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Abstract

Defined initial conditions are assumed for foam measurements. Es-
pecially, the frothing up method influences the foam decay. We like to
show the influence of the frothing up method with ultrasound on beer
foam which depends on the vessel size and liquid beer height.

Foam pictures are evaluated by measuring the bubble sizes which are
then represented by normalized bubble size distributions (histograms).
In [7, 8] we have seen that decaying foam with its histograms can be
characterized by the classical majorization [4, 2, 1, 3], that means his-
tograms can be described by statistical order or incomparableness. We
have mapped bubble size histograms on the Shannon entropy [9] and
obtained a complex time development of this entropy. Now we like to
take into account the diminishing number of bubbles during foam decay
by means of the weak submajorization [3] in order to get a more realistic
description. The structure of the weak submajorization can be repre-
sented with partition diagram lattices [5] and influenced by permuting
and normalizing of this partition diagrams.
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1 Experiment

Our measurements show a linear dependence of the liquid height lliq of the non-
foamed beer and the maximum height of the resulting foam lfoam,max, using
the frothing up method with ultrasound.

For this beer foam experiments we take Warsteiner beer at 24±1◦C. Pour-
ing carefully different volumes Vliq (the volume Vliq is increased in 10 ml steps)
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of the non-foamed beer in measuring cylinders of different diameters d (d=2.6,
3.0, 3.6, 3.9, and 5.0 cm). The minimal and maximum non-foamed liquid beer
volumes of the measuring cylinders can be seen in Table 1. These liquid vol-

Table 1: The minimal (min) and maximum (max) non-foamed liquid beer
volumes of the measuring cylinders d=2.6, 3.0, 3.6, 3.9, and 5.0 cm.

d [cm] 2.6 3.0 3.6 3.9 5.0
min [ml] 10 10 10 10 20
max [ml] 50 50 110 130 250

umes Vliq are frothed up with ultrasound (Ultrasonik 28x; NEY) for 13 s until
there is no more increase in foam volume Vfoam. After frothing up the maxi-
mum foam volume Vfoam,max and its decay time t (defined to be the time t until
the foam layer collapses and the liquid surface becomes visible from above) are
measured. To take into account the different sized measuring cylinders, we
divide both the liquid volume Vliq before frothing up and the maximum foam
volumes Vfoam,max by the corresponding diameter d of the measuring cylinder
and obtain the liquid height lliq and foam height lfoam,max by (1)

lliq =
4Vliq

d2π
and lfoam,max =

4Vfoam,max

d2π
. (1)

In Fig. 1 we see the maximum foam height lfoam,max plotted against the liquid
height lliq to show the linear relationship between these variables as a result
of this frothing up method with ultrasound.

In Fig. 2 we see the decay time t of the maximum foam height lfoam,max

plotted against the original liquid height lliq for the measuring cylinder with
d=3.6 cm being representative of all used measuring cylinder sizes. A linear
behaviour is found for small liquid heights lliq. This behaviour changes for
high initial liquid heights lliq, in which case the foam column comes close to
the rim of the measuring cylinder. This experimental founding leads one to
conjecture that the functional behaviour of the decay time t depends on the
CO2 atmosphere in the measuring cylinder above the foam surface. In case of
low initial liquid heights lliq and thus smaller maximum foam heights lfoam,max

the air in the free column of the measuring cylinder becomes enriched in CO2

due to the CO2-release from bursting bubbles. For larger initial liquid heights
lliq and thus higher maximum foam heights lfoam,max the foam column comes
close to the rim of the measuring cylinder and the gas exchange with the
surrounding air above the measuring cylinder is faciliated, probably leading to
lower CO2 partial pressures just above the foam column. In this case the foam
decay becomes faster and the linear relationship between the liquid heitght lliq
and decay time t no longer holds (Fig. 2).
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Figure 1: The linear relationship be-
tween maximum foam height lfoam,max

and liquid height lliq is based on the
frothing up method with ultrasound.
The plot refers to all measuring cylin-
ders we have mentioned in this section.
Note that the maximum foam height
and liquid height are expressed by the
measuring cylinder diameters, see (1).
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Figure 2: The plot of the foam de-
cay time t against the original liq-
uid height lliq for the measuring cylin-
der with d = 3.6 cm being represen-
tative of all used measuring cylinder
sizes. Clearly, the deviation of the lin-
ear function can be considered for high
initial liquid heights lliq which develops
high foam columns coming close to the
rim of the measuring cylinder.

We summarize that the linear behaviour of the decay time t of small liquid
heights lliq, where the resulting foam surface of the maximum foam height
lfoam,max is far enough away from the cylinder opening to preserve a high
enough partial pressure of CO2 over the foam surface.

If the foam surface of the maximum foam height lfoam,max approximates
to the cylinder opening, the partial pressure of CO2 in the atmosphere will
decrease and the partial pressure difference between CO2 in the bubbles and
CO2 atmosphere will increase. An increasing partial pressure difference leads
to stronger gas exchange between bubbles and atmosphere and the foam decay
becomes faster.

Furthermore, we take pictures of the foam decay to examine the bubble
size distributions (histograms) of this pictures. The experimental set-up is
described in section 4. But firstly, we introduce the mathematics which we
like to apply to the histograms in the following section.
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2 Majorization

The classical majorization of Muirhead, Hardy, Littlewood and Polya [4, 2] is
defined by (2) and (3) saying that γ majorizes γ′

γ′ ≺ γ if

k∑
1

γ′
[i] ≤

k∑
1

γ[i], k = 1, · · · , n − 1, (2)

and

n∑
i=1

γ′
i =

n∑
i=1

γi. (3)

Let γ, γ′ ∈ R
n and let γ = (γ[i]) denotes a positive semidefinite vector

rearranged in nonincreasing order (γ1 ≥ γ2 ≥ · · · ≥ γn). If γ majorizes γ′

(γ′ ≺ γ) then there exists a doubly stochastic matrix D such that Dγ = γ′.
And a real-valued function Φ is said to be Schur-concave if

γ′ ≺ γ then Φ(γ′) ≥ Φ(γ). (4)

The concept of the weak majorization which we have mentioned in [8] can
be expressed by (5) and (6) for the weak submajorization [3]:

γ′ ≺w γ if

k∑
1

γ′
[i] ≤

k∑
1

γ[i], k = 1, · · · , n, (5)

and

n∑
i=1

γ′
i ≤

n∑
i=1

γi, (6)

where γ = (γ[i]) is a positive semidefinite vector whose components are re-
arranged in nonincreasing order. Then γ weakly submajorizes γ′, γ′ ≺w γ
and there exists a doubly substochastic matrix P such that Pγ = γ′. And a
real-valued function Φ satisfies

γ′ ≺w γ then Φ(γ′) ≤ Φ(γ) (7)

if and only if Φ is increasing and Schur-convex. For more details with regard to
majorization in general see the fundamental work of P. M. Alberti, A. Uhlmann
[1] and of A. W. Marshall, I. Olkin [3].

A special modification of the majorization is the partial sum comparison
without rearranging vectors in order to take into account the permutation of
the vectors. This type of majorization we have described in [8].
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3 Classical Majorization and Weak Submajoriza-

tion Represented by Diagram Lattices

A discrete representation of the classical majorization and order of the classical
majorization respectively are Ruch’s diagram lattices [5] which are based on
partitions of an integer n. If one goes from the lowest upper bound lub to the
greatest lower bound glb along these lattices, the diagrams obey the classical
majorization, that means transitions in this direction (represented by arrows,
see Fig. 3) between the diagrams indicate doubly stochastic matrices D (8),
see Fig. 3.

If γ → γ′, then γ � γ′ and Dγ = γ′. (8)

Clearly diagrams can be characterized by vectors [8] (Fig. 5). These vectors
consist of a number of boxes denoted by n and are embedded in a vector space
of a dimension that is denoted by i.

The weak submajorization makes possible trace change of the vectors.
Strictly speaking the trace of the vector can decrease (6) (the trace tr of a
vector is the sum of its components). For our discrete approach, trace chang-
ing means for example transitions between the n = 6 and the n = 5 diagram
lattice. In other words, there are n = 6 diagrams which weakly submajorize
n = 5 diagrams.

The transitions of the weak submajorization (represented by scatterd ar-
rows) correspond to doubly substochastic matrices P (9).

If γ ��� γ′, then γ �w γ′ and Pγ = γ′. (9)

Fig. 4 shows the transitions of the classical majorization (arrows) and the
weak submajorization transtitions (scattered arrows) of the n = 6 and n = 5
diagrams. It is easy to see n = 6 diagrams which contain one box in the lowest
row weakly submajorize n = 5 diagrams by elimination of this single box. In
Fig. 4 the n = 6 and n = 5 partition diagrams of the same level (that means a
horizontal line in the diagram lattice) are incomparable. (Ruch lattices with
n ≥ 6 [5] are partially ordered sets.) In our work [8] we have represented
diagrams with n boxes as vectors which are extended with zero elements to
obtain vectors of the dimension i = n, see Fig. 5 on the left. Additionally,
these vectors can be permuted, see Fig. 5 on the right. Each partition diagram
lattice posses a certain number of permutations which can be computed by the
formula of combination with replacement (10)

Cn,i =

(
n + i − 1

i

)
=

(
2n − 1

n

)
=

(2n − 1)!

n!(n − 1)!
, (10)
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n = 6

Figure 3: The n = 6 Ruch diagram
lattice. The arrows characterize the
direction from lub to glb and the tran-
sitions (doubly stochastic matrices D
(8)) between the diagrams.

n = 6

n = 5

Figure 4: The n = 6 and n = 5 di-
agram lattice with classical majoriza-
tion transitions (arrows or doubly
stochastic matrices D (8)) and weak
submajorization transitions (scattered
arrows or doubly substochastic matri-
ces P (9)). The arrows characterize
the direction from lub to glb.

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

0
0
0
1
2
3

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

0
0
2
0
1
3

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

0
1
2
0
0
3

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

3
0
0
1
2
0

Figure 5: On the left an n = 6 diagram with its corresponding vector of the
dimension i = 6 that is equal to number of boxes n = 6 extended with zero ele-
ments. On the right some permutations of this diagram with its corresponding
vectors.
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with i = n [10]. Now, we consider the weak submajorization in Fig. 4. To
calculate the transitions of the weak submajorization (scatterd arrows) by (5)
one sets the dimension i = 6 for both the n = 6 and n = 5 diagrams and vectors
respectively because the vectors have to belong to the same vector space of
the dimension i, see section 2. That means the number of permutations of the
n = 5 diagram lattice increases owing to the increased dimension i = 6 instead
of the dimension i = 5, that we would use for the classical majorization. To
obtain the number of permutations for n �= i one has to take the expression
(11)

C�
n,i =

(
n + i − 1

i − 1

)
. (11)

It is easy to see that

Cn,i = C�
n,i for n = i. (12)

We like to proof (12):

if

(
n + i − 1

i

)
=

(
n + i − 1

i − 1

)
(13)

n=i⇔
(

2n − 1

n

)
=

(
2n − 1

n − 1

)
(14)

(n
i)= n!

(n−i)!i!⇔ (2n − 1)!

(2n − 1 − n)!n!
=

(2n − 1)!

(2n − 1 − (n − 1))!(n − 1)!
(15)

⇔ (2n − 1)!

(n − 1)!n!
=

(2n − 1)!

n!(n − 1)!
. (16)

In Table 2 the number of permutations of n with different dimensions i is
shown. This Table 2 is comparable to the Pascal triangle. We see that for
our above mentioned example the number of permutations of the n = 5 dia-
grams doubles if the dimension changes from i = 5 to i = 6 (bold numbers).
Fig. 6 gives an example for number of permutations of n = 3 diagrams and
their frameworks for different embedding dimensions i (or different number of
rows). The frameworks can be generated by a modification of the classical
majorization shown in detail in [8]. These structures of permuted partition di-
agrams (partition-permutation-structures, abbreviated pp-structures [8]) can
be combined with the weak submajorization. To obtain these structures we
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i: 1

n=3

2 3 4

Figure 6: The frameworks of the n = 3 diagrams for different number of
rows i (different embedding dimensions i) generated by the modification of the
classical majorization [8].
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Figure 7: a: the n = 3 and the n = 2 Ruch lattice with the dimension i = 3
joined by the weak submajorization (scattered lines); b: the pp-structures of
n = 3, i = 3 diagrams and n = 2, i = 3 diagrams joined by the weak subma-
jorization (scattered lines); c: the totally ordered structure which originates
from the structure in a after normalizing the diagrams; d: the relations of the
diagrams in b after normalizing.
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Table 2: The number of permutations of partitions of an integer n with different
dimensions i which can be generated by (11). This Table is comparable to the
Pascal triangle.

n 0 1 2 3 4 5 6

i
1 1 1 1 1 1 1 1
2 1 2 3 4 5 6 7
3 1 3 6 10 15 21 28
4 1 4 10 20 35 56 84
5 1 5 15 35 70 126 210
6 1 6 21 56 126 252 462

use the modification of the classical majorization [8]. In Fig. 7 (b) the transi-
tions of the weak submajorization between the n = 3, i = 3 diagrams and the
n = 2, i = 3 diagrams are shown (scattered lines). Additionally, we see the
framework of the n = 3 and the n = 2 diagrams without permutations Fig. 7
(a) (compare to Fig. 4). In contrast to the transitions shown in Fig. 4 in Fig. 7
(b) one box of the lowest row is removed, however this row can contain even
more than one box, it does not need to contain only one single box.

3.1 Incomparableness

Partition diagrams as vectors can be normalized to unity. Normalization makes
possible the join of the n = 6 and the n = 5 diagram lattices in Fig. 4. The
resulting structure shows clear differences refering to their diagram order, see
Fig. 8 and compare to Fig. 4. Changing diagram order means that the mathe-
matical relations of the majorization also change. In the following comparison
we will refer to the framework in Fig. 4 and consider the changing relations
after normalizing (Fig. 8). Firstly, the relations which do not change are the
order of the majorization and incomparableness in the classical sense: if two
n = 6 diagram vectors a and b are incomparable or a majorizes b (b ≺ a) then
this relation does not change after normalizing and joining with the n = 5
diagram vectors. Suppose an n = 6 diagram vector a weakly submajorizes an
n = 5 diagram vector x (x ≺w a). However, these vectors a, x as normalized
vectors anorm, xnorm behave differently: xnorm majorizes anorm (anorm ≺ xnorm).

An interesting case are the lowest upper bounds of the n = 6 and n = 5
diagram lattices. These diagram vectors are equivalent as normalized vectors.
Then there are n = 6 diagram vectors a, b and a majorizes b (b ≺ a). Addi-
tionally, the n = 6 diagram vectors b weakly submajorizes a n = 5 diagram
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(1/6)*(6 0 0 0 0 0) (1/5)*(5 0 0 0 0 0)

(1/6)*(5 1 0 0 0 0)

(1/5)*(3 2 0 0 0 0)

(1/6)*(4 2 0 0 0 0)

(1/5)*(4 1 0 0 0 0)

(1/6)*(4 1 1 0 0 0)

(1/6)*(3 2 1 0 0 0) (1/5)*(3 1 1 0 0 0)

(1/6)*(3 3 0 0 0 0)

(1/6)*(3 1 1 1 0 0) (1/5)*(2 2 1 0 0 0)

(1/5)*(2 1 1 1 0 0) (1/6)*(2 2 1 1 0 0)

(1/6)*(2 2 2 0 0 0)

(1/6)*(2 1 1 1 1 0)

(1/5)*(1 1 1 1 1 0)

(1/6)*(1 1 1 1 1 1)

Figure 8: Join of the n = 6 and the n = 5 diagrams and vectors respectively
by normalizing. The structure obeys the classical majorization.
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vector x (x ≺w b ≺ a). The corresponding normalized vectors anorm, bnorm,
xnorm can behave as follows: anorm is incomparable to xnorm, anorm majorizes
bnorm (no change) and xnorm majorizes bnorm (anorm � bnorm ≺ xnorm).

We see that permuting and normalizing of diagrams and diagram vectors
influences the frameworks, that means the ordering of the diagrams changes.
As an overview, see Fig. 7: a: the classical majorization and the weak subma-
jorization (scattered lines) without permutations of the n = 3 and the n = 2
diagrams of the dimension i = 3; b: the pp-structure of (a) generated by the
modification of the majorization; c: the join of the diagrams in (a) by normal-
izing the diagram vectors (classical majorization); d: the pp-structure of (c)
(modification of majorization). It is clear for (c) and (d) that diagram vectors
like (3 0 0) and (2 0 0) and their corresponding permutations after normaliz-
ing are equal and consequently the number of diagrams and diagram vectors
respectively changes.

We take the example of the n = 3 and the n = 2 diagrams with the
dimension i = 3 due the number of diagrams and diagram vectors respectively.
The example of the n = 6 and n = 5 diagrams is interesting because of the
partial order of the original n = 6 diagram lattice, but for the pp-structures
these diagrams are not suitable because the structure can be hardly illustrated
(the pp-structure with the weak submajorization of the n = 6 and the n = 5
diagrams with the dimension i = 6 consists of 714 diagrams, see Table 2).

4 Histograms and Majorization

After frothing up the beer with ultrasound mostly small bubbles are present.
While the foam is shrinking, different processes influence the bubble sizes. At
the end of the rearrangement, there are few very large bubbles which replace
many small ones [6]. This bubble size development causes the decreasing
number of bubbles of constant sized bubble pictures. In Fig. 9 we see only
small bubbles after frothing up and in Fig. 10 the large and small bubbles at
the end of the rearrangement. The picture frame is constant in Figs. 9, 10,
but it is clear that there are absolutely more bubbles in Fig. 9 than in Fig. 10.

The foam pictures are taken with a CCD-camera (CV-M10 CCD camera;
lens 0.5×; framesize 1.3×1.0 cm). For illumination, a cold light source (KL
2500 LCD) is used. 20 ml Warsteiner beer is frothed up with ultrasound
for 13 s in a rectangular glass vessel (2.5×2.5 cm). Here, it is important
to know that the behaviour of the decaying foam does not change using a
rectangular glass vessel instead of a measuring cylinder. Pictures are being
taken in 10 s intervals. The bubble sizes defined by their bubble diameter d are
divided into ten size intervals with a width of 1.73 10−4 m (the last interval is
open). We are convinced that for description of our system this chosen interval
division is optimal. For each bubble size interval a relative frequency pi is
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Figure 9: A large number of small bub-
bles after frothing up the beer with ul-
trasound.

Figure 10: The number of bubbles is
diminished due to the development of
large bubbles.

given to examine the temporal development of the bubble size distributions
h(t) = (pi(t)) (Fig. 11) in terms of statistics by means of majorization, see
section 2. The bubble size distributions h(t) = (pi(t)) are dependent on time
vectors whose entries are denoted by pi. To compare the distributions vectors
h(t) = (pi(t)) by means of the majorization these vectors are rearranged in
decreasing order: (p1 ≥ p2 ≥ · · · ≥ pn). For simplicity the notation of pi(t) is
identically with pi. More experimental details are given in [8].

In Fig. 12 the decreasing number of bubbles of constant sized foam pictures
is shown. We consider the normalized bubble size distributions h(t) = (pi(t))
with

∑10
i=1 pi = 1 by means of the classical majorization (2), (3) and the bubble

size distributions with a decreasing number of bubbles
∑10

i=1 pi ≤ 1 by means
of the weak submajorization (5), (6).

The classical majorization characterizes the temporal development of the
normalized bubble size distributions h(t) = (pi(t)) as follows: h(10 s) �
h(20 s) � h(30 s) � h(40 s) � h(50 s) � h(60 s) � h(70 s) � h(80 s) �

h(90 s) � h(100 s) � h(110 s) � h(120 s) � h(130 s) � h(140 s) � h(150 s) �

h(160 s) ≺ h(170 s) ≺ h(180 s) ≺ h(190 s) ≺ h(200 s) � h(210 s) �

h(220 s) � h(230 s) � h(240 s) � h(250 s). It is noteworthy that most of the
bubble size distributions are incomparable, denoted by ’�’. In section 3.1 we
have seen that if two vectors a, b are incomparable, a � b, then there exists a
vector x which majorizes (is majorized by) a and b: a ≺ x � b (a � x ≺ b).
If we express the classical majorization in terms of statistical order, we see
that at the beginning from 10 s to 80 s the statistical order diminishes or
the mixing character increases (Ruch 1975 [5]). In other words, if distribution
vector a majorizes (is majorized by) distribution vector b, a � b (a ≺ b) then
the statistical order decreases (increases) from a to b. In this case our bubble
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Figure 11: Normalized bubble size distribution h(t) = (pi(t)) after t = 200 s
with the relative frequencies pi(t) above the columns whose sum is one,∑10

i=1 pi(t) = 1.
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Figure 12: Temporal development of
the decreasing number of bubbles of
constant sized foam pictures.
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size distributions follow an ordinary diffusion process as one would usually ex-
pect in terms of the classical thermodynamics. From 160 s to 200 s there are
unexpectedly transitions which describe an increasing statistical order. This
increasing order corresponds to the unstable structure formation of the Apol-
lonian package [6]. The transitions of incomparable bubble size distributions
consists of increasing and decreasing statistical order, but if two distribution
vectors a, b are incomparable a � b one does not know whether the increasing
statistical order or the decreasing statistical order predominates.

Of course, we can map the histograms h(t) = (pi(t)) in the traditional
way on the Shannon entropy [9] for a better examination of the temporal
development of the statistical order. The normalized Shannon entropy [6] is
calculated by (17)

I(h(t)) = − 1

log2 n

n∑
i=1

pi(t) log2 pi(t), (17)

where pi(t) denotes the relative frequencies of the bubble sizes and n the num-
ber of size intervals, here is n = 10. Then

a � b implies I(a) ≤ I(b). (18)

The temporal development of the classical majorization relations of the bub-
ble size distributions represented by the Shannon entropy (17) can be seen in
Fig. 13. We see the Shannon entropy (17) increases from 10 s to 140 s (here the
process of drainage is described [8]) and then it begins to behave irregularly
(here the process of rearrangement is described [8]). This can be related to
the decreasing number of bubbles during the foam decay which are not taken
into account by normalizing the bubble size distributions. The weak majoriza-
tion (5), (6) takes the decreasing number of bubbles during foam decay into
consideration. To apply the weak submajorization we can take the absolute
bubble number of the bubble size intervals or later we normalize in a way that
all absolute bubble size distribution are divided by the maximum number of
bubbles of the first bubble size distribution in order to obtain special kind of
’relative frequencies’ which we call weak frequencies pi with

∑10
i=1 pi ≤ 1.

The resulting relations of the temporal development of the bubble size
distribution in terms of the weak submajorization are given by: h(10 s) �w

h(20 s) �w h(30 s) �w h(40 s) �w h(50 s) �w h(60 s) �w h(70 s) �w

h(80 s) �w h(90 s) �w h(100 s) �w h(110 s) �w h(120 s) �w h(130 s) �w

h(140 s) �w h(150 s) �w h(160 s) �w h(170 s) �w h(180 s) �w h(190 s) �w

h(200 s) �w h(210 s) �w h(220 s) �w h(230 s) �w h(240 s) �w h(250 s).
With the exception of two transitions (from 150 s to 160 s and from 170 s
to 180 s) a total order of the bubble size distributions in terms of weak sub-
majorization predominates because of the strong sink (decreasing number of
bubbles) in our system.
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As one usually maps the structure of dependent on time statistical order
(synonymous with the order of the classical majorization) of the normalized
bubble size distributions by the Shannon entropy (Fig. 17), one can find maps
which transform the order generated by weak submajorization on real values
without changing its structure as well.

Therefore, choosing a function that preserve the order of the weak subma-
jorization as in (7) given, see section 2, we can map the ’approximately’ totally
ordered bubble size distributions with

∑10
i=1 pi ≤ 1 on real values and obtain

a monotonously decreasing function development for an increasing and Schur-
convex function. For an increasing and Schur-concave function one obtains
a monotonously increasing function development for the bubble size distribu-
tions with

∑10
i=1 pi ≤ 1.

In the following section 5 we investigate different functions in order to
compare the influence of classical and weak submajorization on the description
of the dynamics of the bubble size distributions.

5 Functions of the Majorization

In (19) a function is given which we call ec-function (the index c is derived
from the classical majorization). This ec-function is normalized and maps
distribution vectors h(t) = (pi(t)) with

∑n
i=1 pi(t) = 1 on the closed interval

[0,1].

ec(h(t)) =
A −∑n

i=1 exp(pi(t))

A − n exp( 1
n
)

, (19)

ew(h(t)) =
A −∑n

i=1 exp(pi(t))

A − n exp(0)
, (20)

with A = exp(1) + (n − 1). (21)

Additionally, this function is concave over the simplex Sn−1 and fulfils the
restrictions (22) and (23).

ec(1, 0, · · · , 0) = 0 on Sn−1 (22)

and in case of the equal distribution

ec(1/n, · · · , 1/n) = 1 on Sn−1. (23)

Now for simplicity let x = (xi) ∈ R
2 be a distribution vector then

x1, x2 ∈ [0, 1] and x1 + x2 = 1. (24)
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Figure 14: The ec-function (19) that
fulfils the restrictions in (22) and (23)
on the simplex S1. We see the ec-
function is Schur-concave and sym-
metrical that means permutations of
the distributions vectors are mapped
on the same real value (26).
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Figure 15: The time development of
the bubble size distributions which are
mapped on the interval [0,1] by the ec-
function (19). This function behaves
like the Shannon entropy (17): at the
beginning it increases and then it be-
haves irregularly.

Then

ec(x) = ec(x1 = 1 − x2, x2) (25)

and we can plot the ec-function against x2 = 0, · · · , 1 and see in Fig. 14 the
function is Schur-concave and symmetrical that means all permutations of a
distribution vector are mapped on the same real value. Let x be a distribution
vector and Q be a permutation matrix, then

ec(x) = ec(Qx). (26)

The ec-function maps the bubble size distributions on the interval [0,1] and
similarly behaves like the Shannon entropy (17): at the beginning it increases
and then it behaves irregularly when the rearrangement begins, see Fig. 17 and
15. It does not matter which Schur-concave function like the Shannon entropy
(17) or the ec-function (19) maps the bubble size distribution on the interval
[0,1], the functional behaviour of the temporal development is preserved.

The function in (20) is similar to (19) except for the term in the denomina-
tor n exp(1/n), which becomes n exp(0) in (20). These terms n exp(1/n) and
n exp(0) describe the final states (if x = (xi) ∈ R

2 then x1 = x2) and normalize
the corresponding function. The final state of the classical majorization is the
equal distribution (x1 = x2 = 1/n = 0.5) (23), (24) where the function ec shows
its maximum value. Therefore the term n exp(1/n) stands in the denominator
of the ec-function. The final state of the weak submajorization is x1 = x2 = 0,
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Figure 16: The time development of
the bubble size distributions which are
mapped on the interval [0,1] by the ew-
function (20). The functional develop-
ment describes a continuously increas-
ing function as we have mentioned in
section 4.
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Figure 17: The time development
of the normalized distributions (lower
graph, compare to Fig. 15) and the
non-normalized distributions (upper
graph, compare to Fig. 16) which are
mapped by the ew-function (20) on the
interval [0,1].

that means all objects have been eliminated and the corresponding function
(20) shows its maximum value. Therefore we use the term n exp(0) in the de-
nominator of (20). This function is called ew-function (the index w is derived
from weak submajorization) and holds for distribution vectors with decreasing
trace

∑n
i=1 pi ≤ 1, (7). (The simplex plot of the ew-function (20) is discussed

in section 5.1.) To apply the ew-function to the absolute bubble size distribu-
tions (non-normalized number of bubbles of a certain size interval) one divides
each absolute distribution by the sum of bubbles of the first absolute distribu-
tion (maximum number of bubbles). Then we obtain distributions with weak
frequencies the sum of which is less equal than one:

∑n
i=1 pi ≤ 1. In Fig. 16

the time development of these distributions is shown which are mapped on the
interval [0,1] with (20). This map by (20) describes a continuously increasing
function as we have mentioned in section 4.

We take different functions (19), (20) for classical and weak submajoriza-
tion to make the function development comparable (both functions are nor-
malized to unity): Moreover, we can map the distributions with

∑n
i=1 pi = 1

and the distributions with
∑n

i=1 pi ≤ 1 on the interval [0,1] with (20) too, since
weak majorization contains classical majorization, (5) and (6). That means
the ew-function preserve the order of the classical majorization and weak sub-
majorization expressed by (27).

If y ≺ x or y ≺w x then ew(y) ≥ ew(x). (27)

In Fig. 17 we see the join of the graphs in Fig. 15 and 16 mapped by the
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ew-function (20).
Schur-concave functions as a measure to describe the statistical develop-

ment of a sequence of distribution functions with
∑n

i=1 pi = 1 or
∑n

i=1 pi ≤ 1
are discussed in detail. We know that such functions preserve the order of
the majorization. All functions which belong to set of the Schur functions are
suitable to describe such a distribution function development and only differ
in the sign or the shape.

In an exemplary fashion, we like to show the time development of the
bubble size distributions h(t) = (pi(t)) which are mapped by a decreasing and
Schur-convex function given by (28) [3]

S(h(t)) =
∏

i1<···<ik

k∑
j=1

pij (t). (28)

For simplicity we call it S-function. Only sums with i1 < · · · < ik are al-
lowed and all these sums are multiplied to obtain real values of the S-function.
Therefore, this function is not symmetrical that means it maps permutations
of a distribution vector on different real values, (29).

S(x) �= S(Qx). (29)

x denotes a distribution vector and Q a permutation matrix. Consequently,
we have to rearrange the bubble size distribution vectors h(t) = (pi(t)) in
decreasing order: (p1 ≥ p2 ≥ · · · ≥ pn) in order to apply this function (28)
without contradictions.

For the S-function holds (30) and (31).

S(1, 0, · · · , 0) = 1 on Sn−1 (30)

and for the equal distribution

S(1/n, · · · , 1/n) =
n!

nn
on Sn−1. (31)

With (24) and x1 ≥ x2 a simplex plot of S(x1 = 1 − x2, x2) versus x2 =
0, · · · , 0.5 can be shown in Fig. 18. Notice x2 runs from 0 to 0.5 because the
S-function is not symmetrical.

Now we come to our bubble size distributions h(t) = (pi(t)). Both the bub-
ble size distributions with

∑n
i=1 pi = 1 and with

∑n
i=1 pi ≤ 1 can be mapped

by (28) on the interval [0,1]. In Fig. 19 the upper graph describes the bubble
size distributions which are normalized to unity. This graph monotonously de-
creases and then it begins to behave irregularly. The lower graph corresponds
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Figure 18: The simplex plot of the de-
creasing and Schur-convex S-function
(28) with x1 ≥ x2 and x2 = 0, · · · , 0.5
because the S-function is not symmet-
rical. This function fulfils the restric-
tions in (30) and (31).
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Figure 19: The time development
of the normalized bubble size distri-
butions (upper graph) and the non-
normalized bubble size distributions
(lower graph) mapped by the S-
function (28) on the interval [0,1].

to the weak submajorization which takes into account a decreasing trace of
the bubble size distribution vectors (

∑n
i=1 pi ≤ 1). This graph continuously

decreases and converges against zero very fast.

This function (28) also preserves the order of the bubble size distributions
like the ew-function (20) however under changed conditions. The terms Schur-
concave and Schur-convex differ in the sign that means Φ is Schur-concave if
and only if −Φ is Schur-convex. Note that both these functions (S-function
and ew-function) and the Shannon entropy function (17) preserve the order of
the classical majorization, but the latter does not fulfil (27) that means the
Shannon entropy does not preserve the order of the weak submajorization.

5.1 Diffusion and Sink

Because of the inequalities (5) and (6) one may say that the classical ma-
jorization (2) and (3) is a subset of the weak majorization. The classical
majorization describes the statistics of trace preserving distributions vectors
(diffusion). The weak submajorization allows classical majorization and a trace
decrease of the distribution vectors (sink). The last-mentioned mathematical
relation characterizes both a diffusion and a sink. We like to give an approach
to understand the connection between diffusion and sink more exact.

Firstly, we introduce a Δx to describe the sink. Let x = (xi) ∈ R
2 be

a distribution vector with x1, x2 ∈ [0, 1] and x1 + x2 = 1, (24). And let
x̃ = (x̃i) ∈ R

2 be a distribution vector with x̃1, x̃2 ∈ [0, 1] and x̃1 + x̃2 ≤ 1.
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Then

x = x̃ + Δx or x̃ = x − Δx. (32)

The tr(Δx) can be defined by a real valued function Φ(x) and a strength factor
α (strength factor α characterizes the strength of the sink). One can take any
normalized real valued function Φ(x). For a simple approach we decided to
take the normalized tent function (33) that we used in [6].

Φ(x) =

(
1 − n

2(n − 1)

n∑
i=1

∣∣∣∣xi − 1

n

∣∣∣∣
)

(33)

With a strength factor α a tr(Δx) = Φ(x)α can be reformulated in (34)

tr(Δx) =

(
1 − n

2(n − 1)

n∑
i=1

∣∣∣∣xi − 1

n

∣∣∣∣
)

α with 0 ≤ α ≤ 1. (34)

Considering (34) for x = (xi) ∈ R
2 one obtains a Δxi for x1 and x2:

Δxi = (1 − 2|xi − 0.5|)α with 0 ≤ α ≤ 0.5 (35)

and Δx1 = Δx2, Δx1 + Δx2 = tr(Δx). (36)

Generally,

n∑
i=1

Δxi = nΔxi = tr(Δx). (37)

If α = 0 we obtain the classical majorization (no trace changing, since
tr(Δx = 0)) and α = 0.5 describes a pure weak submajorization (that means
a predominate sink and a hardly distinctive diffusion) with the final state
x̃i = 0.

As an illustration the S1 simplex plot for the symmetrical ew-function (20)
with a Δx can be generated. Then

ew(x̃) = ew(xi − Δxi) (38)

and Δxi is given by (35).
In Fig. 20 both extreme cases α = 0, α = 0.5 and the case α = 0.25 are

given. The plot for all α = 0, · · · , 0.5 would fill the area between the both
graphs of α = 0 and α = 0.5 in Fig. 20. Conspicuously, the continuous graph
of α = 0 develops with increasing α a graph on the simplex S1 that is not
continuously differentiable. We see a vertex at xi = 0.5 for α > 0.
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Figure 20: The ew-function on the sim-
plex S1. Both extreme cases can be
seen: the classical majorization with
α = 0 (lower graph) and the weak ma-
jorization respectively weak subma-
jorization with α = 0.5 (upper graph).
Additionally, the graph of α = 0.25
(middle) is given.

0  0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

x
i

S
−

fu
nc

tio
n

α=0.5 

α=0.25 

α=0 

Figure 21: The S-function on the sim-
plex S1. Both extreme cases can be
seen: the classical majorization with
α = 0 (upper graph) and the weak ma-
jorization respectively weak subma-
jorization with α = 0.5 (lower graph).
Additionally, the graph of α = 0.25
(middle) is given.

Just as in the same manner the ew-function we can plot the S-function (28)
with

S(x̃) = S(xi − Δxi). (39)

Notice that the simplex plot runs from xi = 0 to xi = 0.5, because the S-
function is not symmetrical (29). Fig. 21 shows the graphs of the classical
α = 0 and the weak majorization α > 0.

In this section 5 majorization ordering preserving functions describe our
bubble size distribution dynamics in various ways. It all depends on the nor-
malizing of the distribution or in other words it depends on the mathematical
relations, classical majorization or weak submajorization. Due to the foam de-
cay process, we considered a diffusion process with a sink term with a variable
strength α and therefore we prefered the weak submajorization. The weak
majorization enables us to describe a sequence of distribution functions where
the number of objects is not necessarily an invariant.

6 Conclusion and Outlook

On the basis of Ruch diagram lattices [5] we can clearly illustrate the classical
majorization and weak submajorization. Additionally, the ordering of the dia-
grams can be influenced by normalizing, by the number of size intervals and by



Non-Equilibrium Foam Decay 549

permutations. Refering to our bubble size distributions it makes a big differ-
ence whether we use the classical or the weak submajorization represented by
different functions that preserve the ordering of these mathematical relations.

The classical procedure by means of normalizing the bubble size distribu-
tions and using the Shannon entropy leads to a separation of two processes
of the foam decay [8]: drainage (increasing Shannon entropy) and rearrange-
ment (irregular behaviour of the Shannon entropy). However, the decreasing
number of bubbles during foam decay is not taken into account. The weak
submajorization offers a common characterization of diffusion and sink (de-
creasing number of bubbles). The continuing diffusion with sink corresponds
to a monotonously increasing or decreasing function that preserves the order
of the weak submajorization.

In summary, one can say, the quantitative comparison of orderings requires
a map of these structures on real values like the Shannon entropy maps the
order of the classical majorization on real values. We have shown by the
introduction of the weak majorization that functions can be found which map
systems with variable number of objects on real values so that the order is
preserved and a measure can be found.

Additionally, we have successfully introduced a strength of sink and diffu-
sion by the factor α. It would be interesting to consider the temporal devel-
opment of this factor α of the real bubble size distributions.

In this context it becomes meaningful to introduce a weight factor for
Δxi. Up to now, only Δxi with equal weights have been formulated for the
2-dimensional space. A possible weighting function is given by (40)

nΔxi =

n∑
i=1

βiΔxi = tr(Δx). (40)

In section 3 we have discussed the influence of varying row number or
dimension for partition diagrams. Therefore it would be helpful to find an
objective criterion for optimal bin width selection for our system. This criterion
should refer to the number of size intervals.

Moreover, an interesting point is the fact that each transition of the weak
submajorization can be expressed by a doubly substochastic matrix. The gen-
eration of these matrices will be discussed in our next paper.
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