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On the Ishikawa Process for (α)−Mappings
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Abstract. In this paper, we deal with the Ishikawa process and we give a
new convergence theorem for the Ishikawa’s scheme iteration for the (α)−mappings
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1. Introduction

Throughout this paper, X denotes a Banach space and C a nonempty closed
convex subset of X.
A mapping on C into C is said to be (α)-mapping if there is two positive
constants aT and bT such that aT + 2bT = 1 and

‖ Tx − Ty ‖≤ aT ‖ x − y ‖ +bT (‖ Tx − y ‖ + ‖ Ty − x ‖), (1.1)

for all x, y ∈ C. That is a nonexpansive mapping is an (α)−mapping but the
converse is not true, see [2]. It is already known that the (α)−mapping posses
a fixed point when X is a Hilbert space and C is closed bounded convex, see
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[2] and [5]. A method to check for the existence of fixed points is the iteration
procedures, the most popular fixed point iteration in use are those of Ishikawa
[3] and Mann [4], this two iterations were originally developped to provide
ways of computing fixed points for maps for which repeated function iteration
failed to converge.
For a map T on X, the Mann iteration scheme is defined by

x0 ∈ X, xn+1 = αnTxn + (1 − αn)xn, n ≥ 1, (1.2)

where 0 ≤ αn ≤ 1.
While the Ishikawa iteration scheme is given by

x0 ∈ X , xn+1 = αnTyn + (1 − αn)xn,

yn = βnTxn + (1 − βn)xn, n ≥ 1, (1.3)

where 0 ≤ αn, βn ≤ 1.
One can see immediately that the Ishikawa iteration is more stronger than the
Mann’s one, it suffices to set each βn = 0.
An other more general iteration scheme which is in use is the following

x0 ∈ X , xn+1 = αnTyn + (1 − αn)Sxn

and yn = βnTxn + (1 − β)xn, n ≤ 0, (1.4)

where S is a mapping on X, and 0 < α ≤ αn, βn ≤ β < 1.
If we set S = I where I is the identity map on X, then we obtain the Ishikawa
process.

2. Preliminaries

Let X be a Banach space, C a nonempty closed convex subset of X and T
an (α)−mapping on C into itself. We denote by F (T ) the set of fixed points
of the mapping T, in light of [2] we know that F (T ) is not empty in the case
that X is a Hilbert space and C is a bounded closed and convex subset of X.
Recall that a Banach space X is said to satisfy Opial’s condition [6] if whenever
a sequence {xn} in X converges weakly to x the following occurs

lim sup
n→∞

‖ xn − x ‖< lim sup
n→∞

‖ xn − y ‖, ∀y �= x. (2.1)

It is known that Hilbert spaces satisfy Opial’s condition. Let {xn} be a
bounded sequence of elements of X, then the asymptotic radius of {xn} at
x ∈ X is the number

r(x, {xn}) = lim sup
n→∞

‖ xn − x ‖ (2.2)

For fixed {xn}, (2.2) defines a continuous convex nonnegative real values func-
tion of x.
For a given nonempty closed convex subset K of X, the asymptotic radius of
{xn} in K is the number given by

r(K, {xn}) = inf{r(x, {xn}) : x ∈ K}. (2.3)
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For K define the (possibly empty) set

AK({xn}) = {y ∈ K : lim sup
n→∞

‖ xn − y ‖= r(K, {xn})}. (2.4)

We already know that if X is reflexive then AK({xn}) is a nonempty bounded
closed convex set and if X is uniformly convex then the set AK({xn}) consists
of a single point.

3. Main result

We shall make use of the following lemma.

Lemma 3.1. [7] Let X be a uniformly convex Banach space, let {tn} be a
sequence of positive real numbers such that 0 < α ≤ tn ≤ β < 1, for all
n ∈ N, and let λ ≥ 0. Let {xn} and {yn} be two sequences in X such that
lim sup

n→∞
‖ xn ‖≤ λ and lim sup

n→∞
‖ yn ‖≤ λ.

If lim
n→∞

‖ tnxn + (1 − tn)yn ‖= λ, then lim sup
n→∞

‖ xn − yn ‖= 0.

Lemma 3.2. Let X be a uniformly convex Banach space, C a nonempty closed
convex subset of X. Let S and T be two (α)−mappings on C into itself. Then
F (S) ∩ F (T ) is nonempty if and only if, the sequence {xn}n∈N given by (1.4)
is bounded and

lim
n→∞

(xn − Txn) = lim
n→∞

(xn − Sxn) = 0.

Proof:
Suppose that F (S) ∩ F (T ) �= ∅, let z ∈ F (S) ∩ F (T ). By an easy compu-
tation we can check that ‖ xn+1 − z ‖≤‖ xn − z ‖ and
‖ Tyn − z ‖≤‖ yn − z ‖, set lim

n→∞
‖ xn − z ‖= l, then we get that

lim sup
n→∞

‖ Tyn − z ‖ ≤ lim sup
n→∞

‖ yn − z ‖
≤ lim sup

n→∞
‖ xn − z ‖= l. (3.1)

Since

lim sup
n→∞

‖ xn+1 − z ‖ = lim
n→∞

‖ αn(Tyn − z) + (1 − αn)(Sxn − z) ‖
= l, (3.2)

applying lemma 3.1 we deduce that lim
n→∞

‖ Tyn − Sxn ‖= 0.

Now, by

‖ xn+1 − z ‖ ≤ αn ‖ Tyn − z ‖ +(1 − αn) ‖ xn − z ‖
≤ αn ‖ yn − z ‖ +(1 − αn) ‖ xn − z ‖, (3.3)

we get

‖ xn+1 − z ‖ − ‖ xn − z ‖
αn

≤‖ yn − z ‖ − ‖ xn − z ‖ . (3.4)
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Since the sequence {αn} is bounded away from zero, we deduce that

l ≤ lim inf
n→∞

‖ yn − z ‖ . (3.5)

Since ‖ yn − z ‖≤‖ xn − z ‖ ∀n ≥ 1, we obtain

l = lim
n→∞

‖ yn − z ‖= lim
n→∞

‖ βn(Txn − z) + (1 − βn)(xn − z) ‖ . (3.6)

Thus, by lemma 3.1, we get lim
n→∞

‖ Txn − xn ‖= 0.

Now, since

‖ xn − Sxn ‖ ≤ ‖ xn − Txn ‖ + ‖ Txn − Tyn ‖ + ‖ Tyn − Sxn ‖
≤ (1 + βn +

2bT

aT + bT

) ‖ xn − Txn ‖
+ ‖ Tyn − Sxn ‖, (3.7)

thus lim
n→∞

(xn − Sxn) = 0.

Now conversely, let us assume that the sequence {xn} is bounded, {xn − Sxn}
and {xn − Txn} converge to zero as n tends to ∞.
In light of [1], it is already known that the function given by

r(u, {xn}) = lim sup
n→∞

‖ xn − u ‖, ∀u ∈ C,

is a nonnegative, continuous and convex function of u. Moreover, for ‖ uk ‖→
∞, we have r(uk, {xn}) → ∞. Then there exists an element u0 ∈ C such that

r(u0, {xn}) = r0 = min
u∈C

r(u, {xn}).
If we set AC({xn}) = {u ∈ C : lim sup

n→∞
‖ xn − u ‖= r0}, then AC({xn}) is

T−invariant, indeed, for z ∈ AC({xn}) we have

lim sup
n→∞

‖ Tz − xn ‖ ≤ lim sup
n→∞

(‖ Tz − Txn ‖ + ‖ Txn − xn ‖)
≤ lim sup

n→∞
‖ xn − z ‖

+
2bT

aT + bT

lim sup
n→∞

‖ Txn − xn ‖
≤ lim sup

n→∞
‖ xn − z ‖ (3.8)

Thus Tz ∈ AC({xn}), by the same arguments we can prove that AC({xn})
is S−invariant. Since X is uniformly convexe, AC({xn}) consists of a single
point z which is a common fixed point for both S and T.

Theorem 3.1. Let X be a uniformly convex Banach space, C a nonempty
closed convex subset of X and let S and T be two (α)−mappings on C into
itself such that F (S) ∩ F (T ) �= ∅.
Then the sequences {xn} and {yn} given by (1.4) converge weakly to a common
fixed point of S and T. Moreover {xn} and {yn} have the same weak limits.
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Proof:
For given z ∈ F (S) ∩ F (T ), we have lim

n→∞
‖ xn − z ‖ exists. Let z1 and

z2 be two weak limits of {xn}, next we show that z1 = z2. For that we have
to show that z1, z2 ∈ F (S) ∩ F (T ). Indeed, if we suppose that Tz1 �= z1, and
{xnp} (resp. {xnq}) an arbitrary subsequence of {xn} which converges weakly
to z1 (resp. z2), then by the Opial’s condition we must have

lim sup
p→∞

‖ xnp − z1 ‖< lim sup
p→∞

‖ xnp − Tz1 ‖ .

But since T is (α)−mapping, we get that

lim sup
p→∞

‖ Txnp − Tz1 ‖ ≤ lim sup
p→∞

‖ xnp − z1 ‖ (3.9)

+ lim sup
p→∞

2bT

aT + BT

‖ Txnp − xnp ‖ .

Using lemma 3.2, we obtain

lim sup
p→∞

‖ Txnp − Tz1 ‖≤ lim sup
p→∞

‖ xnp − z1 ‖ . (3.10)

This leads to contradiction, then we must have Tz1 = z1.
By symmetry of z1 and z2 we deduce that Tz2 = z2. Now it remains to show
that z1 = z2.Assume the contrary, then by Opial’s condition we obtain

lim
n→∞

‖ xn − z1 ‖ = lim
p→∞

‖ xnp − z1 ‖
< lim

p→∞
‖ xnp − z2 ‖

= lim
n→∞

‖ xn − z2 ‖
= lim

q→∞
‖ xnq − z2 ‖

< lim
n→∞

‖ xnq − z1 ‖
= lim

n→∞
‖ xn − z1 ‖ . (3.11)

This is a contradiction, and thus z1 = z2. One can use the same arguments
as above to show that z1 are in F (S). Since {xnp} was taken arbitrarily we
deduce that the sequence {xn} converges weakly to a common fixed point of
S and T.
Let us denote by W ({un}) the set of weak limits of the sequence {un}. To
complete the proof, we show that W ({xn}) = W ({yn}, in fact, we know al-
ready that lim

n→∞
‖ yn − z ‖ exists, now by following the same steps as above,

we show that {yn} converges weakly and W ({yn}) ⊂ F (S) ∩ F (T ).
Since ‖ xn − yn ‖≤ βn ‖ Txn − xn ‖, then lim

n→∞
βn ‖ Txn − xn ‖= 0, and the

result is completely established.
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Theorem 3.2. Let X be a Hilbert space, C a nonempty closed subset of X
and T an (α)−mapping on C into itself. Assume that there exists x ∈ C such
that the sequence {T ix}i∈N is bounded.Then for any fixed element x0 ∈ C, the
sequence {xn} given by (1.3), with {αn} and {βn} are taken so that αn ∈ [s, t]
and βn ∈ [0, t] or αn ∈ [s, 1] and βn ∈ [s, t] for some 0 < s ≤ t < 1, converges
strongly to a fixed point of T.

Proof:
By the Corollary 6 of [2] and lemma 3.2 the sequence {xn} converges weakly to
a fixed point z of T , since lim

n→∞
‖ xn−z ‖ exists we deduce that {xn} converges

strongly to z.
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