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1 Introduction.

Let X be a normed space and f : X → R ∪ {+∞} be a convex function. Let
us consider the following convex minimization problem

(1.1) inf
x∈X

{f(x) : h(x) ≤Y1 y1, Ax = y2}

where h(x) ≤Y1 y1 represents possibly a nonlinear inequality in the preordered
space (Y1, Y

1
+) and Ax = y2 is a linear constraint in the space Y2. The con-

cept sensitivity analysis plays a central role in various applied sciences such
as financial applications, risk analysis, signal processing, neural networks and
any area where models are developed and it has been thoroughly studied by
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several authors.
In this paper, we are concerned with the sensitivity analysis of the optimal
value function p(y1, y2) associated to the convex program (1.1) without assum-
ing the existence of optimal solutions. Let us point out that the case when the
operator h is linear has been studied by M. Moussaoui and A. Seeger [4].

2 Notations, definitions and preliminaries.

Throughout this paper X and Y are two locally convex topological vector
spaces whose topological dual spaces are X∗ and Y ∗. The spaces X and X∗

(resp. Y and Y ∗) are paired in duality by the bilinear form (x∗, x) ∈ X∗×X →
〈x∗, x〉 := x∗(x) (resp. (y∗, y) ∈ Y ∗ × Y → 〈y∗, y〉 := y∗(y)). We assume that
the space Y is endowed with a preorder induced by a convex cone Y+ i.e.

y1 ≤Y y2 ⇐⇒ y2 − y1 ∈ Y+

and an abstract maximal element +∞ will be adjoined to Y . The positive
polar cone Y ∗

+ associated to Y+ is defined by

Y ∗
+ := {y∗ ∈ Y ∗ : 〈y∗, y〉 ≥ 0, ∀ y ∈ Y+}.

Let us recall that for a mapping h : X → Y ∪ {+∞} we denote by

Epi h : = {(x, y) ∈ X × Y : h(x) ≤Y y}
its epigraph and by

dom h : = {x ∈ X : h(x) ∈ Y }

its effective domain. When dom h = ∅, one says that h is proper. The mapping
h is said to be Y+-convex if for every x1, x2 in X and every α ∈ ]0, 1[ we have:

h(αx1 + (1 − α)x2) ≤Y αh(x1) + (1 − α)h(x2).

Considering a function g : Y → R ∪ {+∞}, we define the composed function
(g ◦ h) : X → R ∪ {+∞} by

x → (g ◦ h)(x) :=

⎧⎪⎨
⎪⎩

g(h(x)) if x ∈ dom h

sup
y∈Y

g(y) otherwise.

When g is further assumed to be convex, this amounts to taking (g ◦ h)(x) =
+∞ for x /∈ dom h whenever g is not constant over all the space Y . For a
constant function g ≡ c, obviously one gets (g ◦ h)(x) = c for all x ∈ X.
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To each function f : X → R∪{+∞} we denote by f ∗ : X∗ → R∪{−∞, +∞}
its conjugate function defined for any x∗ ∈ X∗ by

f ∗(x∗) = sup
x∈X

{〈x∗, x〉 − f(x)}.
Let x̄ ∈ dom f and ε ≥ 0, the ε-subdifferential of f at x̄ is the set

∂εf(x̄) : = {x∗ ∈ X∗ : f(x) ≥ f(x̄) + 〈x∗, x − x̄〉 − ε, ∀x ∈ X}.
The exact subdifferential of f at x̄ ∈ dom f is defined as

∂f(x̄) :=
⋂
ε>0

∂εf(x̄)

Let C be a nonempty subset of X. The cone that it generates is

R+C : =
⋃
λ≥0

λC,

its indicator function is

δC(x) :=

⎧⎨
⎩

0 if x ∈ C

+∞ otherwise

and its support function δ∗C defined on the dual space X∗ is

δ∗C(x∗) = sup
x∈C

〈x∗, x〉.

For any ε ≥ 0, the set Nε(x̄, C) of ε-normals to C at x̄ is defined as the
ε-subdifferential of the indicator function δC at x̄ i.e.

Nε(x̄, C) := ∂εδC(x̄) = {x∗ ∈ X∗ : 〈x∗, x − x̄〉 ≤ ε, ∀x ∈ C}.
In the sequel of this paper, we will need the inf-convolution f�g of two func-
tions f and g on X, defined for all x ∈ X by

(f�g)(x) : = inf{f(u) + g(x − u) : u ∈ X}

= inf{f(u) + g(v) : u + v = x}.
For stating our main results, we will need below a formula due to [2]. For this,
let us consider the following conditions

(C.Q.M.R)

⎧⎪⎪⎨
⎪⎪⎩

X and Y are locally convex spaces
f : X −→ R ∪ {+∞} is convex and proper
g : X −→ R ∪ {+∞} is convex and proper
f is finite and continuous at some point of dom g.

(C.Q.A.B)

⎧⎪⎪⎨
⎪⎪⎩

X and Y are Banach spaces
f : X −→ R ∪ {+∞} is convex, proper and lower semicontinuous
g : X −→ R ∪ {+∞} is convex, proper and lower semicontinuous
R+[dom f − dom g] is a closed vector subspace of X.
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Hence we have

Theorem 2.1 [2] Under one of each condition (C.Q.A.B) or (C.Q.M.R)
we have for every x ∈ dom f ∩ dom g

∂ε(f + g)(x) =
⊔

ε1≥0,ε2≥0
ε1+ε2=ε

[∂ε1f(x) + ∂ε2g(x)],

Proposition 2.2 [4] Let f : X × Z −→ R ∪ {+∞} be a convex proper
function (Z is a locally convex real topological vector space). Suppose that the
marginal function ϕ : Z −→ R ∪ {−∞, +∞} defined on Z by

ϕ(z) = inf
x∈X

f(x, z)

is finite at z̄ ∈ Z. Then we have for all ε ≥ 0

z∗ ∈ ∂εϕ(z̄) ⇔ ∀ η > 0, ∃ x ∈ X : (0, z∗) ∈ ∂ε+ηf(x, z̄).

3 Convex programs with possibly nonlinear

inequality constraint.

In this section, we are concerned with the sensitivity analysis of the optimal
value function y �→ p(y) associated to the following convex program

(P ) : Minimize f(x) subject to h(x) ≤Y y,

where f : X −→ R∪{+∞} is a convex and proper function and h : X −→ Y ∪
{+∞} is a proper and Y+-convex mapping. In the sequel we will assume that
Y+ is a closed convex cone. Before evaluating the approximate subdifferential
of p at any point ȳ ∈ dom p, let us consider the following auxiliary functions
defined on X × Y by

(x, y) → F (x, y) := f(x)

(x, y) → G(x, y) := δEpih(x, y).

Hence the optimal value function p can be written equivalently as

y ∈ Y �→ p(y) = inf
x∈X

{F (x, y) + G(x, y)}.
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It is easy to see that F and G are convex and proper on X × Y and their
associated conjugate functions are given, for any (x∗, y∗) ∈ X∗ × Y ∗, by

F ∗(x∗, y∗) = f ∗(x∗) + δ{0}(y∗)

G∗(x∗, y∗) = (−y∗ ◦ h)∗(x∗) + δY ∗
+
(−y∗).

For evaluating the approximate subdifferential of the optimal value function
y �→ p(y) := inf{f(x) : h(x) ≤Y y}, we will need at first the expressions of the
approximate subdifferentials of the functions F and G given by

Lemma 3.1

1) For any ε ≥ 0 and (x, y) ∈ X × Y we have

(x∗, y∗) ∈ ∂εG(x, y) ⇔

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∃ ε1 ≥ 0, ε2 ≥ 0 with ε1 + ε2 = ε

(x, y) ∈ Epi h

x∗ ∈ ∂ε1(−y∗ ◦ h)(x)

y∗ ∈ Nε2(y − h(x), Y+).

2) For any ε ≥ 0 and (x, y) ∈ X × Y such that f is finite at x we have

∂εF (x, y) = ∂εf(x) × {0}.
Proof. 1) We have

(x∗, y∗) ∈ ∂εG(x, y) ⇔ G∗(x∗, y∗) + G(x, y) − 〈x∗, x〉 − 〈y∗, y〉 ≤ ε,

i.e.

(−y∗ ◦ h)∗(x∗) + δY ∗
+
(−y∗) + δEpih(x, y) − 〈x∗, x〉 − 〈y∗, y〉 ≤ ε, (3.1)

By taking z = y − h(x) ∈ Y+, we may rewrite (3.1) as:

[(−y∗ ◦ h)∗(x∗) + (−y∗ ◦ h)(x) − 〈x∗, x〉] + [δ∗Y+
(y∗) + δY+(z) − 〈y∗, z〉] ≤ ε.

According to Fenchel’s inequality, it follows that

⎧⎨
⎩

(−y∗ ◦ h)∗(x∗) + (−y∗ ◦ h)(x) − 〈x∗, x〉 ≥ 0

δ∗Y+
(y∗) + δY+(z) − 〈y∗, z〉 ≥ 0

and hence, there exist some ε1 ≥ 0 and ε2 ≥ 0 satisfying ε = ε1 + ε2 and

⎧⎨
⎩

(−y∗ ◦ h)∗(x∗) + (−y∗ ◦ h)(x) − 〈x∗, z〉 ≤ ε1

δ∗Y+
(y∗) + δY+(z) − 〈y∗, z〉 ≤ ε2,
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i.e. ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x∗ ∈ ∂ε1(−y∗ ◦ h)(x)

(x, y) ∈ Epi h

y∗ ∈ Nε2(y − h(x), Y+).

2) By applying the same arguments as above we obtain easily

∂εF (x, y) = ∂εf(x) × {0}.
�

Before stating our main results, we will need in what follows that the inf-
convolution function (x∗, y∗) → (F ∗�G∗)(x∗, y∗) is lower semicontinuous.

Let us consider the following conditions

(C.Q.M.R)1

⎧⎪⎪⎨
⎪⎪⎩

X and Y are locally convex spaces
f : X −→ R ∪ {+∞} is convex and proper
h : X −→ Y ∪ {+∞} is Y+-convex and proper
∃ a ∈ dom f ∩ dom h such that f is finite and continuous at a.

(C.Q.A.B)1

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

X and Y are Banach spaces
f : X −→ R ∪ {+∞} is convex proper and lower semicontinuous
h : X −→ Y ∪ {+∞} is Y+-convex and proper
Epi h is closed
R+[dom f × Y − Epi h] is a closed vector subspace of X × Y.

Lemma 3.2 If one of each conditions (C.Q.M.R)1 or (C.Q.A.B)1 is satis-
fied then we have

(F + G)∗(x∗, y∗) = (F ∗�G∗)(x∗, y∗), ∀(x∗, y∗) ∈ X∗ × Y ∗

and moreover the inf-convolution is exact.

Proof. 1) It is easy to see that from the condition (C.Q.M.R)1 F is finite
and continuous at (a, h(a)) ∈ dom F ∩ Epi h and hence from the Moreau-
Rockafellar’s condition in locally convex spaces (see [3] and [5]) we obtain the
desired result.
2) Since dom F = dom f ×Y and dom G = Epi h, hence by vertue of Attouch-
Brézis’s result [1] we have the lower semicontinuity and the exactness of the
inf-convolution F ∗�G∗ if the following condition is satisfied

R+[dom F − dom G] is a closed vector subspace of X × Y,
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i.e.
R+[dom f × Y − Epi h] is a closed vector subspace of X × Y.

�

Now, we state our main results.

Theorem 3.3 Let us consider the marginal function p : Y → R∪{−∞, +∞}
associated to problem (P ) defined by

p(y) := inf{f(x) : h(x) ≤Y y}, ∀y ∈ Y.

We assume that p is finite at ȳ ∈ Y and one of the conditions (C.Q.M.R)1 or
(C.Q.A.B)1 is satisfied. Then we have for any ε ≥ 0

y∗ ∈ ∂εp(ȳ) ⇔

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∀ η > 0, ∃ x ∈ X, ∃ ε1, ε2, ε3 ≥ 0 :
ε1 + ε2 + ε3 = ε + η,
0 ∈ ∂ε1f(x) + ∂ε2(−y∗ ◦ h)(x)
y∗ ∈ −Y ∗

+

〈y∗, h(x) − ȳ〉 ≤ ε3

ȳ − h(x) ∈ Y+.

Proof. Let us fix ε ≥ 0. From Proposition 2.2 we have

∂εp(ȳ) =
⋂
η>0

⋃
x∈X

{y∗ ∈ Y ∗ : (0, y∗) ∈ ∂ε+η(F + G)(x, ȳ)}

and because of the lower semicontinuity and the exactness of F ∗�G∗ which
are guaranteed under each one of the conditions (C.Q.M.R)1 or (C.Q.A.B)1

(see Lemma 3.2) we have, for any η > 0 and x ∈ X, that

∂ε+η(F + G)(x, ȳ) =
⊔

ε1,ε2≥0
ε1+ε2=ε+η

(∂ε1F (x, ȳ) + ∂ε2G(x, ȳ)). (3.2)

Let us take η > 0, x ∈ X and y∗ ∈ Y ∗ such that

(0, y∗) ∈ ∂ε+η(F + G)(x, ȳ),

from (3.2) there exist some ε1, β ≥ 0 such that ε1 + β = ε + η and

(0, y∗) ∈ ∂ε1F (x, ȳ) + ∂βG(x, ȳ),

which means that there exist x∗ ∈ X∗ and y∗
1, y

∗
2 ∈ Y ∗ such that

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(x∗, y∗
1) ∈ ∂ε1F (x, ȳ)

(−x∗, y∗
2) ∈ ∂βG(x, ȳ)

y∗
1 + y∗

2 = y∗.
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By Lemma 3.1 we have y∗
1 = 0, which means that y∗

2 = y∗ and x∗ ∈ ∂ε1f(x),
and from the same lemma we get also

(−x∗, y∗) ∈ ∂βG(x, ȳ) ⇔

⎧⎪⎪⎨
⎪⎪⎩

∃ ε2 ≥ 0, ε3 ≥ 0 : ε2 + ε3 = β
ȳ − h(x) ∈ Y+

−x∗ ∈ ∂ε2(−y∗ ◦ h)(x)
y∗ ∈ Nε3(ȳ − h(x), Y+).

Hence, (0, y∗) ∈ ∂ε1F (x, ȳ) + ∂βG(x, ȳ) is equivalent to

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∃ x∗ ∈ X∗, ∃ ε2 ≥ 0, ε3 ≥ 0
ε2 + ε3 = β
ȳ − h(x) ∈ Y+

x∗ ∈ ∂ε1f(x)
−x∗ ∈ ∂ε2(−y∗ ◦ h)(x)
y∗ ∈ Nε3(ȳ − h(x), Y+).

The desired result is obtained by observing that

y∗ ∈ Nε3(ȳ − h(x), Y+) ⇔
⎧⎨
⎩

y∗ ∈ −Y ∗
+

〈y∗, h(x) − ȳ〉 ≤ ε3.

�

The exact subdifferential of the optimal value function p is obtained by
taking ε = 0 in Theorem 3.3.

Corollary 3.4 Assume that either (C.Q.M.R)1 or (C.Q.A.B)1 holds and
that p is finite at ȳ, then we have

y∗ ∈ ∂p(ȳ) ⇔

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∀ η > 0, ∃ x ∈ X, ∃ ε1, ε2, ε3 ≥ 0 :
ε1 + ε2 + ε3 = η,
0 ∈ ∂ε1f(x) + ∂ε2(−y∗ ◦ h)(x)
y∗ ∈ −Y ∗

+

〈y∗, h(x) − ȳ〉 ≤ ε3

ȳ − h(x) ∈ Y+

Consider now the case of linear constraints. Let A : X → Y be a linear
operator and consider the following convex programming problem with linear
inequality

(H) : Minimize f(x) subject to A(x) ≤Y y.

So applying Theorem 3.3 one gets the following result
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Corollary 3.5 Let f : X → R ∪ {+∞} be a convex and proper func-
tion which is finite and continuous at some point of its domain, A : X →
Y is a continuous linear operator and the marginal function y → p(y) :=
inf{f(x) : Ax ≤Y y} is finite at ȳ. Then we have for any ε ≥ 0

y∗ ∈ ∂εp(ȳ) ⇔

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∀ η > 0, ∃ x ∈ X, ∃ ε1, ε2 ≥ 0 :
ε1 + ε2 = ε + η
0 ∈ ∂ε1f(x) − A∗y∗

ȳ − Ax ∈ Y+

y∗ ∈ −Y ∗
+

〈y∗, Ax − ȳ〉 ≤ ε2,

where A∗ : Y ∗ → X∗ stands for the adjoint operator of A : X → Y .

Proof. From Lemma 3.1, it follows that for every α ≥ 0 we have

(x∗, y∗) ∈ ∂αG(x, ȳ) ⇔

⎧⎪⎪⎨
⎪⎪⎩

x∗ = −A∗ ◦ y∗

ȳ − Ax ∈ Y+

y∗ ∈ −Y ∗
+

〈y∗, Ax − ȳ〉 ≤ α.

By means of the continuity of the operator A and the fact that f is finite and
continuous at some point of its domain, the condition (C.Q.M.R)1 is fulfilled
and by applying Theorem 3.3 we obtain the desired result. �

By taking Y+ = {0Y } in the above corollary we get

Corollary 3.6 Let f : X → R ∪ {+∞} be a convex and proper func-
tion which is finite and continuous at some point of its domain, A : X →
Y is a continuous linear operator and the marginal function y → p(y) :=
inf{f(x) : Ax = y} is finite at ȳ. Then we have for any ε ≥ 0

y∗ ∈ ∂εp(ȳ) ⇔
⎧⎨
⎩

∀ η > 0, ∃ x ∈ X :
Ax = ȳ
A∗y∗ ∈ ∂ε+ηf(x).

4 Application to Convex programs with possi-

bly nonlinear inequality and linear equality

constraints.

Now, let us consider the general convex parametric program

(H) : Minimize f(x) subject to {h(x) ≤Y1 y1, A(x) = y2},
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where f : X −→ R∪{+∞} is a convex and proper function and Y1, Y2 are two
locally convex real topological vector spaces. We suppose that the space Y1 is
equipped with a preorder induced by a convex closed cone Y+. We denote by
Y := Y1 × Y2 the linear vector product space endowed with the partial order
induced by the closed convex cone Y+×{0Y2} where 0Y2 stands for the origin in
Y2 and by k : X −→ Y ∪ {+∞} the mapping defined by k(x) := (h(x), A(x))
for any x ∈ dom h. It is easy to see that the epigraph of k is given by

Epi k : = {(x, h(x) + y, A(x)), x ∈ dom h, y ∈ Y+}.
Hence, the problem (H) takes the form of problem (P ) and therefore we can
write the optimal value function associated to problem (H) in the form

(y1, y2) ∈ Y1 × Y2 �→ p(y1, y2) := inf
x∈X

{f(x) : k(x) ≤Y (y1, y2)}.
By translating the conditions (C.Q.M.R)1 and (C.Q.A.B)1 by means of the
mappings h and A and the classical duality between Y1 × Y2 and Y ∗

1 × Y ∗
2 we

obtain

(C.Q.M.R)2

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

X, Y1 and Y2 are locally convex spaces
f : X −→ R ∪ {+∞} is convex and proper
h : X −→ Y1 ∪ {+∞} is proper and Y+-convex
A : X −→ Y2 ∪ {+∞} is a linear continuous operator
∃ a ∈ dom f ∩ dom h such that f is finite and continuous at a.

(C.Q.A.B)2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

X, Y1 and Y2 are Banach spaces
f : X −→ R ∪ {+∞} is convex, proper and lower semicontinuous
h : X −→ Y1 ∪ {+∞} is proper and Y+-convex
Epi h is closed
A : X −→ Y2 ∪ {+∞} is a linear continuous operator
R+[dom f × Y1 − Epi h] is a closed vector subspace of X × Y1.
R+[dom f × Y2 − Gr A] is a closed vector subspace of X × Y2.

Let us observe that the positive polar cone of the convex cone Y+ × {0Y2} is
Y ∗

+ × Y ∗
2 . Now, by means of the above conditions and Theorem 3.3 we obtain

Theorem 4.1 If we assume that one of the conditions (C.Q.M.R)2 or
(C.Q.A.B)2 is satisfied and that p is finite at (ȳ1, ȳ2). Then, we have for
any ε ≥ 0

(y∗
1, y

∗
2) ∈ ∂εp(ȳ1, ȳ2) ⇔

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∀ η > 0, ∃ x ∈ X, ∃ ε1, ε2, ε3 ≥ 0 :
ε1 + ε2 + ε3 = ε + η,
0 ∈ ∂ε1f(x) + ∂ε2(−y∗

1 ◦ h − A∗y∗
2)(x)

y∗
1 ∈ −Y ∗

+

〈y∗
1, h(x) − ȳ1〉 ≤ ε3,

ȳ1 − h(x) ∈ Y+

A(x) = ȳ2.
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Corollary 4.2 Let f : X → R ∪ {+∞} be a convex and proper function
which is finite and continuous at some point of its domain, A1 : X → Y1 and
A2 : X → Y2 are continuous linear operators. We suppose that the marginal
function (y1, y2) → p(y1, y2) := inf{f(x) : A1x ≤Y1 y1; A2x = y2} is finite at
(ȳ1, ȳ2) ∈ Y1 × Y2. Then we have for any ε ≥ 0

(y∗
1, y

∗
2) ∈ ∂εp(ȳ1, ȳ2) ⇔

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∀ η > 0, ∃ x ∈ X, ∃ ε1, ε2 ≥ 0 :
ε1 + ε2 = ε + η,
0 ∈ ∂ε1f(x) − A∗

1y
∗
1 − A∗

2y
∗
2

ȳ1 − A1x ∈ Y+, A2x = ȳ2

y∗
1 ∈ −Y ∗

+,
〈y∗

1, A1x − ȳ1〉 ≤ ε2.

Proof. We use the same arguments as in Corollary 3.5. �

Remark 4.1 Let us point out that Corollaries 3.5, 3.6 and 4.2 have been
studied recently by M. Moussaoui and A. Seeger in [4] without supposing that
f is finite and continuous at some point of its domain.
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