities in
2005.



518 Yuelin Gao, Zihui Ren and Chengxian Xu

1 Introduction

Consider the integer separable concave programming problem below:

(ISCCP)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min φ(x) =
n∑

j=1

fj(xj)

s.t. x ∈ D = {x ∈ Rn|Ax ≤ b},
x ∈ Zn.

where each fj(xj) is a concave function over R, Zn is a set which consists of all
n-dimension integer points; A = (aij)n×m ∈ Rm×n, b = (b1, b2, · · · , bm)T ∈ Rm,
the feasible field D is a bounded convex polyhedron.

Problem (ISCCP) are encountered in a variety of areas, such as capital bud-
geting [2], computer-aided layout design [5], portfolio selection [3], site selection
for electric message systems [6] and shared fixed costs [7], etc. The methods
for solving the problem (ISCCP) has mainly method of dynamic program-
ming, branch and bound method, the method of computational intelligence
[1,4,8-10].

In the paper, we present a branch and bound-PSO hybrid algorithm for
solving the problem (ISCCP), in which the lower bound of the optimal value
was determined by solving linear programming relax and the upper bound
of the optimal value and the best feasible solution at present were found and
renewed with particle swarm optimization (PSO). It is shown by the numerical
results that the branch and bound-PSO hybrid algorithm is better than the
branch and bound algorithm (BBA) and overcome the convergent difficulty of
particle swarm optimization (PSO).

Section 2 gives a good linear programming relax of the problem (ISCCP).
Section 3 gives a particle swarm optimization algorithm based on the penalty
function for solving the problem (ISCCP) to find and renew the best feasible
solution of the problem (ISCCP) and the upper bound of the optimal value of
it at present. Section 4 describes a branch and bound-PSO hybrid algorithm.
Section 5 gives several numerical examples to show that the proposed algorithm
is effective.

2 A linear programming relaxed approxima-

tion

Firstly, we give the continuous relaxed programming of the problem (ISCCP)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min φ(x) =
n∑

j=1

fj(xj)

s.t. x ∈ D = {x ∈ Rn|Ax ≤ b},
x ∈ [l, u].

(1)



A branch and bound-PSO hybrid algorithm 519

where [l, u] is a rectangle over Rn which contains D. Because D is a bounded
convex polyhedron, so we can find a rectangle [l, u] ⊆ Rn such that D ⊆ [l, u]
by solving linear programming.

Because each fj(xj) is a concave function over R, so its convex envelope
over [lj , uj] is a line through two points (lj, fj(lj)) and (uj, fj(uj)), i.e.

lbj(xj) =
(fj(uj) − fj(lj))

uj − lj
(x − lj) + fj(lj), (2)

thus we can obtain the best linear programming relaxed approximation of the
problem (ISCCP) below:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min φ(x) =
n∑

j=1

lbj(xj)

s.t. x ∈ D = {x ∈ Rn|Ax ≤ b},
x ∈ [l, u].

(3)

The optimal value of the problem (3) is a lower bound of the optimal value
of the problem (ISCCP).

3 The particle swarm optimization algorithm

of integer programming

The particle swarm optimization algorithm (PSO)[8, 9, 10] is a kind of compu-
tational intelligent technology which is put forward by Kennedy and Eberhart
el in 1995 and has global optimal property, but PSO’s convergence is not
proofed.

Below is a penalty function of the problem (ISCCP):

p(x) =
n∑

j=1

fj(xj) + M(
m∑

i=1

|min{0, bk −
n∑

j=1

aijxj}|) (4)

where M > 0 is a penalty parameter.
We now give a PSO algorithm based on the penalty function (4) for solving

the problem (ISCCP). Nc is noted as the iteration times when the PSO algo-
rithm stops, Mc is noted as the number of the particles in a particle swarm,
psb is noted as the best position by which a particle has gone so far and pgb is
noted as the best position by which all the particles in the particle swarm has
gone so far as well as xgb is noted as the best feasible position by which all the
particles in the particle swarm has gone so far. V i

max is noted as the biggest
velocity of the particle xi(i = 1, 2, · · · , Mc).
PSO algorithm based on the penalty function



520 Yuelin Gao, Zihui Ren and Chengxian Xu

Step1. Set t = 1, M = 1000, Nc = 100, Mc = 60. Produce randomly
a particle swarm, the initial position of each particle xi(i = 1, 2, · · · , Mc) in
which is xij(0), j = 1, 2, · · · , n and the initial velocities vij(0), j = 1, 2, · · · , n.
Compute the fitness of each particle. Determine psb of each particle, and pgb

and xgb of all the particles in the particle swarm.
Step2. Set t = t + 1, M = M × t. For each particle xi(i = 1, 2, · · · , Mc),

from the iteration formula below:

{
vij = wvij + c1rand1(pij − xij) + c2rand2(pgj − xij)
xij = xij + vij , j = 1, 2, · · · , n.

(5)

where w ∈ [0.2, 1.2] is inertia weight, c1 = 2 and c2 = 1.7 are acceleration
constants, rand1 and rand2 are two random functions over [0, 1]. If vij > V i

max

in (5), then vij = V i
max(j = 1, 2, · · · , n).

Step3. For each particle, compute psb. For the particle swarm, compute
pgb and xgb.

Step4. If t = Nc, then outcome xopt = xgb, stop; else go to step2.
All the coefficients in the PSO algorithm are determined through the nu-

merical test in Section 5 and the PSO algorithm can find better feasible solution
and better upper bound.

4 Description of a branch and bound-PSO hy-

brid algorithm

In this section, we describe a branch and bound-PSO hybrid algorithm for
solving the problem (ISCCP), in which the branching procedure is usual integer
rectangle two-partitioning one and the bounding lower procedure is by solving
the problem (3) as well as in the bounding upper procedure the PSO algorithm
in Section 3 is used. Denote that R = [l, u].

We now describe the branch and bound-PSO hybrid algorithm (BB-PSO-
HA).

Step0. (Initialization) Set k = 0, Ω = {R}. Determine the best lower LB at
present by solving the problem (3) and the best upper bound UB and the best
feasible solution xxbest of the problem (ISCCP) at present with PSO algorithm.

Step k (k = 1, 2, · · ·)
k1.(Termination) If Ω = Φ or UB−LB

UB
< eps, then outcome xxbest and

OPT = UB.
k2.(Selection Rule) Find a subrectangle Rk in Ω such that LB(Rk) = LB.
k3.(Branching) Partition Rk into two subrectangles Rk+1,1 Rk+1,2, and each

subrectangle is reduced into integer rectangle each vertex point of which is
integer point. The obtained two integer subrectangles are noted as Rk+1,1 and
Rk+1,2 too. Set Ω = (Ω − Rk)

⋃{Rk+1,1, Rk+1,2}.



A branch and bound-PSO hybrid algorithm 521

k4.(Lower Bounding) Solve the problem (3) over Rk+1,1 and over Rk+1,2

respectively to obtain new lower LB.
k5.(Upper Bounding) Renew UB and xxbest with the PSO algorithm in

Section 3.
k6. (Deleting Rule) Set Ω = Ω − {R ∈ Ω : LB(R) ≥ UB} and k = k + 1.

Go to k1.

5 Numerical Computation

We solve the three problems (6)-(8) below with BBA and BB-PSO-HA:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
n∑

i=1

(cixi − dix
2
i )

s.t.
n∑

i=1

aixi ≤ b,

x ∈ [−2, 4], x ∈ Z,
i = 1, 2, ..., n.

(6)

where ci ∈ [10, 20], di ∈ [10, 20], ai ∈ [0, 50], b = 3.8sum(a) = 3.8
∑n

i=1 ai.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
n∑

i=1

log(cixi + di)

s.t.
n∑

i=1

aixi ≤ b,

x ∈ [1, 20], x ∈ Z,
i = 1, 2, ..., n.

(7)

where ci ∈ [10, 20], di ∈ [10, 20], ai ∈ [0, 50], b = 1.2sum(a) = 1.2
∑n

i=1 ai.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
n∑

i=1

(cixi + x
1
di
i )

s.t.
n∑

i=1

aixi ≤ b,

x ∈ [1, 6], x ∈ Z,
i = 1, 2, ..., n.

(8)

where ci ∈ [−9, 9], di ∈ [1, 7], ai ∈ [0, 50], b = 3.8sum(a) = 3.8
∑n

i=1 ai.
The procedure of BBA and BB-PSO-HA are compiled with Matlab7.0.1 in

person computer on DELL-P4-Intel865-512MB. We produce randomly twenty
examples for the problems (6)-(8) in n = 60, 100, 150, 200, 300, 500, 800, 1000,
1500, 2000, 3000, 4000 respectively and solve these examples with BBA and
BB-PSO-HA respectively. The results of the numerical computation can be
seen at Table1-Table6. ”Iteration” and ”Cputime” are noted as the iteration



522 Yuelin Gao, Zihui Ren and Chengxian Xu

times and computational time respectively. ”Avg, Max, Min” are noted as
the iteration times and computational time of ”average, maximum, minimum”
respectively. We can say that the computation fails if BB-PSO-HA or BBA
does not stop when iteration=10000.

It is shown by the numerical results from Table 1-Table 6 that BB-PSO-HA
is better than BBA in the computational scale and the computational time and
the computational precision.

Table 1 Numberical results for the problem 1
Ex1 BBA

Eps = 10−4 Iteration Cputime(Seconds) failure rate
n Avg Max Min Avg Max MIN *
60 7000 10000 1 472.2258 1035.8 0.0940 0.05
100 7580 10000 1 674.9794 1331.5 0.0780 0.05
150 7211 10000 1 844.7176 2574.9 0.1560 0.05
200 6776 10000 1 840.5947 3206.8 0.2970 0.05
300 8366 10000 1 1793.9932 5450.0 0.2030 0.10
500 6298 10000 3 2405.8687 8278.6 0.6400 0.10
800 5288 10000 2 4491.6621 8611.0 0.9850 0.083
1000 4357 10000 432 4143.4605 22135.0 181.0780 0.083

Table 2 Numberical results for the problem 1
Ex1 BBA-PSO

Eps = 10−5 Iteration Cputime(Seconds) failure rate
n Avg Max Min Avg Max MIN *
60 81 10000 1 584.3867 87775 9.090 0.05
100 95 648 1 795.3813 6032.4 12.1100 0
150 47 10000 1 1089.8666 9786.0 21.8590 0.2
180 122 10000 1 1462.1903 12588 21.6560 0.09523
200 178 10000 1 1510.5300 22573 29.0150 0.05
300 60 197 1 2100.8955 34889 36.0150 0
500 28 124 1 6908.9045 90178 72.7340 0
800 80 10000 1 959.0601 10874 116.3750 0.15
1000 20 10000 1 1991.250 18286 147.516 0.5



A branch and bound-PSO hybrid algorithm 523

Table 3 Numberical results for the problem 2
Ex2 BBA

Eps = 10−5 Iteration Cputime(Seconds) failure rate
n Avg Max Min Avg Max MIN *
60 1076 5005 1 49.9905 325.8750 0.0460 0
100 1579 10000 1 133.3667 874.7650 0.0470 0.05
150 1655 9988 1 270.3304 2408.5 0.1870 0
200 1875 10000 1 520.5757 4111.1 0.0930 0.20
300 1081 8876 1 296.6009 2549.9 0.6100 0
500 2633 10000 1 1054.8215 4822.2 0.3130 0.05
800 558 10000 2 484.9714 8855.0 0.9850 0.05
1000 780 9888 432 490.8955 8402.8 1.5630 0

Table 4 Numberical results for the problem 2
Ex2 BBA-PSO

Eps = 10−5 Iteration Cputime(Seconds) failure rate
n Avg Max Min Avg Max MIN *
60 25 166 1 274.9855 1814.8 9.8120 0
100 8 75 1 142.8922 1488.4 17.0320 0
150 16 164 1 449.3077 4546.0 24.4690 0
180 11 175 1 171.9088 2379.8 30.0000 0
200 18 160 1 635.7583 5797.7 32.5780 0
300 14 178 1 451.2245 3947.8 49.5630 0
500 15 144 1 1017.3059 9394.1 65.3280 0
800 4 10000 1 594.2683 6732.6 137.5 0.05
1000 18 10000 1 3493.1909 50020 133.203 0.05
1500 2 5 1 297.80658 1003.2 199.593 0
2000 5 50 1 3057.3791 41250 271.218 0

Table 5 Numberical results for the problem 3
Ex3 BBA

Eps = 10−5 Iteration Cputime(Seconds) failure rate
n Avg Max Min Avg Max MIN *
60 2543 10000 1 291.1397 680.0630 0.1090 0.20
100 2942 10000 1 248.8008 1575.8 0.1250 0.15
150 3765 10000 1 348.9752 2768.2 0.1410 0.095
200 4491 10000 2 615.3112 2922.6 0.1720 0.10
300 2588 10000 1 704.9035 4100.5 0.2650 0.05
500 919 10000 1 161.2608 1721.5 0.2810 0.1428
800 2303 10000 2 664.1810 2634.0 0.4060 0.001
1000 8563 10000 1 1171.1894 4193.9 0.4310 0.047



524 Yuelin Gao, Zihui Ren and Chengxian Xu

Table 6 Numberical results for example 3
Ex3 BBA-PSO

Eps = 10−5 Iteration Cputime(Seconds) failure rate
n Avg Max Min Avg Max MIN *
60 1 3 1 10.2780 29.6410 0.1720 0
100 32 526 1 154.3984 2386.0 15.8440 0
150 2 22 1 41.8771 380.0560 23.6590 0
180 28 463 1 228.5568 3128.0 28.5470 0
200 22 374 1 525.9219 8321.0 31.7340 0
300 12 197 1 576.0852 9425.8 47.3590 0
500 10 10000 1 275.343 1324.70 78.9220 0.05
800 3 13 1 286.8236 1532.0 105.797 0
1000 2 6 1 311.4938 959.0310 159.313 0
1500 3 10000 1 595.3607 3833.5 201.25 0.05
2000 2 4 1 477.3579 1289.0 320.672 0
3000 7 38 1 1384.1188 3880.0 484.500 0
4000 24 37 1 7969.2188 23924 637.610 0

References

[1] Nemhauser G.L.and Wolsey L.A.: Integer and Combinatorial Optimiza-
tion, John Wiley and sons,1988.

[2] Laughunn,D. J.: Quadratic binary programming with applications to
capital-budgeting problem, Operations Research. 14 (l970)454-461.

[3] Konno, H., Watanabe, H.: Bond porfolio optimization problems and their
application to index tracking: a partial optimization approach, Journal of
the Operations Research Society of Japan. 39 (l996) 285-306.

[4] Barrientos,O., Correa,R., Reyes, P. and Valdebenito, A.: A brand and
bound method for solving integer separable concave problems, Computa-
tional Optimization and Applications. 26 (2003) 155-171.

[5] J. Krarup,J. and Pruzan,P.M.: Computer-aided layout design, Mathe-
matical Programming Study. 26 (1978)75-94.

[6] Witzgall, C.: Mathematical method of site selection for Electric Message
Systems(EMS), NBS Internet Report, 1975.

[7] J. Rhys, ”A selection problem of shared fixed costs on network flow”,
Management Science, 17(3) (1970)200-207.



A branch and bound-PSO hybrid algorithm 525

[8] Eberhart R.C.and Shi Y.H.: Particle swarm optimization: development,
applications and resources, Proceedings of the IEEE International Con-
ference on Evolutionary Computation,(2002)81-86.

[9] Laskari E.C., Parsopoulos K.E.and Vrahatis M.N.: Particle swarm opti-
mization for integer programming, Proceedings of the IEEE International
Conference on Evolutionary Computation, (2002)1582-15876.

[10] Eberhart R.C.and Shi Y.H.: Comparison between genetic algorithms and
particle swarm optimization: development, applications and resources,
Evolutionary Programming, (1998)611-615.

Received: September 30, 2006


