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Abstract. This paper deals with a mathematical model which is used to
investigate the role of extracellular matrix (ECM) concentration in tumor cell
invasion. The model is a system of partial differential equations governing
tumor cell density, the tumor cell-derived protease concentration and the col-
lagen gel concentration. In this system, the equation describing the evolution
of the tumor cell density is a diffusion-haptotaxis parabolic equation. For
general haptotactic coefficient, the global existence of solutions for this model
is proved. The proof is based on a priori estimates, together with the Lp

estimates and the Schauder estimates of parabolic equations.
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1. Model

Most of existing mathematical models of tumor growth and treatment in
the literature (for example, see [19, 21-25, 28-29] and references cited therein)
focus on avascular tumors. Since the avascular tumor is dependent on diffusion
as the only means of receiving nutrients, its growth is limited. For any further
development to occur the tumor must initiate angiogenesis–the formation of
new blood vessels. Clearly, angiogenesis, the process which results in the tumor
having a vascular network, is a key process for metastatic invasion. The tumor
invades the surrounding healthy tissue, just after angiogenesis has occurred.
The process of tumor cell invasion is an active, dynamic process that requires
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protein synthesis and degradation [13]. Tumor invasion is associated with the
degradation of the extracellular matrix (ECM). On contact with ECM, tu-
mor cells can produce proteolytic enzymes, such as matrix metallo-proteases
(MMPs), which degrade the ECM. This degradation creates space into which
the cells then migrate. The ECM degradation also creates spatial gradients
which direct the migration of invasive cells either via chemotaxis (spatial gra-
dients of diffusible chemicals) or haptotaxis (spatial gradients of non-diffusible
chemicals). There are wide variations in the composition of ECM in the var-
ious tissues of the body. The ECM composition can influence the degree of
tumor cell invasion (see [13]). Recently, there is an increasing biological and
mathematical interest in tumor invasion and the corresponding mathematical
models have been developed (for example, see [1-8, 10, 12, 14-18, 20]). As said
in [15] by Marchant, Norbury and Byrne, a weakness of many invasion models
is that they are not amenable to analysis and must be solved using numerical
methods. In this paper we focus on the analytical study of the model developed
by Perumpanani and Byrne [20], because this model is relatively simple and it
captures the main characteristics of tumor cell invasion.

Perumpanani and Byrne’s model was used to investigate the role of ECM
concentration in tumor cell invasion. They also valid their model using the
experimental results from the collagen gel invasion assay. The key physical
variables are assumed as follows:

n = density of tumor cells,

p = concentration of protease secreted by tumor cells,

c = concentration of collagen gel.

The experiment was conducted within an individual well Ω ⊂ R
3. The model

was derived by applying the principle of mass conservation to each of the key
variables. The model developed in [20] consists of the following system of
equations:

∂n

∂t
= � · (μn � n)︸ ︷︷ ︸

random motion

−� · (χn � c)︸ ︷︷ ︸
haptotaxis

+ λ0n(1 − n − λ1c)︸ ︷︷ ︸
modified logistic growth

,(1.1)

∂p

∂t
= � · (μp � p)︸ ︷︷ ︸

diffusion

+ λ2nc︸︷︷︸
production

− λ3p︸︷︷︸
decay

,(1.2)

∂c

∂t
= − λ4pc︸︷︷︸

degradation

.(1.3)

In (1.1), μn and χ are assumed constant random motility and haptotactic,
respectively, λ0 represents the proliferation rate of tumor cells and λ1 describes
the competition for space caused by the presence of the collagen gel. The term
for tumor cell taxis incorporates the sensitivity of the cells to spatial gradients
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of collagen. Given that the collagen gel is static, this behavior is haptotactic
rather than chemotatic.

In (1.2), μp is the assumed constant diffusion coefficient of the protease. We
assumed that protease production is proportional to the product of the tumor
cell density and the collagen gel concentration. λ2 is the rate of protease
production and λ3 denotes the rate of protease decay.

In (1.3), since the collagen gel is static, we neglected random motion of the
collagen gel and focused soled on its degradation by the protease. λ4 represents
the rate at which the protease degrade the collagen gel.

Guided by the experimental protocol [20], in which invasion takes place
within an isolated system, we assumed that there is no cells or protease can
escape from the well Ω. As in [20], we introduce the no-flux boundary condi-
tions

μn
∂n

∂ν
− χn

∂c

∂ν
= 0 on Γ × {0 ≤ t < ∞},(1.4)

∂p

∂ν
= 0 on Γ × {0 ≤ t < ∞},(1.5)

where Γ is the boundary of Ω and ν is the outward normal to Γ. We prescribe
the following initial conditions:

n(x, 0) = n0(x), p(x, 0) = p0(x), c(x, 0) = c0(x), x ∈ Ω.(1.6)

The system (1.1)-(1.6) is not a standard parabolic system due to the hap-
totaxis term in (1.1). In [20], the authors numerically studied the evolution
of the tumor cell density n, the protease concentration p, and the collagen
gel concentration c of the model (1.1)-(1.6) in radially symmetrical form. In
[15], dropping the random motion of tumor cells in (1.1) and neglecting the
diffusion of the protease in (1.2), Marchant, Norburg and Byrne recently stud-
ied the biphasic dependence of the tumor cell invasion speed on the density
of the surrounding normal tissue for the corresponding model (1.1)-(1.3) and
(1.6). In [24], under the assumption that the haptotactic coefficient is small
compared with the diffusion coefficient of the tumor cell, Tao and Yang proved
the global existence of solutions for an approximate problem. In present paper,
we will prove the global existence of solutions to the model (1.1)-(1.6) for gen-
eral haptotactic coefficient χ > 0. In section 2 we first transform the problem
(1.1)-(1.6) to a new problem in which the equation corresponding to the den-
sity of tumor cells does not include the second spatial derivative of the variable
c, then we introduce some notations and state a result on the local existence
and uniqueness of solutions to the model (1.1)-(1.6). In section 3 we establish
some a priori estimates. In section 4 we prove the global existence of solutions
to the model (1.1)-(1.6). The proof is based on a priori estimates, together
with the Lp estimates and the Schauder estimates of parabolic equations, the
Young’s inequality and the Gagliard-Nirenberg’s inequality.
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2. Local existence

For any 0 < T ≤ ∞ we set

ΩT = Ω × {0 ≤ t < T}, ΓT = Γ × {0 ≤ t < T}.
Introduce the variable transformation:

m = ne−
χ

μn
c.(2.1)

In terms of the variables m, p, c, the system (1.1)-(1.6) becomes

∂m

∂t
− μne

− χ
μn

c � ·(e χ
μn

c � m)(2.2)

= λ0m(1 − e
χ

μn
cm − λ1c) + λ4

χ

μn
mpc in ΩT ,

∂p

∂t
− μp � p = λ2e

χ
μn

cmc − λ3p in ΩT ,(2.3)

c = c0(x)e−
� t
0 λ4p(x,τ )dτ in ΩT ,(2.4)

∂m

∂ν
=

∂p

∂ν
= 0 on ΓT ,(2.5)

m(x, 0) = m0(x), p(x, 0) = p0(x), x ∈ Ω,(2.6)

where m0(x) = n0(x)e−
χ

μn
c0(x).

Throughout this paper we assume that

m0(x) ≥ 0, p0(x) ≥ 0, 0 ≤ c0(x) ≤ c0,(2.7)

Γ ∈ C2+α, 0 < α < 1,

m0(x), p0(x), c0(x) ∈ C2+α(Ω),

∂m0(x)

∂ν
=

∂p0(x)

∂ν
= 0 on Γ.

We denote by Ck+α, β
x, t (ΩT ) (k integer ≥ 0, 0 < α < 1, 0 < β < 1) the space

of function u(x, t) with finite norm

‖ u ‖Ck+α, β
x, t (ΩT )=

k∑
|l|=0

[sup
ΩT

|Dl
xu|+ < Dl

xu >
(α)
x, ΩT

+ < Dl
xu >

(β)
t, ΩT

]

where

< w >
(α)
x, ΩT

= sup
(x,t), (y,t)∈ΩT

|w(x, t) − w(y, t)|
|x − y|α ,

< w >
(β)
t, ΩT

= sup
(x,t), (x,τ )∈ΩT

|w(x, t) − w(x, τ )|
|t − τ |β .
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We denote by C2+α, 1+β
x, t (ΩT ) the space of functions u(x, t) with norm

‖ u ‖C2+α, β
x, t (ΩT ) + ‖ ut ‖Cα, β

x, t (ΩT ) .

For brevity we set

U = (m, p, c).(2.8)

The local existence of solutions to the system (2.2)-(2.7) has been proved by
Tao and Yang [24] by a fixed point argument. For convenience of readers and
our later proof of global existence, we here give the main idea of the proof of
local existence:

We introduce the Banach space X of the vector-functions U with norm

‖ U ‖=‖ U ‖
C

α, α/2
x, t (ΩT )

(0 < T < 1)

and a subset

XM = {U ∈ X, ‖ U ‖≤ M}, M > 0

where M is an appropriate constant. Given any U ∈ XM , we define a corre-
sponding function U ≡ FU by

U = (m, p, c)

where U satisfies the equations

∂p

∂t
− μp � p = λ2e

χ
μn

cmc − λ3p in ΩT ,(2.9)

∂p

∂ν
|ΓT

= 0, p(x, 0) = p0(x) for x ∈ Ω,(2.10)

c = c0(x)e−
� t
0

λ4p(x,τ )dτ in ΩT ,(2.11)

∂m

∂t
− μne

− χ
μn

c � ·(e χ
μn

c � m)(2.12)

= λ0m(1 − e
χ

μn
cm − λ1c) + λ4

χ

μn
mpc in ΩT ,

∂m

∂ν
|ΓT

= 0, m(x, 0) = m0(x) for x ∈ Ω.(2.13)

We then prove that F is a contraction in XM , provided T is small (for the
details of the proof, see [24]). By the contraction mapping theorem F has a
unique fixed point U , which is the unique solution of (2.2)-(2.7). From the
proof of Theorem 2.1 in [24], we find that the size T of the time interval [0, T ]
for the existence of local solution depends on ‖ U(·, 0) ‖C2+α

x (Ω).
We now restate the local existence result as follows:

Theorem 2.1 (Tao and Yang [24]). There exists a unique solution U ∈
C

2+α, 1+α/2
x, t (ΩT ) of the system (2.2)-(2.7) for some small T > 0 which depends

on ‖ U(·, 0) ‖C2+α
x (Ω).



2390 Youshan Tao and Guo Zhu

3. A priori estimates

To continue the local solution established in above section to all t > 0, we
need to establish some a priori estimates.

Lemma 3.1. Assume that U ∈ C2,1
x,t (ΩT ) ( for some 0 < T < ∞) is a solution

of the system (2.2)-(2.7). Then, there holds

m ≥ 0, p ≥ 0, 0 ≤ c ≤ c0.(3.1)

Proof. It follows from (2.4) and c0(x) ≥ 0 that

c(x, t) ≥ 0.(3.2)

Note that (2.2) can be rewritten as

∂m

∂t
− μn � m− χ � c · �m = a(x, t)m in ΩT(3.3)

where a(x, t) = λ0(1 − e
χ

μn
cm − λ1c) + λ4χ

μn
pc. Clearly, m ≡ 0 is a sub-solution

of (3.3) with the initial-boundary conditions ∂m
∂ν

|ΓT
= 0, m(x, 0) = m0(x) ≥ 0.

Therefore, it follows from the maximum principle that

m(x, t) ≥ m ≡ 0.(3.4)

By (2.3), (3.2) and (3.4) we get

∂p

∂t
− μp � p ≥ −λ3p in ΩT .(3.5)

This, together with ∂p
∂ν
|ΓT

= 0, p(x, 0) = p0(x) ≥ 0 and the maximum principle,
yields

p(x, t) ≥ 0.(3.6)

Combining (2.4), (3.2) and (3.6), we get

0 ≤ c(x, t) ≤ c0(x) ≤ c0.(3.7)

This completes the proof of Lemma 3.1.

Lemma 3.2. Assume that U ∈ C2,1
x,t (ΩT ) ( for some 0 < T < ∞) is a solution

of the system (2.2)-(2.7). Then, there holds

‖ m ‖L1(Ω)≤ max(‖ n0 ‖L1(Ω), |Ω|),(3.8)

‖ p ‖L1(Ω)≤‖ p0 ‖L1(Ω) +
λ2c0

λ3
max(‖ n0 ‖L1(Ω), |Ω|).(3.9)
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Proof. Integrating (1.1) in Ω and noting (1.4) and (3.1), we have

d

dt
‖ n ‖L1(Ω) ≤ λ0 ‖ n ‖L1(Ω) −λ0

∫
Ω

n2 dx(3.10)

≤ λ0 ‖ n ‖L1(Ω) − λ0

|Ω| ‖ n ‖2
L1(Ω)

where we have used the Hölder’s inequality: (
∫

Ω
n dx)2 ≤ ∫

Ω
12 dx · ∫

Ω
n2 dx

= |Ω| ∫
Ω

n2 dx. (3.10) yields

‖ n ‖L1(Ω)≤ 1
1
|Ω| +

(
1

‖n0‖L1(Ω)
− 1

|Ω|
)
e−λ0t

≤ max(‖ n0 ‖L1(Ω), |Ω|).(3.11)

Integrating (1.2) in Ω and noting (1.5) and (3.1), we have

d

dt
‖ p ‖L1(Ω)≤ λ2c0 ‖ n ‖L1(Ω) −λ3 ‖ p ‖L1(Ω),

which yields

‖ p ‖L1(Ω)≤‖ p0 ‖L1(Ω) +
λ2c0

λ3
‖ n ‖L1(Ω) .(3.12)

This completes the proof of Lemma 3.2.

For convenience of notations, in the sequel we shall denote generic constants
which are independent of T by A0 and we denote various constants which
depend on T by A.

To establish required a priori estimates, we need the following lemma about
the regularity of the solution semigroup of the heat equation:

Lemma 3.3 (Taylor [26; p. 274]). Let M be a bounded N−dimensional C∞

manifold without boundary. Let T1(t) = e�t denote the solution semigroup of
the heat equation on M . Assume

0 < t ≤ 1, r′ ≥ ρ

then

T1(t) : Lρ(M) → Lr′(M) with norm A0t
−α

where

α =
N

2

(1

ρ
− 1

r′

)
.

The assumptions on M are satisfied by the heat equation on a rectangular
[0, l1] × · · · × [0, lN ] with periodic boundary conditions. The regularity results
also apply to homogeneous Neumann boundary conditions, since problems
with Neumann boundary conditions can be extended to problems with periodic
boundary conditions on a larger domain by gluing together copies of mirror
images of the original rectangular.
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Lemma 3.4. Assume that U ∈ C2,1
x,t (ΩT ) ( for some 0 < T < ∞) is a solution

of the system (2.2)-(2.7), and suppose that

‖ m ‖Lρ(Ω)≤ A(3.13)

for all t ∈ (0, T ] and 1 ≤ ρ < ∞. Then there holds

‖ p ‖Lr′(Ω)≤ A(3.14)

for all t ∈ (0, T ] and any r′ > ρ satisfying 1
r′ + 2

N
> 1

ρ
, where N := the

dimension of the spatial domain Ω.

Proof. Set p̃ = eλ3tp. Then (2.3) yields

∂p̃

∂t
− μp � p̃ = f(3.15)

where f = λ2e
λ3te

χ
μn

cmc. By 0 ≤ c ≤ c0 (see (3.1)) and the assumption (3.13),
we easily find that

‖ f ‖Lρ(Ω)≤ A.(3.16)

We write the solution of (3.15) as (without loss of generality, we here assume
that μp = 1)

p̃(t) = T1(t)p̃(0) +

∫ t

0

T1(t − s)f(s) ds.(3.17)

Applying Lemma 3.3 with 0 < α < 1 and using (3.16), (3.17), (2.5) and (2.7),
we easily find that for 0 < t ≤ 1

‖ p̃(t) ‖Lr′ (Ω) ≤ ‖ p(0) ‖Lr′(Ω) +A0t
1−α max

0≤s≤t
‖ f(s) ‖Lρ(Ω)(3.18)

≤ A.

Note that for 1 < t ≤ 2,

p̃(t) = T1(t)p̃(1) +

∫ t

1

T1(t − s)f(s) ds(3.19)

= T1(t)p̃(1) +

∫ t−1

0

T1(t − 1 − s̃)f(s̃ + 1) ds̃

= T1(t̃ + 1)p̃(1) +

∫ t̃

0

T1(t̃ − s̃)f(s̃ + 1) ds̃,

where t̃ = t − 1, 0 < t̃ ≤ 1. Applying Lemma 3.3 with 0 < α < 1 and using
(3.16), (3.18), (3.19) and (2.5), we have for 1 < t ≤ 2

‖ p̃(t) ‖Lr′(Ω) ≤ ‖ p(1) ‖Lr′(Ω) +A0t̃
1−α max

0≤s̃≤t̃
‖ f(s̃ + 1) ‖Lρ(Ω)

≤ A + A0 max
1≤s≤t

‖ f(s) ‖Lρ(Ω)

≤ A.
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Continuing above procedure, we have for all t ∈ (0, T ]

‖ p̃ ‖Lr′(Ω)≤ A.

This completes the proof of Lemma 3.4.

From (3.8) we have the L1-estimate of m. In the following we shall use
bootstrap method and Walker-Webb’s idea [27] to raise the regularity of m.
In fact, we have

Lemma 3.5. Assume that U ∈ C2,1
x,t (ΩT ) ( for some 0 < T < ∞) is a solution

of the system (2.2)-(2.7), and suppose that

‖ m ‖Lρ(Ω)≤ A(3.20)

for all t ∈ (0, T ] and 1 ≤ ρ < ∞. Then there holds

‖ m ‖
L

13
12ρ(Ω)

≤ A(3.21)

for all t ∈ (0, T ].

Proof. Denote s := 13
12

ρ. If s ≥ 2, we set γ := 0; otherwise we fix γ ∈ (0, 1).
Then we put mγ := m + γ ≥ γ > 0 and therefore

�ms/2
γ =

s

2
ms/2−1

γ � mγ

makes sense. Thus, given any Λ(z) ∈ C2((0,∞)) and Λ(z), Λ′(z) ≥ 0 for
z ∈ [0,∞) we derive from (2.2) and (3.1)

d

dt

∫
Ω

e
χ

μn
c Λ(mγ) dx

= − λ4χ

μn

∫
Ω

Λ(mγ) p c e
χ

μn
c dx + μn

∫
Ω

Λ′(mγ) � ·(e χ
μn

c � mγ) dx

+ λ0

∫
Ω

Λ′(mγ) e
χ

μn
c mγ(1 + e

χ
μn

c γ − e
χ

μn
c mγ − λ1 c) dx

− λ0 γ

∫
Ω

Λ′(mγ) e
χ

μn
c (1 + e

χ
μn

c γ − e
χ

μn
c mγ − λ1 c) dx

+
λ4χ

μn

∫
Ω

Λ′(mγ) e
χ

μn
c mγ p c dx − λ4χγ

μn

∫
Ω

Λ′(mγ) e
χ

μn
c p c dx

≤ μn

∫
Ω

Λ′(mγ) � ·(e χ
μn

c � mγ) dx

+ A0

∫
Ω

Λ′(mγ) dx + A0

∫
Ω

Λ′(mγ) mγ dx + A0

∫
Ω

Λ′(mγ) mγ p dx

= − μn

∫
Ω

Λ′′(mγ) e
χ

μn
c | � mγ|2 dx

+ A0

∫
Ω

Λ′(mγ) dx + A0

∫
Ω

Λ′(mγ) mγ dx + A0

∫
Ω

Λ′(mγ) mγ p dx.
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In particular, taking Λ(z) = zs we have

d

dt

∫
Ω

e
χ

μn
c ms

γ dx(3.22)

≤ −4μn
s − 1

s

∫
Ω

e
χ

μn
c | � ms/2

γ |2 dx

+A0

∫
Ω

ms−1
γ dx + A0

∫
Ω

ms
γ dx + A0

∫
Ω

p ms
γ dx

≤ −4μn
s − 1

s

∫
Ω

e
χ

μn
c | � ms/2

γ |2 dx

+A0 + A0

∫
Ω

ms
γ dx + A0

∫
Ω

p ms
γ dx

where we have used the Young’s inequality: ms−1
γ ≤ s−1

s
ms

γ + 1
s
. We easily

check that for ρ ≥ 1 and s = 13
12

ρ, (ρ, s) satisfies the following inequality:

Ns

Ns + 2ρ
< 1 +

2

N
− 1

ρ

( ⇔ 13

21
<

14

21
+ 1 − 1

ρ

)
(3.23)

where N := 3 is the dimension of the domain Ω. (3.23) allows us to fix r > 1
such that

Ns

Ns + 2ρ
<

1

r
< 1 +

2

N
− 1

ρ
.(3.24)

The first inequality of (3.24) warrants the following version of the Gagliard-
Nirenberg’s inequality (see [9; p.37])

‖ · ‖2r
L2r≤ A0 ‖ · ‖2(r−1)

L2ρ/s ‖ · ‖2
W 1

2
,(3.25)

and the second inequality of (3.24) allows us to take r′ in (3.14) to be the dual
exponent of r. Applying Young’s inequality, and using the given Lρ-bound on
m (see (3.20)) and the inequality (3.25), it follows for ε > 0 that∫

Ω

p ms
γ dx ≤ A0(ε)

∫
Ω

pr′ dx + ε

∫
Ω

msr
γ dx(3.26)

≤ A(ε, T ) + ‖ ms/2
γ ‖2r

L2r

≤ A(ε, T ) + ε C0 ‖ mγ ‖s(r−1)
Lρ ‖ ms/2

γ ‖2
W 1

2

≤ A(ε, T ) + A(ε, T )

∫
Ω

ms
γ dx

+ ε A(T )

∫
Ω

|∇ms/2
γ |2 dx.

Inserting (3.26) into (3.22), noting 0 ≤ c ≤ c0 (and therefore 1 ≤ e
χ

μn
c ≤ e

χ
μn

c0)
and taking ε small that εA(T )− 4μn(s − 1)/s < 0 , we then have

d

dt

∫
Ω

e
χ

μn
c ms

γ dx ≤ A + A

∫
Ω

e
χ

μn
c ms

γ dx.(3.27)
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This further yields ∫
Ω

e
χ

μn
c ms

γ dx ≤ A.(3.28)

We finally let γ → 0+ and use Lebesgue’s theorem to obtain∫
Ω

ms dx ≤ A.(3.29)

This completes the proof of Lemma 3.5.

We introduce Sobolev space

W 2,1
k (ΩT ) = {u| u, Dxu, D2

xu, Dtu ∈ Lk(ΩT )}
with norm

‖ u ‖W 2,1
k (ΩT )=‖ u ‖Lk(ΩT ) + ‖ Dxu ‖Lk(ΩT ) + ‖ D2

xu ‖Lk(ΩT ) + ‖ Dtu ‖Lk(ΩT )

in which k ≥ 1 are integers, T > 0 and the derivatives are in the weak sense.

Lemma 3.6. Assume that U ∈ C2,1
x,t (ΩT ) ( for some 0 < T < ∞) is a solution

of the system (2.2)-(2.7). Then, there exists a constant A, depending on T ,
such that

‖ U ‖
C

2+α, 1+α/2
x, t (ΩT )

≤ A.(3.30)

Proof. Using Lemma 3.2 and repeatedly applying Lemmas 3.4 and 3.5 (i.e.
using bootstrap technique) , we can get, for any inter k ≥ 1

‖ m ‖Lk(Ω) , ‖ p ‖Lk(Ω)≤ A.(3.31)

Equation (2.3) can be rewritten as

∂p

∂t
− μp�p = f1(m, p, c),

where by (3.1) and (3.31) we have, for any integer k ≥ 1

‖ f1 ‖Lk(ΩT )≤ A.

By the parabolic Lp estimates ([11]) we have

‖ p ‖W 2,1
k (ΩT )≤ A.(3.32)

where A is some constant depending on T . By (2.4), (2.7) and (3.32) we get

‖ c ‖W
2,1
k (ΩT )≤ A.(3.33)

By the Sobolev imbedding Theorem (see [11; Lemma 3.3, p. 80]), if we take k
sufficiently large, then (3.33) yields

‖ �c ‖
C

α, α/2
x, t (ΩT )

≤ A,(3.34)
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and therefore

‖ �c ‖L∞(ΩT )≤ A.(3.35)

Now, (2.2) can be rewritten as

∂m

∂t
− μn�m − χ � c · �m = f2(m, p, c)(3.36)

where the haptactic term χ� c is a bounded function by (3.35) and the right-
hand term f2 satisfying

‖ f2 ‖Lk(ΩT )≤ A for any integer k ≥ 1

by (3.1) and (3.31). By the parabolic Lp estimates we then have

‖ m ‖W 2,1
k (ΩT )≤ A.(3.37)

By (3.37) and the Sobolev imbedding Theorem (taking k large),

‖ m ‖
C

α, α/2
x, t (ΩT )

≤ A.(3.38)

Also, (3.32), (3.33) and the Sobolev imbedding Theorem (taking k large)
yield

‖ p ‖
C

α, α/2
x, t (ΩT )

≤ A, ‖ c ‖
C

α, α/2
x, t (ΩT )

≤ A.(3.39)

Now, from (2.3), (2.7), (3.38), (3.39) and the parabolic Schauder estimates
we have

‖ p ‖
C

2+α, 1+α/2
x, t (ΩT )

≤ A,(3.40)

and therefore

‖ c ‖
C

2+α, 1+α/2
x, t (ΩT )

≤ A.(3.41)

Finally, we conclude from (3.36), (3.34), (3.38), (3.39), (2.7) and the para-
bolic Schauder estimates that

‖ m ‖
C

2+α, 1+α/2
x, t (ΩT )

≤ A.(3.42)

This completes the proof of Lemma 3.6.

4. Global existence

We now state the main result of this paper as follows:

Theorem 4.1. There exists a unique global solution U ∈ C
2+α, 1+α/2
x, t (Ω∞)

of the system (2.2)-(2.7).
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Proof. Suppose to the contrary that [0, T ) (where 0 < T < ∞) is the maximum
time interval for the existence of the solution. We take U(x, T − ε) (where
0 < ε < T is arbitrary) as new initial value, then we can extend the solution
to Q(T−ε)+δ for small δ > 0 by Theorem 2.1. Furthermore, Theorem 2.1 tells
us that δ depends only on an upper bound on ‖ U(x, T − ε) ‖C2+α(Ω). By a
priori estimate (3.30) we find that δ depends on A(T ) (but δ is independent
of ε), i.e., δ = δ(T ). If we take ε < δ(T ), then we get

(T − ε) + δ > T,

which contradicts the assumption that [0, T ) is the maximum time interval for
the existence of the solution. Therefore, the maximum time interval for the
existence of the solution is [0,∞).
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