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Abstract 
 

Surface tension effect on a two dimensional channel flow against an inclined wall 
is considered. The flow is assumed to be steady, irrotational, inviscid and 
incompressible. The effect of surface tension is taken into account and the effect 
of gravity is neglected. Numerical solutions are obtained via series truncation 
procedure. The problem is solved numerically for various values of the Weber 
number α  and for various values of the inclination angle β  between the 
horizontal bottom and the inclined wall. 
   
Mathematics Subject Classifications: 76B10, 76C05, 76M25 
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1. Introduction 
 
  We consider a steady two-dimensional channel flow against a wall of semi 
infinite length, making an angle β  with the horizontal (fig.1(a)). The fluid is 
assumed to be inviscid, incompressible and the flow is irrotational. If we take the 
symmetry of the flow with respect to the bottom wall, which is a streamline, we 
obtain a symmetrical jet flow impinging into an angle formed by the two semi 
infinite plates (fig. 1(b)). Jets impinging on walls were studied by many authors.  
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Weidong Peng & David F. Parker [9] considered a fluid jet impinging on an 
uneven wall. In their article, the authors considered different smooth geometry of 
the wall, symmetrical and non symmetrical. Neglecting the gravity and the surface 
tension they could formulate the problem into an integral equation on the free 
boundary which they solved numerically. F. Dias, A. R. Elcrat and L. N. 
Trefethen [9] considered a jet emerging from a polygonal nozzle, neglecting 
gravity and surface tension. Despite that the problem could theoretically be solved 
by the hodograph and Schwartz-Christoffel transform, but in the case where the 
nozzle has many corners, the Schwartz-Christoffel transform is obsolete. To 
remedy this mathematical limitation, the authors described an efficient 
mathematical procedure for computing two dimensional ideal jets issuing from an 
arbitrary polygonal containers. J. M. Vanden-Broeck & Tuck E. O. [11]   
calculated flow near the intersection of a vertical wall with a free surface taking 
into account gravity only and then gravity and surface tension. In the later work 
they presented local gravity-capillary solution near the intersection of a free 
surface with a wall. Similar work can be found in the study of the bow flow in 
which the dividing streamline can be simulated to a hard bottom. In [1993] F. 
Dias & J. M. Vanden-Broeck [7] computed via a series truncation method a model 
for the spray at the bow of a ship. They considered the gravity and neglected 
surface tension. Because they did not neglect the gravity, the spray was modeled 
by a layer of water rising along the bow and following back as a jet. 
In this paper we neglect the effect of gravity but we take into account the effect of 
surface tension. Far upstream the velocity of the flow is a constant  U~   and the 
depth of the fluid is  H~  . 
  When the effect of surface tension and gravity  g   are neglected, the problem 
has an exact solution that can be computed via the streamline method due to 
Kirchhoff (see, for example [2, 3]). 
If the effect of surface tension or gravity are considered, the boundary condition 
on the free surface is nonlinear and the problem does not have a known analytical 
solution. A series truncation procedure is employed to calculate the flow against a 
wall. This technique has been used successfully by Birkhoff and Zarantonello [3], 
Vanden-Broeck and Keller [12], F. Dias and Vanden-Broeck [7], to calculate 
nonlinear free surface flow and bow flow. 
As we shall see, the flow is characterized by two parameters: the angle β   
between the horizontal bottom and the inclined wall, and the Weber number α   
defined by:  

T
HU ~~~ 2ρα =                                                            1.1 

Here  T~    is the surface tension and  ρ~   is the density of the fluid. 
The problem is formulated in section 2, the numerical procedure is described in 
section 3 and the results are discussed and presented in section 4. 
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2. Formulation of the problem 
 
Let us consider the motion of a two-dimensional flow in a channel against an 
inclined wall of semi infinite length. the inclined wall meets the horizontal bottom 
at the point  O   making an angle  β  . We assume that the fluid is inviscid, 
incompressible and the flow is irrotational and steady. Far upstream, we assume 
that the velocity approaches a constant  U~   and the depth of the fluid tends to a 
constant H~ . The flow is limited by the free streamline BCA ′′′ , the horizontal 
bottom wall AO  and the inclined wall OB . In the absence of gravity the main 
flow extends to infinity in the direction of the bottom wall far upstream and in the 
direction of the inclined wall OB   far downstream (Figure 1(a)). If we take the 
symmetry of the flow with respect to the straight streamline ,AO   we obtain a 
symmetrical jet flow against two inclined walls making between them an angle of  

)(2 βπ −  (fig.1(b)). Thus, the following formulation is valid for the two 
problems. Our formulation is made for the flow in the channel. We choose the 
Cartesian coordinates such that the −x~ axis is along the bottom streamline and 
passes through the stagnation point O and the −y~ axis is vertically upward 
through the point  O   (considered as the origin of the axes). The angle  β   is 
counted positive in the counterclockwise from the positive axes. Since the flow is 
potential and considered to be steady with the same velocity  U~   far upstream and 
downstream, it should be symmetrical with respect to the bisector of the angle  
AOB  . Let  C ′   denotes the intersection of the bisector of the angle  AOB   and 
the free surface, and let ( cc yx ~,~ ) be its coordinates. 
In this article, we neglect the effect of gravity but we take into account the effect 
of surface tension. if we neglect the effect of surface tension and gravity the 
problem has an exact analytical solution that can be computed via hodograph 
transformation and free streamline theory. 
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Figure 1(a). Sketch of the channel flow and the coordinates system. The depth of  
the flow far downstream H~ . The x axis is along the bottom wall AO and the y 
axis is verticaly upward through the point O. The figure is an actual computed 
surface profile for 32πβ =  and the Weber number α=200. 
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Figure 1(b). Sketch of a jet flow impinging into an angle of  2( βπ −  ). The 
width of the jet at infinity is. The x axis is along the streamline AO and the y axis 
is verticaly upward through the point O. The figure is an actual computed surface 
profile for   and the Weber number α =200. 
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Since the flow is irrotational and the fluid is incompressible, we define the 
complex variable  yixz ~~~ +=   and the complex potential function  ψφ ~~~ if +=   
where φ~  is the potential function is and  ψ~   is the stream function. Since φ~   and  
ψ~   are conjugate solutions of Laplace's equation,  )~(~ zf   is an analytic function of 
z~   within the flow region. The complex conjugate velocity is given by 
 

)~,~(~)~,~(~
~

~~ yxvyxu
zd
fd

−==ζ                                           2.1 

 
 where u~  and  v~  are the horizontal and vertical components of the fluid velocity, 
respectively, and may be expressed as 
 

xd
d

yd
dv

yd
d

xd
du ~

~
~
~

~,~
~

~
~

~ ψφψφ
−====                                      2.2 

 
Without loss of generality, we choose  0~ =ψ   on the streamline  AOB   and  

0~
=φ   at the origin  O   ( )0,0()~,~( =yx  ). The complex potential  f~  maps the 

flow domain conformally onto the infinite strip of width  HU ~~   as shown in fig. 2. 

 
Figure 2. The complex potential plane, ψφ ~~~ if +=  

 
On the free streamline (free surface)  BCA ′′′  , the Bernoulli equation is to be 
satisfied, that is 
 

+∞<<∞−==+ φψ ~,~~~
~
~~

2
1 2 HUonC

q
pq                             2.3 
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where  p~  is the pressure of the fluid in a point on the free surface  BCA ′′′  ,  ρ~   is 

the density of the fluid and  22 ~~~ vuq +=   is the speed of the fluid particle on the 
free surface. Let  0

~p   be the pressure outside the fluid just above the free surface. 

0
~p  is considered to be a constant. Since far upstream the free surface is 
horizontal, we have  0

~~ pp =  Thus, the constant  C   in equation  (2.3)  is evaluated 
far upstream and is given by 
 

.~
~~

2
1 02 CpU =+

ρ
 

 
 A relationship between  p~   and  0

~p   is given by Laplace's capillary formula 
 

KTpp ~~~~
0 =−                                                       2.4 

 
Here  K~   is the curvature of the free surface and  T~   the surface tension. If we 
substitute (2.4) into (2.3) we obtain: 
 

.~
2
1~

~
~

~
2
1 22 UKTq =−

ρ
                                                2.5 

We introduce the dimensionless variables by taking  H~   as the unit length and  U~   
as the unit velocity. The dimensionless variables are given by: 
 

.~
~

;~
~

;~
~

;~
~

;~
~

H
yc

R
yK

U
qq

H
yx

H
xx c=====                     2.6 

 
 the dimensionless parameter c  has a special characteristic: it measures the ratio 
of the depth of the nearest point on the free surface to the stagnation point  O   to 
the depth of the fluid at infinity, in some literature this ratio is called the 
contraction coefficient. The free surface condition (2.5) reduces to 
 

122 =− Kq
α

                                                         2.7 

 
 Here  α   is the Weber number defined in (1.1). 
We rewrite the dimensionless complex velocity in the new variables τ  and θ   as 
 

θτζ ieivu −=−=                                                      2.8 
 
 where  ζτ =e   and  )arg(ζθ −=   
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In the new variables  τ  and θ   (2.7) becomes 
 

.,1)(
2

+∞<<∞−=−=
∂
∂ − φψα

φ
θ ττ ee                               2.9 

 
 The kinematic condition on  AO   and  OB   yields 
 

.
0,0,0

0,0,0

⎩
⎨
⎧

+∞<<==
<<∞−==

OB
AO

φψθ
φψθ

                               2.10 

 
 We shall seek  θτ i−   as an analytic function of  ψφ if +=   in the region 

10 <<ψ . Using the shwartz-christoffel transformation, we map the strip 
10 <<ψ  in the  f-plane onto the lower-half of the unit disk of the auxiliary t-

plane by the transformation  
 

.
1
1log2

⎟
⎠
⎞

⎜
⎝
⎛

+
−

=
t
tf

π
                                                    2.11 

 
The stagnation point O  is mapped into the origin, the points at infinity AA ′=   
and  BB ′= correspond to the points 1=t  and  1−=t  respectively. Due to the 
symmetry, the point  C   is mapped onto the point  it −=  . The solid boundary 
maps onto the real diameter and the free surface onto the lower half-unit circle 
(fig. 3). 

 
 
 
 
 
 
 
 

 
 

 
 

 
 
 
 

Figure 3. The complex potential t plane. 
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In all the flow domain, the complex velocity  ivut −=)(ζ  is analytic except at 
the point O  , which correspond to 0=t  , where the flow is inside a corner. 
Hence, a close study in the neighborhood of this point is to be done. 
At  0=t  , we have a flow inside an angle of measure  βπ −  , this gives the local 
behavior of  )(tζ  as 
 

.0)( →= tastO π
β

ζ                                      2.12 
 
 Now that we know the local behavior of  )(tζ   near the singularity, we seek the 
function  )(tζ   as a series of the form 
 

∑
∞

=

=
0

2 )exp()(
n

n
ntatt π

β

ζ                                             2.13 

 
 The coefficients  na   are to be determined. Since (2.13) satisfies (2.12) we expect 
the series to converge in the lower half disk in the t-plane. The coefficients  na   
are chosen to be real, so that the boundary conditions (2.10) are satisfied i.e.  

βcos=u   on  OB   and  0=v   on  AO  . 
We use the notation  σiett =   so that the points on  BCA ′′′   are given by  σiet =   
and  0<<− σπ  . Using (2.11) the expression (2.9) is rewritten as  
 

1)sin()exp()2exp( =
∂
∂

−
σ
θστ

α
πτ                                    2.14 

 
 
3. Numerical procedure 
 
We solve the problem by truncating the infinite series in (2.13) after  N   terms. 
Introducing the  N   mesh points 
 

NII
NI ,,1),

2
1( L=−−=

πσ                                       3.1 

 
 The  N   coefficients  na   are found by collocation. Using (2.14) we obtain  

)(),( σθστ  and 
σ
θ

∂
∂  in terms of coefficients na . Upon substituting these 

expressions into (2.14) we obtain N  nonlinear algebraic equations for the  N   
unknowns  { }N

nna 1=  . The Weber number  α   and the angle  β   are parameters. We 
solve this system by Newton method for given values of  α   and  .β   
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To draw the free surface we use the identity  
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 In the new variables  σ   and  ,τ   (3.2) rewrites 
 
 

⎪
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⎩
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To obtain the form of the free surface  BCA ′′′  , we take advantage of the 
symmetry with respect to the bisector of the angle  AOB  . We integrate 

numerically the expression (3.3) in the interval  ,0
2

<<− σπ   letting  )1( +Ny   

and  )1( +Nx   be the coordinates of the point  C ′  . With some algebra, we can 
find the relation  

)tan(

)1(

2

)1( βπ +
+=+ NyNx  . The Euler method was used to integrate 

numerically the relation (3.3). 
 
 
 
4. Results and discussion 
 
We use the numerical procedure described in section 3 to compute solutions of the 
problem for various values of the Weber number  α  . For fixed values of  α    

)0( ∞<< α   and  β    )0( πβ <≤   the coefficients  na   were found to decrease 
very rapidly as  n   increases (table 1). 
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β α a1 a5 a 20 a 50 

 0.135 -0.8505 2.0816 x 10-2 1.7697 x 10-3 1.8227 x 10-5

10 -2.3879 x 10-2 8.7610 x 10-4 4.0002 x 10-5 4.1985 x 10-7
4
π 

 α→∞ -4.004 x 10-21 6.2777 x 10-21 4.0326 x 10-21 1.0547 x 10-21

2 x 10-3 -5.1231 2.9453 x 10-2 2.5526 x 10-3 2.6324 x 10-5

10 -3.1835 x 10-2 1.1681 x 10-3 5.3336 x 10-5 5.5867 x 10-7
3
π 

 α→∞ -4.004 x 10-21 6.2777 x 10-21 4.0326 x 10-21 1.0547 x 10-21

3 x 10-4  -7.6264 4.8419 x 10-2 4.1284 x 10-3 4.2636 x 10-5

10 -6.3624 x 10-2 2.3362 x 10-3 1.0666 x 10-4 1.1074 x 10-6
3

2π

α→∞ -4.004 x 10-21 6.2777 x 10-21 4.0326 x 10-21 1.0547 x 10-21

2 x 10-5 -10.2719 5.2193 x 10-2 4.4389 x 10-3 4.5798 x 10-5

10 -7.1559 x 10-2 2.6283 x 10-3 1.1999 x 10-4 1.2429 x 10-6
4

3π

 α→∞ -4.004 x 10-21 6.2777 x 10-21 4.0326 x 10-21 1.0547 x 10-21

 
 
Table 1: Some Values of coefficients an of the series (2.13) for different values of  
             the Weber number α and for different values of the angle of inclinaison β. 

 
β α a1 a5 a 10 a 30 a 45 

100 -2.4877x10-3 8.0240x10-5 1.5586x10-5 1.2429x10-6 2.4220x10-7

200 -1.2469x10-3 3.9849x10-5 7.7141x10-6 6.1363x10-7 1.1983x10-74
π 

 1000 -2.49882x10-4 7.9269x10-6 1.5300 x10-6 1.2146 x10-7 2.3986 x10-8

100 -3.3170x10-3 1.0698x10-4 2.0781x10-5 1.6573x10-6 3.2294x10-7

200 -1.6625x10-3 5.3132x10-5 1.0285x10-5 8.1818x10-7 1.5977x10-7
3
π 

1000 -3.3317x10-4 1.0569x10-5 2.0400 x10-6 1.6195 x10-7 3.1981 x10-8

 100 -4.9754x10-3 1.6048x10-4 3.1172x10-5 2.4859x10-6 4.8441x10-7

200 -2.4938x10-3 7.9698x10-5 1.5428x10-5 1.2272x10-6 2.3966x10-7
2
π 

1000 -4.9976x10-4 1.5853x10-5 3.0601 x10-6 2.4293 x10-7 4.7972 x10-8

100 -6.6339x10-3 2.1397x10-4 4.1562x10-5 3.3146x10-6 6.4589x10-7

200 -3.3250x10-3 1.0626x10-4 2.0571x10-5 1.6363x10-6 3.1955x10-7
 

3
2π  

1000 -6.6635x10-4 2.1138x10-5 4.0801 x10-6 3.2391 x10-7 6.3963 x10-8

 
Table 2: Some Values of coefficients an of the series (2.13) for different values of   
    the Weber number α ≥100 and for different values of the angle of inclinaison β. 
 
    For values of  α   very large, ( 210≥α   ) (table 2), all the coefficient of the 
series (2.13) are zeros ( 0=ia   for all  )1≥i  . This gives the exact solution for  

)( ∞→α    π
β

ζ tt =)(  . This result was compared with the exact solution found via  



-6.00 -4.00 -2.00 0.00
0.00

2.00

4.00

6.00

               Theoretical exact solution
 Numerical solution 
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the hodograph transform due to kirchhoff and were found to agree exactly. In 

figure 4, the exact solution via the hodograph transform for  
2
πβ = ,  
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 was compared with the solution  tt =)(ζ  . The two solutions were found to be 
identical. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Comparaison of the numerical free streamline shape for 
2
πβ =  with   

                 the exact theoretical results 
                    
 
With this numerical procedure we could compute solution for the Weber number  

α   very small. As an example for  ,
4
πβ =   we could compute the solution for all  

13698.0≥α  . There exists a critical value  ∗α  ( ∗α  very small) of  α   such that 
for  ∗< αα   the numerical scheme ceases to converge (table 3). 
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β 4

π 
3
π 

2
π 

3
2π 

4
3π 

α* 0.13698 0.001825 0.000605 0.00037 0.0000302
 

Table 3: Values of the minimal Weber number α* for different values of the 
                    angle of inclinaison β. 
 
The free surface was smooth with no capillary waves even for small α . For each 
fixed β  and as the Weber number decreases from ∞  to ,∗α   the shape of the free 
surface flattens and tends to a straight line (figs.5, 6 and 7). 
Figure 8 shows the variation of contraction coefficient versus the Weber number  
α  . From the above numerical results, we conclude that for a fixed value of β   
( )0 πβ <≤  there exist a unique solution with no capillary surface wave for all  

∗≥ αα  . For a fixed value of  β   ( )0 πβ <≤   and a given  ∗< αα   we 
conjecture that a solution exists with capillary surface wave. The later conjectured 
solution may be computed via an integro-differential equation which is an 
appropriate method for surface waves. 
 
The results presented here are obtained with  50=N   
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Figure 5: Free streamline shapes for 

4
3πβ =  and various Weber numbers 
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Figure 6: Free streamline shapes for 
2
πβ =  and various Weber numbers 
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Figure 7: Free streamline shapes for 

4
πβ =  and various Weber numbers 
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Figure 8: Coordinate yc of the point C' versus α for 
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