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Abstract

We consider a decision-response model based on a Brownian bridge
process, and evaluate the response performance by knowing in advance
the response at the end of the time period; as a consequence we deduce
the relative efficiency of responses.
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1 Model description

The models that give the most natural account of accuracy and response time
in simple decision tasks are sequential sampling models based on stochastic
processes, because their statistics depend on the stimulus encoding mecha-
nisms and instantaneous fluctuations in noise within the observer. The most
common model used to fit the empirical response time and accuracy data was
the Brownian motion model (cf. [3] and the references therein). However,
to take into account that the mean of the decision process may decay after
stimulus offset, or the information may decay as it is being accumulated, more
general models have been employed, such as diffusion models (cf. [5]). The
best response problem was addressed in [6] in the form of an optimal stopping
problem for such diffusion decision models; furthermore, in [7] we formulated
and solved the problem of improving the performance through an optimal
stopping problem with two rights to choose.
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In this note we consider a related natural problem, namely of obtaining
a better performance knowing in advance the response at the end of the time
period. In mathematical terms, such a stochastic process must be conditioned,
or “pinned down”, by the future. Therefore, on a complete probability space
(Ω,F , P ) we consider a stochastic decision-response model represented by a
Brownian motion process {Wt = Wt(ω), t ≥ 0, ω ∈ Ω} starting at 0, that is,
W0 = 0. At time T > 0 the process is observed to have reached the value
WT = b almost surely, for some fixed b > 0; this represents the response at the
end of time interval. Given this prior knowledge of the process, it is possible
to simulate what happens during the time interval (0, T ), by considering the
Brownian bridge (or pinned down Brownian motion), denoted by W ∗

t , and
defined as

W ∗
t = Wt +

∫ t

0

b − W ∗
s

T − s
ds for 0 < t ≤ T, and W ∗

0 = 0. (1)

It is easy to see that W ∗
t is a Gaussian process with mean and variance given

by

E(W ∗
t ) =

bt

T
, V ar(W ∗

t ) = t
(
1 − t

T

)
, (2)

respectively. It is now possible to use the information from the observations of
the original Brownian motion at the endpoints of the time interval to simulate
new observations of the same Brownian motion in the interval (0, T ): simply
generate a normal variable with mean and variance given in formula (2). In
addition, according to a theorem of Doob (cf. [2]), one can use the following
relationship between Brownian motion and Brownian bridge:

W ∗
t =

bt

T
+

(
1 − t

T

)
Wt/(1−t/T) for 0 ≤ t < T, and W ∗

T = b. (3)

One can see from equations (1) and (3) that W ∗
t contains a drift towards the

known value b at time T . Moreover, if t is close to T but W ∗
t is far from b, the

drift towards b must be stronger than if t were further away from T .

2 Response Performance

An interesting feature of the Brownian bridge is that it crosses any level larger
than b with strictly positive probability. More precisely (see [2]), for fixed λ > b,
one has

P (τλ ≤ T ) = exp
[
− 2

T
λ(λ − b)

]
, where τλ := inf{t : W ∗

t ≥ λ}. (4)

This fact suggests the following optimal stopping problem:
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Determine the best performance based on the Brownian bridge decision
model, that is, the numerical value

sup
∫
Ω

W ∗
τ(ω)(ω)dP (ω), (5)

where the supremum is taken over all stopping times τ ≤ T , together with an
optimal stopping time τ ∗, that is, a stopping time for which the above supre-
mum is attained.

In other words, the best performance based on the Brownian bridge is
the highest expectation (that is, integral with respect to P ) of the stopped
process W ∗

τ := W ∗
τ(ω)(ω) at all stopping times τ ≤ T . If we would have

considered in (5) the Brownian motion process instead of the Brownian bridge,
the corresponding performance would be equal to zero (the expectation of Wτ

is zero for all stopping times τ , see [2]). According to the previous discussion,
we expect a value in (5) larger than b (therefore strictly positive), and the
existence of an optimal stopping time smaller than T .

This is indeed the case (cf. [4]): under the above assumptions and nota-
tions, the value in (5) equals

b + T (1 − α2)
∫ ∞

0
exp(−bx− Tx2/2)dx, (6)

where α = 0.83992... is the unique solution of the equation

α

1 − α2
=

∫ ∞

0
exp(αx− x2/2)dx,

and the optimal stopping time is given by

τ ∗ := inf{t : W ∗
t ≥ b + α

√
T − t}. (7)

(one can easily see that τ ∗ < T almost surely).
The best performance in formula (6) can be easily computed using the

tables for the standard normal cumulative distribution function φ(x), as the
expression in (6) can be written as

b + (1 − α2)
√

2πT exp
(

b2

2T

)[
1 − φ

(
b√
T

)]
.

However, the explicit formula (7) for the optimal stopping time is not practical
because of the term

√
T − t. Instead, for small time intervals, we can provide

a very good approximation for the true value of τ ∗, as follows. Let f be a
continuous function with Lipschitz continuous derivative and f(0) > b. Define

τf := inf{t : W ∗
t ≥ f(t)}. (8)
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Then (cf. [1]), for small values of T , one has the following extension of formula
(4):

P (τf ≤ T ) ∼ exp
[
−2f ′(0)f(0) − 2

T
f 2(0) +

2b

T
f(0)

]
. (9)

In the sequel we consider the following approximation valid for small values of
t and T : √

T − t ≈
√

T − t√
T

.

We can now approximate τ ∗ in (7) by the following stopping time:

τ ∗∗ = inf
{
t : W ∗

t ≥ b + α
(√

T − t√
T

)}
(10)

Indeed, taking f(t) = b+α(
√

T − t/
√

T ) in (8) and (9) we obtain that τ ∗∗ ≤ T
with probability one. Moreover, the advantage of working with the stopping
time (10) is the following. Using formula (3), we obtain the following equivalent
form:

τ ∗∗ = inf{t : Wt ≥ b + α
√

T},
that is, τ ∗∗ is the first crossing of Wt through a constant level (independent of
t), and therefore it can be easily recovered from the Gaussian simulations of
the Brownian motion process.

3 Response Efficiency

We can determine the relative efficiency of responses under a priori knowledge.
To this aim, we consider the following optimal stopping problem: determine
the numerical value

sup
∫
Ω

Wτ(ω)(ω) − b

T + τ(ω)
dP (ω), (11)

where the supremum is taken over all stopping times for which the expecta-
tion above makes sense, together with an optimal stopping time (where the
supremum is attained). The relative efficiency should be the ratio between
response and time; however, as we know in advance the performance at the
end of time interval, it makes sense to divide in (11) by T + τ (and not by τ)
and to subtract b (the known value of performance) from Wτ . According to
[4] and [8], the value in (11) is given by

(1−α2)
∫ ∞

0
exp(−bx−Tx2/2)dx = (1−α2)

√
2π

T
exp

(
b2

2T

)[
1−φ

(
b√
T

)]
, (12)

where φ is the standard normal cumulative distribution function, α = 0.83992...
is described above, and the optimal stopping time is given by

inf{t : Wt ≥ b + α
√

T + t}.
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It is interesting to remark that, if we drop the restriction that τ must be a
stopping time, consider usual times t, and allow a priori knowledge of the
future, the counterpart of formula (11) becomes

∫
Ω

sup
0≤t≤T

Wt(ω) − b

T + t
dP (ω).

According to [2], the numerical value of the latter expression is

∫ ∞

0
exp(−2bx − 2Tx2)dx =

√
π

2T
exp

(
b2

2T

)[
1 − φ

(
b

2
√

T

)]
,

which is larger than the value in (12), as expected.
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