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Abstract

The quadratic assignment problem (QAP) belongs to the class of
NP-Hard problems and also is one of the hardest problems in this class.
Today, regarding current hardware, solving the large size instances of
this problem, using exact methods, is not possible in reasonable amount
of time. In this way many heuristic (Meta-heuristic) and approxima-
tion methods and soft-computing approaches have been applied to this
problems that we will review some of them in this paper. The aim
of this paper is to compare some of efficient heuristic (Meta-heuristic)
and soft-computing methods known up to now. Some of them are imi-
tated from the nature’s behavior while some other are most analytical.
These methods are known as Ant Colony Optimization (ACO), Artificial
Neural Networks (NN), Genetic Algorithms (GA), Scatter Search (SS),
Simulated Annealing (SA), Tabu Search (TS) and Greedy Randomized
Adaptive Search Procedure (GRASP).
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1 Introduction

The Quadratic Assignment Problem (QAP) is one of the classical optimization
problems and is widely regarded as one of the most difficult problems in this
class. Given a set of N = {1,2,...,n}, and n x n matrices F' = {f;;}, called
flow matrix, D = {d;;}, as distance matrix, and C' = {¢;;}, as setup cost. The
QAP is to find a permutation ¢ of the set N which minimizes:
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2 =22 fiydotot) + D Cioti)- (1)
i=1j=1 i=1
In 1957, Koopman and Beckman introduced this problem as a mathematical
model for the location of a set of indivisible economical activities.

Consider the problem of allocating a set of facilities to a set of locations with
the cost(that corresponds to objective function)being a function of distance
and flow between the facilities, plus costs associated with a facility being placed
at a certain location. the objective is to assign each facility to a location such
that the total cost is minimized.

2 Formulations

Many formulations are proposed for this problem. These includes formulations
based on boolean program followed by integer linear programming, mixed in-
teger linear programming, relaxation, permutation based formulations, trace
formulation, semidefinite programming and graph based formulations.
Integer linear programming (IP) formulation initially is proposed by Koopman
and Beckman in 1957. Working on this formulation is continued until recent
works of Yu and Sarker[35] and finally Fedjki and Duffaa [16].

This formulation of a QAP with size n is as follow:

min Z?:l Z?:l 22:1 23:1 fijdkpxikxjp
s.t. Y riy=1,1<j53<n
vy =11<i<n
zi; €{0,1},1<i,j<n
where F' = [fi;], B = [by] are the flow and distance matrix, respectively.
Considering the initialization of cost of assignment of facility ¢ to location j a

matrix B is introduced as the cost of initial assignment and formulation has
its following general form:

min. 350y 3200 Ykt et JiirpTinTip + 2oig Doy bikTik
s.t. =1, 1<j7j<mn

S ay =1, 1<i<n

zi; €4{0,1}, 1<4,j<n

The linear summation term of this formulation can easily be solved. So in
most papers this term is ignored.
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In 1963 Lawler [25] proposed a more general form of QAP as follow:

min. 33y 300 Yoke1 2ap—1 JijrpTikTip + 2201 D=1 bikTik
s.t. =1, 1<j7j<mn
Z?leijzl, 1<i<n
z;; €{0,1}, 1<i,j<n

where ¢;j, do not necessarily corresponds to product of flows by distances.
The other formulation is due to the work of Lawler which replaced the quadratic
term with a linear term using n* variables follow:

Cijkp = Jijdip
and
Yijkp = LikTjp
1<i,5,k,p<n

Formulation based on relaxation of the original problem is also proposed in
work of Love and Wong [26] and many other works was done until the work of
Ramakrishnan et al. [33].

Between 1976 up to 2004, most of techniques were focused on linearization
methods.

Permutation based formulation is based on pair-wise allocation of object cost
to adjacent positions. This approach is initially introduced by Hillier and
Michaeel [22] and recent works on this formulation is refered to Angel and
Zissimopoulos [2, 3, 4], Gutin and Yeo [20], Boaventura-Netto [8]. Formulation
is as follow :

MiNres, Z fij dﬂ(i)ﬂ(j)

JJ=1

1 dfw(i) =y . )
where z;; = { 0 if 7(i) #j and S,, is a permutation of the set N.

2.1 Solution methods
2.1.1 Exact algorithms

This algorithms for QAP include approaches based on :

(1) Branch and Bound, with the first works of Gilmore [19] Land in 1963 [24]
and Lawler [25]

(#7) Dynamic programming, used for special case of QAPs, with the first work
of Christofides [10]

(i17) Cutting plane, with the first work of Bazara and Sherali in 1980 [7].
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2.1.2 Heuristic algorithm

Construction methods: Introduced by Gilmore [19] that completes an
empty permutation with each iteration of the algorithm. In this method at
each iteration of method an object is selected from a list of available object
and also a location is selected from the list of available locations and these are
removed from their lists and are assigned to each other.

Limaited enumeration methods: The convergence to optimality is guar-
anteed if they can go to end of the enumeration process. However it is possible
that a good solution or even an optimal solution is found by the beginning of
the process. But it takes a lot of time to converge and may be get stuck in a
loop and can not escape. The first works in this area are belong to Burkard
and Bonniger [9], Nissen and Paul [32] and West [38].

Local improvement method: These are local search algorithms and in-
clude most of heuristics applied to QAP, These methods begins with a feasible
solution and tries to improve it by searching neighborhood.

Work in this field is started by the work of Heider [21] and recent works belong
to Misevicius in 2000 [30],Mills et al. [29].

3 Review of Meta-Heuristic methods

In this section we briefly introduce seven cases of this algorithms as follow:

3.1 Simulated Annealing

In 80’s, a simulated annealing method proposed for it. Connoly [11], also,proposed
an improved scheme for it.

Simulated annealing (SA) originated in statistical mechanics. It is based on

a Monte Carlo model that was used by Metropolis et al. in 1953 to simulate
energy levels in cooling solids. Boltzmann’s law was used to determine the
probability of accepting a perturbation resulting in a change AFE in the energy

at the current temperature t, i.e.

1 0F <0
e OE > 0.

, where Cp is a Boltzmann’s constant. Cerny in 1982 and Kirkpatrick et
al. [?] were the first who applied simulated annealing to solve combinatorial
optimization problems (COPs). Starting from 1984, several authors applied
simulated annealing to the QAP.
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3.1.1 Principles

Let S be a set of solutions of combinatorial optimization problems with ob-
jective (cost) function f : S — R'. Furthermore, let N : S — 2% be a
neighborhood function which defines for each s € S a set N(s) C S —a a set
of neighboring solutions of s. Each solution s’ € N(s) can be reached directly
from s by an operation called a move. Generally, the move follows objective
function evaluation which is called a trial.

Table 1 summarized analogy between physical system and optimization prob-
lem factors in SA presented:

Table 1: Analogy between physical system and optimization problem

Physical System | Optimization problem
System state Feasible solution
Energy Evaluation function
Ground state Optimal solution
Rapid quenching Local search
Temperature Control parameter

3.1.2 Algorithm

Algorithm SimAn

1. T« findStartTemp()

2. s randomStartSolution()

3 while not frozen()

4 do while not equilibrium()

5. do s, « getNeighbourhoodSolution(s)
6 Of eval(sy)-eval(s)

7 if 0f <0 then s« s,

8 else if random(0,1) < exp(—=df/T) then s « s,
9 T « cool(T)

10. report(s)

Simulated annealing algorithms differ each from other with respect to the
following factors: neighborhood search, cooling (annealing) schedule and ter-
mination criterion.

Let S = {s|s = (s(1),s(2), ...,s(n))}, where n is the cardinality of the set.

Given a solution s from S, a k — exchange neighbourhood function k(s) is
defined as follows:

Ni(s) ={s|s' € S,d(s,s") < k}
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where d(s, s') is the distance between solutions s and s’ :

d(s, s") = iy sgn|s(i) — s'(i)].

If k=2, one obtains 2-exchange neighbourhood function which is widely used
in combinatorial problems. In this case, any neighboring solution s’ can be
reached from the solution s by interchanging (displacement) exactly two ele-
ments in s.

3.1.3 Cooling Scheme

The cooling schedule, in turn, is specified by :

e an initial (and final) value of the temperature

e an updating function for changing the temperature

e an equilibrium test.

The behaviour of the simulated annealing algorithm depends on the tempera-
ture t. Perhaps the most important thing is how the initial temperature ¢, is
determinate.

3.1.4 Termination criterion

In theory the simulated annealing procedure should be continued until the final
temperature t; is zero, but in practice other stopping criteria are applied:

e the value of the objective function has not decreased for a large number of
consecutive trials

e the number of accepted moves has become less than a certain small threshold
for a large number of consecutive trials

e a fixed a priori number of trials have been executed.

3.2 Tabu Search

Skorin-Kapov, in 1990, presented a kind of Tabu search [36]. In 1991, Taillard
proposed a robust tabu method [37]. The Reactive tabu method has been
proposed in 1994 [6]. Recently, Drezner [14] introduced a new tabu search.
The main ideas of Tabu search (TS) may briefly sketched as follows. The first
ingredient that is common to most heuristic and algorithmic procedures is to
define a neighborhood or a set of moves that may be applied to a given solution
to produce a new one.

Among all the neighboring solutions, TS seeks one with a best heuristic eval-
uation. In the simplest case such an evaluation dictates the choice of a move
that improves most the objective function.If there are no improving moves
(indicating a kind of local optimum), TS choose one that least degrades the
objective function.
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In order to avoid returning to the local optimum just visited, the reverse move
must be forbidden. This is done by storing this move (or more precisely a
characterization of this move) in a data structure that is called tabu-list. This
list contains a number s of elements defining forbidden (tabu) moves. The
parameter s is called the tabu list size. Choice of this tabu list size is so criti-
cal. Many researches are done to determining the optimal or good size of this
tabu list and various approaches including the fixed size and dynamic size are
proposed by authors. Consequently, an aspiration criterion is introduced to
allow tabu moves to be chosen if these are judged to be interesting.

3.2.1 Memory Structure

The memory used in tabu search is both explicit and attributive. Explicit
memory records complete solutions, typically consisting of elite solutions vis-
ited during the search. An extension of this memory records highly attractive
but unexplored neighbors of elite solutions. The memorized elite solutions (or
their attractive neighbors) are used to expand the local search.

Alternatively, TS uses attributive memory for guiding purposes. This type of
memory records information about solution attributes that change in moving
from one solution to another. For example, in a graph or network setting,
attributes can consist of nodes or arcs that are added, dropped or repositioned
by the moving mechanism. In production scheduling, the index of jobs may be
used as attributes to inhibit or encourage the method to follow certain search
directions.

3.2.2 Intensification and Diversification

Two highly important components of tabu search are intensification and diver-
sification strategies. Intensification strategies are based on modifying choice
rules to encourage move combinations and solution features historically found
good. They may also initiate a return to attractive regions to search them
more thoroughly. Since elite solutions must be recorded in order to exam-
ine their immediate neighborhoods, explicit memory is closely related to the
implementation of intensification strategies.

Here the term 'neighbors’ has a broader meaning than in the usual con-
text of 'neighborhood search’. That is, in addition to considering solutions
that are adjacent or close to elite solutions by means of standard move mecha-
nisms, intensification strategies generate neighbors by either grafting together
components of good solution or by using modified evaluation strategies that
favor the introduction of such components into a current (evolving) solution.
The diversification stage on the other hand encourages the search process to
examine unvisited regions and to generate solutions that differ in various sig-
nificant ways from those seen before. Again, such an approach can be based
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on generating subassemblies of solution components that are producing full
solutions, or can rely on modified evaluations as embodied, for example, in the
use of penalty /incentive functions. Intensification strategies require a means
for identifying a set of elite solutions as basis for incorporating good attributes
into newly created solutions. Membership in the elite set is often determined
by setting a threshold which is connected to the objective function value of
the best solution found during the search. However, considerations of cluster-
ing and anti-clustering are also relevant for generating such a set, and more
particularly for generating subsets of solutions that may be used for specific
phases of intensification and diversification.

3.2.3 Algorithm

Algorithm TS

1. choose the initial solution S randomly, set its tabu list T = ¢.

3. set BEST_SOLUTION:=S

4. set i:=0 {i is the iteration counter}

5. repeat

6. set 1:=1+1

7. identify S°, the best neighbor of S

8. set SWAP:= mowve(S,S’) {SWAP holds the move transforming S into
S}

9. if SWAP ¢ T

10. then update(SWAP, T,LENGTH_-TABU_LIST)

11.  set §:=S57

12. if 2(S)<z(BEST_-SOLUTION)

13. then set BEST_SOLUTION:=S

14. elseif z(S’)<z(BEST-SOLUTION) {use of aspiration level}

15. then update(SWAP,T,LENGTH_-TABU_LIST)

16. set BEST_SOLUTION:=S"

17. set §:=8"

18. if (i mod 2x MAX_TABU_LIST) = 0

19. then set LENGTH_-TABU_LIST:=random(MIN_TABU_LIST,

MAX_TABU_LIST)
20. until {END_TEST}

The algorithms uses the following functions. wupdate: inserts SWAP as
the first element of T and removes the last element of T if the tabu list was
full. mowve: returns the swap that transforms a solution into a second one.
The parameters of the algorithm are MIN.TABU_LIST, MAX TABU_LIST:
specify the minimal and maximal allowed length of the tabu list, respectively.
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3.3 Ant Colony Optimization

Gambardella et al., 1999 [18] and Hoos et al. in 1999 proposed Ant algorithm
approaches. Recent work in this are due to the works of Middendorf et al. [28]
and Ying and Liao in 2004 [40].

Ant Colony Optimization (ACO) is a population-based approach which has
been successfully applied to several NP-hard COPs. As the name suggests,
ACO has been inspired by the behavior of real ant colonies, in particular, by
their foraging behavior. One of its main ideas is the indirect communication
among the individuals of a colony of agents, called (artificial) ants, based on
an analogy with trails of a chemical substance, called pheromone, which real
ants use for communication. The (artificial) pheromone trails are a kind of dis-
tributed numeric information (called stigmergic information in some papers)
which is modified by the ants to reflect their experience accumulated while
solving a particular problem.

The ants construct iteratively their candidate solution to a COP.The ants’
solution construction is guided by (artificial) pheromone trails and problem-
dependent heuristic information. By defining solution components ,ACO can
be applied to any binary COP. An individual ant constructs candidate solutions
by starting with an empty solution and then iteratively adding solution com-
ponents until a complete candidate solution is generated.Each point at which
an ant has to decide which solution component to add to its current partial
solution a choice point.After the solution construction is completed, the ants
give feedback on the solutions they have constructed by depositing pheromone
on solution components which they have used in their solution. Typically,
solution components which are part of better solutions or are used by many
ants will receive a higher amount of pheromone, and hence, will more likely be
used by the ants in future iterations of the algorithm. To avoid getting stuck,
in an local optima before the pheromone trails get reinforced, all pheromone
trails are decreased by a factor p which is called evaporation coefficient .

3.3.1 Available ACO algorithms for the QAP

Ant System (AS) is the first among ACO algorithms which has been applied
to the QAP. After it, several improved ACO applied to this problem have been
proposed by various authors. Despite the differences among these algorithms,
they share at least two important common aspects. solution construction:
All the proposed ant algorithms for the QAP associate pheromone trails 7;;
only to couplings of the form ¢; = j, hence, 7;; can be interpreted as the
desirability of assigning facility ¢ to location j. Local Search Mechanism:
all the proposed algorithms improve the ants’ solutions using a local search
algorithm.

A general Scheme for ACO algorithm can be sketched as follow:
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procedure ACO algorithm for static combinatorial problems

1. Set parameters, initialize pheromone trails

2. while (termination criterion not met) do
3. ConstructSolutions

4. ApplyLocalSearch %optimal

5. UpdateTrails

6. end

7.end

Here we present a brief description of the first algorithm which named
Ant System and we refer it AS-QAP. In AS-QAP, the assignment order is
determined by a pre-ordering of the facilities, as explained below. Then, at
each step a facility ¢ is assigned probabilistically to some location j preferring
locations with a high pheromone trail 7;; and promising heuristic information

Nij-

Heuristic information: The heuristic information on the potential goodness
of an assignment is determined in AS-QAP as follows. Two vectors d and f are
calculated in which the ith component represents respectively the sum of the
distances from location 7 to all other locations and the sum of the flows from
facility 7 to all other facilities. The lower d;, the distance potential of location 7,
the more central is considered the location, the higher f;, the flow potential of
facility ¢, the more important is the facility. Next a coupling matrix E = f.d"
is calculated, where e;7 = f;.d; . Then, the heuristic desirability of assigning
facility ¢ to location j is given by n;; = 1/eij . The motivation for using
this type of heuristic information is that, intuitively, good solutions will place
facilities with high flow potential on locations with low distance potential.
Solution construction A solution is constructed as follows. In AS-QAP facilities
are sorted in non increasing order of the flow potentials. At each construction
step an ant k assigns the next still unassigned facility ¢ to a free location j
with a probability given by:

= (735 ()] [;]°
Y e N e ig)?

where 7;;(t) is the pheromone trail at iteration ¢, @ and [ are parame-
ters which determine the relative influence of the pheromone strength and the
heuristic information, and N is the feasible neighborhood of node 4, that is,
only those locations that are still free (note that & 3Z;cne pi;(f) = 1). The
single steps are repeated until a complete assignment is constructed.
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Pheromone update: The pheromone trail update applied to all couplings is
done according to the following equation:

Tij(t + 1) == pTZ](t) + Z AT;}
k=1

where p, with 0 < p < 1, is the persistence of the pheromone trail, so
that (1 — p) represents the evaporation. The parameter p is used to avoid
unlimited accumulation of the pheromone trails and allows the algorithm to
forget previously done bad choices. AT{} is the amount of pheromone ant k
puts on the coupling (i, 7); it is given by

Q/Jj if facility i is assignemd to location j in the solution of ant k
0 otherwise

where " is the kth ant solution, Ji its objective function value, and Q is
the amount of pheromone deposited by an ant.
A first improvement of AS-QAP is presented in [27] and we refer to it as
AS2-QAP. AS2-QAP differs mainly in the way the heuristic information is
calculated and in a different way of calculating the probability of assigning
facilities to locations. A further improvement over AS2-QAP, called ANTS-
QAP and after it many other improvements are done to ant algorithms.

3.4 Genetic Algorithms

Genetic algorithms approach also introduced by Tate et al. in 1995 [39]. In
1994, Fleurent et al. [17], Ahujain in 2000 [1]. Drezner [13] proposed a more
hybrid efficient versions of it. Recently Misevicius [31] introduced a hybrid
genetic algorithm, Balakrishnan et al. [5], Rodriguez et al. in 2004 [34] used
a combined GA-TS .

Genetic algorithms(GA) represent a powerful and robust approach for devel-
oping heuristics for large-scale combinatorial optimization problems. The mo-
tivation underlying genetic algorithms can be expressed as follows: Evolution
has been remarkably successful in developing complex and well-adapted species
through relatively simple evolutionary mechanisms.

GAs imitate the process of evolution on an optimization problem. Each feasi-
ble solution of a problem is treated as an individual whose fitness is governed
by the corresponding objective function value. A GA maintains a population
of feasible solutions (also known as chromosomes) on which the concept of the
survival of the fittest (among string structures) is applied. There is a struc-
tured yet randomized information exchange between two individuals (crossover
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operator) to give rise to better individuals. Diversity is added to the popula-
tion by randomly changing some genes (mutation operator) or bringing in new
individuals (immigration operator). A GA repeatedly applies these processes
until the population converges.

An implementation of a genetic algorithm begins with a population of (typ-
ically random) chromosomes. One then evaluates these structures and allo-
cates reproductive opportunities in such a way that those chromosomes which
represent a better solution to the target problem are given more chances to
‘reproduce’ than those chromosomes which are poorer solutions. The ’good-
ness’ of a solution is typically defined with respect to the current population.
This particular description of a genetic algorithm is intentionally abstract be-
cause in some sense, the term genetic algorithm has two meanings. In a strict
interpretation the genetic algorithm refers to a model introduced and investi-
gated by John Holland and by students of Holland.

In a broader usage of the term, a genetic algorithm is any population based
model that uses selection and recombination operators to generate new sam-
ple points in a search space. Many genetic algorithm models have been intro-
duced by researchers largely working from an experimental perspective. Many
of these researchers are application oriented and are typically interested in
genetic algorithms as optimization tools.

3.4.1 Algorithm

algorithm genetic;
begin
obtain tnitial population;
repeat select
TwolndividualsI1 AndI2InThePopulation;
ApplyTheCrossoverOperatorOnl1AndI2ToProduceAChildl3;
ReplaceOneOfThe Twolndividualsl1OrI2Byl3;
OccasionallyPerformImmigration;
until ThePopulationConverges;
end;

© 00 1O Ut i W N+~

This is a simple high-level description of our GA. Each execution of the
repeat loop is called a trial.

3.5 Neural Networks

In conventional neural approaches, however an Ising (Binary) Spin system in-
troduced by Hopfield and Tank[23], Bilbro, Man, Miller, Snyder, Van Den
Bout and White in 1989, Ishii and Sato in 1997, has been used to present a
solution. The constraint for the permutation are then implemented as ’soft’
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constrains. This implementation often produce infeasible solutions. This is
one of the reason why these approaches are not very good when the problem
size is expanded.

Artificial neural networks (ANN) methods and particularly, the recurrent neu-
ral networks method based on deterministic annealing are most interesting to
COPs. In contrast to most other methods, these are not based on a direct
exploration of the given discrete state-space. Instead, they utilize an inter-
polating continuous (analog) space, allowing for shortcuts to good solutions.
Key concepts here are the mean-field (MF) approximation (Hopfield and Tank,
1985 [23]; Peterson and Soderberg, 1989) and annealing.

3.5.1 Recurrent neural networks

They appear in the context of associative memories (Hopfield, 1982) as well
as difficult optimization problems (Hopfield and Tank, 1985; Peterson and
Soderberg, 1989). Such networks resemble statistical models of magnetic sys-
tems (spin glasses), with an atomic spin state (up or down) seen as analogous
to the firing state of a neuron (on or off).

The archetype of a recurrent network is the Hopfield model (Hopfield,
1982), based on an energy function of the form:

1
E(s) = —5 D wisis;
i

in terms of binary variables (or Ising spins, as used in magnetic models),
st = 0,1 with symmetric weights w;; . With an appropriate choice of weights
determined by a set of stored patterns, the latter appear as local minima, sat-
isfying

S; = SQH(Z w;;8;)

J

With a simple asynchronous dynamics based on iterating above equations,
this system turns into a recurrent ANN, having the local minima as stationary
points.

3.5.2  Updating methods

Two kind of updating is used in this context: asynchronous and synchronous
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3.5.3 Mean Field Fquations

An alternative is given by MF annealing, where the stochastic SA method is
approximated by a deterministic dynamics based on the MF approximation,
defined as follows for a system of Ising spins. By defining v; =< s; >=
pi(1) — p;(0) € [0, 1], the free energy function that should be minimized is:

F(v)=E(v) —TS(v)

,where T is the temperature ,S(v) is defined as S(v) = — >,[(1 + v;)log(1 +
v;) + (—v;)log(—v;) is the entropy associated with the approximating distribu-
tion and E(v) =< E(s) >= —3 3,2 Wijv;0;

3.6 Scatter Search

Scatter search was introduced by Glover (1977) and for the first time applied
to this problem by Cung et al in 1997 [12] .Scatter search is an evolutionary
heuristic, proposed two decades ago, that uses linear combinations of a popu-
lation subset to create new solutions. As comes with its name ,it tries to keep
the points as scatter as possible. A special operator is used to ensure their
feasibility and to improve their quality. Basically the Scatter Search method
starts with a collection of feasible solutions, which is called reference set. At
each step some of the best solutions are extracted from the collection to be
combined. A trial point is then created as a linear combination of the ex-
tracted points and an operator is applied to the trial point This operator has
two purposes. In many cases, a linear combination of integer points will not
result in an integer point. The first purpose of the operator is thus to produce
an integer (feasible) solution from the trial point.

The second purpose is to improve the quality of the created solution. As
a result of the operator, a new feasible solution is obtained which might be
included or not, according to some criteria, in the collection.
There are some great differences between Scatter Search and Genetic Algo-
rithms although, in both of them, a set of feasible solutions evolves. First of
all, there is no metaphor with nature’s behavior in Scatter Search. Its ratio-
nale is rather of a geometric or analytic type by taking a linear combination
of good solutions, one might expect to obtain a new good solution. Second,
this is the very first method which allows combining more than two solutions.

3.6.1 Algorithm

A general template for a Scatter search can be sketched as follow:
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Procedure Scatter Search
1.  Generate an initial set of solutions P by using a Diversification Generation
Method

2. Improve these solutions by an improvement method

3. With these solutions build an initial RefSet

4. repeat

5. Obtain all subsets of pairs from RefSet

6. Combine these subsets and obtain new solutions

7. Improve these solutions by the Improvement Methods

8. Update RefSet with these news solutions

9. until RefSet is stable (i.e. no new solution have been included

10. If maz_ite iteration (steps 1-4) elapse without improvement stop else

return Stepl
Scatter search algorithm can be organized in two phases outlined as follows:

Initial Phase

1.Diversification Generation Method

2.Improvement Method

3.Reference Set Update Method

4. Repeat this initial phase until producing a desirable level of high-quality
and diverse solutions.

Scatter Search Phase

5. Subset Generation Method

6. Solution Combination Method
7. Improvement Method

8. Reference Set Update Method.

An application to the QAP can be found in Cung et al. (1997) [12].

3.7 Greedy Random Adaptive Search Procedure

The Greedy Randomized Adaptive Search Procedure (GRASP) meta-heuristic
is a multi-start or iterative process, in which each iteration consists of two
phases: construction and local search.

The construction phase builds a feasible solution, whose neighborhood is in-
vestigated until a local minimum is found during the local search phase. The
best overall solution is kept as the result.

The pseudo-code in following Pseudo-code illustrates the main blocks of a
GRASP procedure for minimization, in which Max_Iterations iterations are
performed and Seed is used as the initial seed for the pseudorandom number
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generator

Procedure GRASP(Max Iterations,Seed)
1 Read Input();
2 for k = 1... Max Iterations do
3 Solution— Greedy-Randomized-Construction(Seed);
4 Solution < Local_Search(Solution);
5 Update_Solution(Solution, Best Solution);
6 end;
7 return Best Solution;
end GRASP.

Next Pseudo-code illustrates the construction phase with its pseudo-code.
At each iteration of this phase, let the set of candidate elements be formed by
all elements that can be incorporated to the partial solution under construction
without destroying feasibility. The selection of the next element for incorpo-
ration is determined by the evaluation of all candidate elements according to
a greedy evaluation function.
This greedy function usually represents the incremental increase in the cost
function due to the incorporation of this element into the solution under con-
struction. The evaluation of the elements by this function leads to the creation
of a restricted candidate list (RCL) formed by the best elements, i.e. those
whose incorporation to the current partial solution results in the smallest in-
cremental costs (this is the greedy aspect of the algorithm). The element to
be incorporated into the partial solution is randomly selected from those in
the RCL (this is the probabilistic aspect of the heuristic). Once the selected
element is incorporated to the partial solution, the candidate list is updated
and the incremental costs are reevaluated (this is the adaptive aspect of the
heuristic). This strategy is similar to the semi-greedy heuristic proposed by
Hart and Shogan, which is also a multi-start approach based on greedy ran-
domized constructions, but without local search.

Procedure Greedy_Randomized_Construction(Seed)
1 Solution— (;
2 Fvaluate the incremental costs of the candidate elements;
3 while Solution is not a complete solution do
4 BuildTheRestrictedCandidateList(RCL);
5 SelectAnElement_s_FromTheRCLAtRandom;
6 Solution— SolutionU{s};
7 Reevaluate ThelncrementalCosts;
8 end;
9 return Solution;
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end Greedy_Randomized_Construction.

The solutions generated by a greedy randomized construction are not nec-
essarily optimal, even with respect to simple neighborhoods. The local search
phase usually improves the constructed solution. A local search algorithm
works in an iterative fashion by successively replacing the current solution by
a better solution in the neighborhood of the current solution. It terminates
when no better solution is found in the neighborhood. The pseudo-code of a
basic local search algorithm starting from the solution Solution constructed in
the first phase and using a neighborhood N is given in previous schema.

procedure Local Search(Solution)
1 while Solution is not locally optimal do
2 Find ¢’ € N(Solution) with f(s") < f(Solution);
3 Solution s0;
4 end;
5 return Solution;
end Local Search.
The effectiveness of a local search procedure depends on several aspects, such
as the neighborhood structure, the neighborhood search technique, the fast
evaluation of the cost function of the neighbors, and the starting solution
itself. The construction phase plays a very important role with respect to
this last aspect, building high-quality starting solutions for the local search.
Simple neighborhoods are usually used. The neighborhood search may be
implemented using either a best_improving or a firstimproving strategy .
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