On T_1 Separation Axioms in I-Fuzzy Topological Spaces

Amit Kumar Singh

Department of Applied Mathematics, Institute of Technology Banaras Hindu University, Varanasi, 221005, India amitkitbhu@gmail.com

Abstract

In this note, we introduce the degree to which an I-fuzzy topological space (X,τ) is Sub T_1 (in short, ST_1), which we denote by $ST_1(X,\tau)$ and proved that $KT_1(X,\tau)$, defined by Yue and Fang and $ST_1(X,\tau)$ are equal.

Keywords: I- fuzzy topology, I- fuzzy quasi-coincident neighborhood system, T_1 axiom, KT_1 axiom

1 Introduction

After the introduction of fuzzy sets by Zadeh [13] in 1965, various mathematicians generalized the notion of a fuzzy set. Initially Chang [1] introduced the concept of an I- topology on a set X by replacing 'subsets'by 'fuzzy sets', in the usual definition of a topology on X. Later on Kubiak[4] and Šostak [9] generalized this concept by introducing an I-fuzzy topology on a set X. Pu and Liu [5] established the theory of quasi-coincident neighborhood system in I-topology. Fang [2] extended this concept and defined I-fuzzy quasi-coincident neighborhood system in I-fuzzy topological spaces.

Separation is a crucial branch of fuzzy topology, many mathematicians did a lot of work in this frame. In this note, we are concerned with some separation axioms in an I-fuzzy topological space. Rodabaugh [6, 7] defined RT_0 and Kubiak [4] defined KT_1 axioms in an L- topological space. Yue and Fang [12] defined the degree to which an I-fuzzy topological space (X, τ) is ST_0 , RT_0 and KT_1 , denoted by $ST_0(X, \tau)$, $RT_0(X, \tau)$ and $KT_1(X, \tau)$ respectively and pointed out that $ST_0(X, \tau) \leq RT_0(X, \tau)$. Later on Shi and Li [8] proved a stronger result that $ST_0(X, \tau)$ and $RT_0(X, \tau)$ are equal.

In [12] Yue and Fang proved that $T_1(X,\tau) \leq KT_1(X,\tau)$. In this note, we introduce $ST_1(X,\tau)$ where $T_1(X,\tau) \leq ST_1(X,\tau)$ and proved that $ST_1(X,\tau)$ and $KT_1(X,\tau)$ are equal.

2422 A. K. Singh

2 Preliminaries

Definition 2.1 (C. K. Wong [11]). A fuzzy point x_r in X is a fuzzy set in X taking value $r \in (0,1)$ at x and zero elsewhere. A fuzzy singleton (Zadeh [14]) x_r in X is a fuzzy set in X taking value $r \in (0,1]$. x and r are respectively called the support and value of x_r . Two fuzzy points/fuzzy singletons are said to be distinct if their supports are distinct. A fuzzy point x_r is said to belong to a fuzzy set A if r < A(x).

It can be easily seen that $x_r \in \bigvee_{i \in \Lambda} A_i \Leftrightarrow x_r \in A_i$ for some $i \in \Lambda$.

Definition 2.2 (Pu and Liu [5]). Let x_r be a fuzzy point in X and $A \in I^X$. Then x_r is said to be quasi-coincident with A (notation: x_rqA) if A(x)+r>1. Two fuzzy sets A, B in X are said to be quasi-coincident (notation: AqB) if A(x)+B(x)>1 for some $x \in X$. The relation (is not quasi-coincident with) is denoted by $\neg q$. A Q-neighborhood (in short, Q-nbd) of a fuzzy singleton x_r in an I-topology (X,τ) is a fuzzy set $N \in I^X$ such that $\exists U \in \tau$ with $x_rqU \subseteq N$.

Definition 2.3 (Šostak [9], Kubiak [4]). An I- fuzzy topology on a set X is a map $\tau: I^X \longrightarrow I$ such that

(i)
$$\tau(\underline{1}) = \tau(\underline{0}) = 1;$$

(ii)
$$\tau(U \cap V) \ge \tau(U) \wedge \tau(V), \forall U, V \in I^X;$$

(iii)
$$\tau(\cup_{j\in J} U_j) \ge \wedge_{j\in J} \tau(U_j), \forall U_j \in I^X, j \in J.$$

The pair (X, τ) is called an I-fuzzy topological space (in short, I-fts).

Definition 2.4 (Yue and Fang [12]). Let (X, τ) be an I-fts and x_{λ} be a fuzzy singleton in X, Define $Q_{x_{\lambda}}: I^{X} \to I$ as follows:

$$Q_{x_{\lambda}}(U) = \begin{cases} \bigvee_{x_{\lambda}qV \leq U} \tau(V), & if \quad x_{\lambda}qU \\ 0 & \text{otherwise} \end{cases}$$

 $Q_{x_{\lambda}}(U)$ is called the degree to which U is quasi-coincident neighborhood of x_{λ} . The set $Q=\{Q_{x_{\lambda}} \mid x_{\lambda} \text{ is a fuzzy singleton in } X \}$ is called the fuzzy quasi-coincident neighborhood system of τ .

Definition 2.5 (Kubiak [4]). Let (X, τ) be an I-fts, The degree to which two distinguished crisp points $x, y \in X$ are KT_1 , is defined as follows:

$$KT_1(x,y) = \bigvee_{U(x)>U(y)} \tau(U) \wedge \bigvee_{V(y)>V(x)} \tau(V)$$

.

Definition 2.6 (Yue and Fang [12]). Let (X, τ) be an I-fts. The degree to which two distinct fuzzy singletons x_{λ} and y_{μ} are T_1 is defined as,

$$T_1(x_{\lambda}, y_{\mu}) = \left(\bigvee_{x_{\lambda} \neg qU} Q_{y_{\mu}}(U)\right) \wedge \left(\bigvee_{y_{\mu} \neg qV} Q_{x_{\lambda}}(V)\right).$$

The degree to which (X, τ) is T_1 , is defined by

$$T_1(X,\tau) = \wedge \{T_1(x_\lambda, y_\mu) \mid x_\lambda, y_\mu \text{ are distinct fuzzy singletons } \}.$$

3 Main Result

Definition 3.1 Let (X, τ) be an I-fts. The degree to which (X, τ) is ST_1 , is defined as follows:

$$ST_1(X,\tau) = \bigwedge \{ \bigvee_{\lambda > 0} T_1(x_\lambda, y_\lambda) \mid x \neq y \}.$$

Theorem 3.1 Let (X, τ) be an I-fts. Then $KT_1(X, \tau) = ST_1(X, \tau)$.

Proof: In order to prove that $KT_1(X,\tau) = ST_1(X,\tau)$, we will show that for any $x, y \in X$, $KT_1(x,y) = \bigvee_{\lambda>0} T_1(x_\lambda,y_\lambda)$. For any $x,y \in X$, we have,

$$KT_{1}(x,y) = \bigvee_{U(x)>U(y)} \tau(U) \wedge \bigvee_{V(y)>V(x)} \tau(V)$$

$$= \left(\bigvee \{\tau(U) \mid U(x) > U(y)\}\right) \wedge \left(\bigvee \{\tau(V) \mid V(y) > V(x)\}\right)$$

$$= \left(\bigvee \{\tau(U) \mid U'(y) > U'(x)\}\right) \wedge \left(\bigvee \{\tau(V) \mid V'(x) > V'(y)\}\right)$$

$$= \left(\bigvee_{\lambda>0} \bigvee \{\tau(U) \mid U'(y) \ge \lambda > U'(x)\}\right) \wedge \left(\bigvee_{\lambda>0} \bigvee \{\tau(V) \mid V'(x) \ge \lambda > V'(y)\}\right)$$

$$= \left(\bigvee_{\lambda>0} \bigvee \{\tau(U) \mid y_{\lambda} \neg qU, x_{\lambda} qU\}\right) \wedge \left(\bigvee_{\lambda>0} \bigvee \{\tau(V) \mid x_{\lambda} \neg qV, y_{\lambda} qV\}\right)$$

2424 A. K. Singh

$$= \left(\bigvee_{\lambda>0} \bigvee_{y_{\lambda} \neg qU} \bigvee_{x_{\lambda} qA \leq U} \tau(A)\right) \wedge \left(\bigvee_{\lambda>0} \bigvee_{x_{\lambda} \neg qV} \bigvee_{y_{\lambda} qB \leq V} \tau(B)\right)$$

$$= \left(\bigvee_{\lambda>0} \bigvee_{y_{\lambda} \neg qU} Q_{x_{\lambda}}(U)\right) \wedge \left(\bigvee_{\lambda>0} \bigvee_{x_{\lambda} \neg qV} Q_{y_{\lambda}}(V)\right)$$

$$= \bigvee_{\lambda>0} \left(\left(\bigvee_{y_{\lambda} \neg qU} Q_{x_{\lambda}}(U)\right) \wedge \left(\bigvee_{x_{\lambda} \neg qV} Q_{y_{\lambda}}(V)\right)\right)$$

$$= \bigvee_{\lambda>0} T_{1}(x_{\lambda}, y_{\lambda})$$

$$\Rightarrow \land \{KT_1(x,y) \mid x \neq y\} = \land \{\lor_{\lambda>0} T_1(x_\lambda, y_\lambda)\}$$

\Rightarrow KT_1(X,\tau) = ST_1(X,\tau).
Hence proved.

ACKNOWLEDGEMENTS

The author gratefully acknowledges the financial support from University Grant Commission, New Delhi, India under S.R.F. scheme.

References

- [1] C.L. Chang, Fuzzy topological spaces, J. Math Anal. Appl., 24 (1968), 182-193.
- [2] J. Fang, *I*-FTOP is isomorphic to *I*-FQN and *I*-AITOP, Fuzzy Sets and Systems, **147** (2004), 317-325.
- [3] B. Hutton and I. Reilly, Separation axioms in fuzzy topological spaces, Fuzzy Sets and Systems, 3 (1980), 93-104.
- [4] T. Kubiak, On fuzzy topologies, Ph.D Thesis, Adam Mickiewicz, Poznan, Poland, 1985.
- [5] Pu Pao-Ming and Liu Ying-Ming, Fuzzy topology. I. Neighborhood structure of a fuzzy point and Moore-Smith convergence, J. Math Anal. Appl., **76** (1980), 571-599.
- [6] S.E. Rodabaugh, A point set lattice-theoretic framework T which contains LOC as a subcategory of singleton spaces and in which there are general classes of Stone representation and compactification theorems, first draft February 1986/ second draft April 1987, Youngstown State University Central Printing Office, Youngstown, Ohio, 1987.

- [7] S.E. Rodabaugh, Applications of localic separation axioms compactness axioms representations, and compactifications to poslat topological spaces, Fuzzy Sets and Systems, **73** (1995), 55-87.
- [8] Fu-Gui Shi and Hong-Yan Li, A note on "On separation axioms in *I* fuzzy topological spaces", Fuzzy Sets and Systems, **158** (2007), 1511-1513.
- [9] A.P. Šostak, On fuzzy topological structure, Rend. Circ. Mat. Palermo (Suppl. Ser. II), **11** (1985), 89-103.
- [10] Rekha Srivastava, S.N. Lal and Arun K. Srivastava, Fuzzy T_1 topological spaces, J. Math Anal. Appl., **102** (1984), 442-448.
- [11] C.K. Wong, Fuzzy points and local properties of fuzzy topology, J. Math Anal. Appl., **46** (1974), 316-328.
- [12] Y. Yue and J. Fang, On separation axioms in I-fuzzy topological spaces, Fuzzy Sets and Systems, **157** (2006), 780-793.
- [13] L.A. Zadeh, Fuzzy sets, Inform. and Control, 8 (1965), 338-353.
- [14] L.A. Zadeh, A fuzzy set theoretic interpretation of linguistic hedges, Memorandum No. ERLM335 University of California, Berkeley (1972).

Received: January, 2009