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Abstract

In this work, we present a regional asymptotic analysis of the prob-
lem of space compensation for a class of disturbed systems. It is an
extension of previous works developed on the finite time remediability
problem. We define and we give characterization results of the notion
of regional asymptotic remediability and we study its relationship with
the regional asymptotic notions of controllability, stability and stabiliz-
ability.
Then we show how to find the optimal control ensuring the asymptotic
compensation, in the considered region, of a known or unknown dis-
turbance. A characterization of the set of asymptotically remediable
disturbances in this region is also presented.
The cases of multi-actuators and multi-sensors are examined and appli-
cations are given. We particularly show that in the regional asymptotic
case, a system may be remediable without being controllable, stable or
stabilizable. Other situations are also examined and illustrative exam-
ples are given.

Keywords: Asymptotic regional analysis, remediability, controllability,
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1 Introduction

In this paper, we consider a class of linear disturbed systems and we study,
with respect to the output (observation), the possibility of regional asymptotic
compensation of a known or unknown disturbance.

This work is an extension to the regional asymptotic case of previous works
on the finite time remediability problem for linear parabolic, hyperbolic, con-
tinuous or discrete systems [1,2,3].

Concerning the asymptotic aspect, one know the great importance of the
asymptotic analysis, particularly the notions of stability and stabilizability, in
control theory and their direct relation with the spectral analysis in the case
of linear systems.

A natural question is to consider the asymptotic version of the compensa-
tion problem and to study a possible extension of the developed approaches
as well as the results obtained in the finite time case. Hence, by analogy with
the relation between the remediability and the controllability examined in the
finite time case, it is then natural to study the relationship between the asymp-
totic remediability and the asymptotic notions of controllability, stability and
stabilizability. Let us note that for finite dimension systems, it is well known
that if a linear system is controllable, then it is stabilizable. For distributed
systems, the situation is not obvious and needs more precautions.

The regional aspect [3,7,9 ...] of the considered problem is motivated by
the fact that a system can be asymptotically remediable in a region ω ⊂ Ω
but not on the whole domain Ω, and even if it is asymptotically remediable in
Ω, the cost is reduced if we are interested only in a subregion ω ⊂ Ω.

This paper is organized as follows: We recall in paragraph 2, the notions
of exact and weak remediability in the finite time case.

In paragraph 3 and under convenient hypothesis, we introduce and we char-
acterize the regional asymptotic version of these notions first in the general case
and then in the case of multi-actuators and multi-sensors. Regionally asymp-
totic efficient actuators ensuring the regional weak asymptotic compensation
of any disturbance are particularly examined.

The problem of regional asymptotic remediability with minimum energy is
studied in paragraph 4. We show how to find the optimal control ensuring the
regional asymptotic compensation of a disturbance. Then we characterize the
set of disturbances which are asymptotically remediable on a region ω of Ω.

In the fifth paragraph, we define and we characterize the notions of weak
and exact regional asymptotic controllability and regionally asymptotic strate-
gic actuators. Then we study their relationship with the weak and exact re-
gional asymptotic remediability and regionally asymptotic efficient actuators.
Indeed, we show that also in the asymptotic case, regionally strategic actuators
are regionally efficient and that the converse is not true.
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In the last paragraph, we study the nature of the relation between regional
asymptotic remediability and the notions of stability and stabilizability. We
particularly show that a system can be asymptotically remediable without
being stable or stabilizable, but this relation depend, as it will be shown,
depend on the choice of the sensors and the actuators.

Applications and illustrative examples are given.

2 Preliminaries

Let Ω be an open and bounded subset of Rn with a sufficiently regular bound-
ary Γ = ∂Ω, and let ω be a subregion of Ω. We consider without loss of gen-
erality, a class of linear distributed systems described by the following state
equation:

(S)

{
ż(t) = Az(t) + Bu(t) + f(t)
z(0) = z0

(1)

where A generates a strongly continuous semi-group (s.c.s.g.) (S(t))t≥0;
B ∈ L(U, Z); U is the control space and Z = L2(Ω) is the state space, U is
supposed to be a Hilbert space. The state of the system at time t is given by:

z(t) = S(t)z0 +

∫ t

0

S(t − s)Bu(s)ds +

∫ t

o

S(t − s)f(s)ds (2)

The system (1) is augmented by the following regional output equation:

(Eω) yω(t) = Ciωpωz(t) (3)

where pω be is the restriction operator defined by:

pω : L2(Ω) L2(ω)
z −→ pωz = z|ω

(4)

iω is the adjoint operator of pω, it is defined by: .

iω : L2(ω) L2(Ω)

z −→ iωz =

{
z in ω
0 otherwise

and C ∈ L(Z, Y ) , Y is the observation space, a Hilbert space. The obser-
vation is given by:
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yω(t) = CiωpωS(t)z0 +
∫ t

0
CiωpωS(t − s)Bu(s)ds

+
∫ t

0
CiωpωS(t − s)f(s)ds

(5)

Obviously in (5), if u = 0 and f = 0, yω(·) = CiωpωS(·)z0, the observation
is then normal. But if f �= 0 and u �= 0, generally yω(·) �= CiωpωS(·)z0.

The finite time problem consists to study the existence of an input operator
B (actuators) with respect to the output operator C (sensors), ensuring the
compensation at the final time T , of any disturbance, i.e.

For f ∈ L2(0, T ; Z), there exists u ∈ L2(0, T ; U) such that:

yω(T ) = CiωpωS(T )z0

or equivalently

CHω
T u + Rω

T f = 0 (6)

where

HT : L2(0, T ; U) → Z

u −→ HT u =
∫ T

0
S(T − t)Bu(t)dt

(7)

HT : L2(0, T ; Z) −→ Z

f −→ ∫ T

0
S(T − t)f(t)dt

(8)

and Rω
T = CiωpωHT , Hω

T = iωpωHT . The definitions can be formulated as
follows:

Definition 2.1
(i) We say that (S) augmented by (Eω), (or (S) + (Eω)) is ω− exactly reme-
diable on [0, T ], if for every f ∈ L2(0, T ; Z), there exists u ∈ L2(0, T ; U) such
that

CHω
T u + Rω

T f = 0

(ii) We say that (S) + (Eω) is ω− weakly remediable on [0, T ], if for every
f ∈ L2(0, T ; Z) and ε > 0, there exists u ∈ L2(0, T ; U) such that:

‖CHω
T u + Rω

T f‖ < ε
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Characterization results on the exact and weak remediability in finite time
are developed in [1,2,3]. It is also shown that the regional remediability is a
weaker notion than the regional controllability. The cases where the input and
the output are respectively given by actuators and sensors, are considered and
illustrating examples are presented.

3 Regional asymptotic compensation

3.1 Problem statement

In this case, we consider the system (1) augmented by the output equation (3)
with f ∈ L2(0, +∞; Z) and u ∈ L2(0, +∞; U) . Let us consider consider the
following operators

H∞
ω = iωpωH∞ (9)

R∞
ω f = CiωpωH∞f (10)

where

H∞ : L2(0, +∞; U) −→ Z

u −→ H∞u =
∫ +∞

0
S(t)Bu(t)dt

(11)

and

H∞ : L2(0, +∞; Z) −→ Z

f −→ ∫ +∞
0

S(t)f(t)dt
(12)

The considered problem, so called regional asymptotic remediability prob-
lem, consists to study, with respect to the output operator C and the region
ω, the existence of an input one B ensuring regionally the asymptotic com-
pensation of any disturbance, i.e.

For every f ∈ L2(0, +∞; Z), there exists u ∈ L2(0, +∞; U) such that:

CH∞
ω u + R∞

ω f = 0 (13)

Let us note that if
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∃Mω(.) ∈ L2(0, +∞; R+) such that ‖pωS(t)‖ ≤ Mω(t) ; ∀t ≥ 0 (14)

the operators

pωH∞u ≡
∫ +∞

0

pωS(t)Bu(t)dt

and

pωH∞f ≡
∫ +∞

0

pωS(t)f(t)dt

are well defined, then CH∞
ω and R∞

ω are also well defined.

Remark 3.1
1- If (S(t))t≥0 is ω−exponentially stable [4,5,8], i.e.

∃Mω > 0 and αω > 0 such that ‖pωS(t)‖ ≤ Mωe−αωt ; ∀t ≥ 0 (15)

we have (14), consequently CH∞
ω and R∞

ω are well defined.

2- In fact, we are concerned by the operators K∞
C,ω and R∞

C,ω defined by:

K∞
C,ωu =

∫ +∞

0

CiωpωS(t)Bu(t)dt and R∞
C,ωf =

∫ +∞

0

CiωpωS(t)f(t)dt

then we need a weaker hypothesis than (14). Indeed, we suppose that there
exists a function kω(.) ∈ L2(0, +∞; R+) such that:

‖CiωpωS(t)‖ ≤ kω(t) ; ∀t ≥ 0 (16)

In this case, K∞
C,ω and R∞

C,ω are well defined and (13) becomes:

K∞
C,ωu + R∞

C,ωf = 0 (17)

and as it will be shown later in this paper, the regional exponential stability
is not necessary.

Under hypothesis (16), the notions of exact and weak regional asymptotic
remediability can be formulated as follows:
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Definition 3.2 We say that:

1- (S) + (Eω) is exactly ω−remediable asymptotically, if for every f ∈
L2(0, +∞; Z), there exists u ∈ L2(0, +∞; U) such that:

K∞
C,ωu + R∞

C,ωf = 0

2- (S) + (Eω) is weakly ω−remediable asymptotically, if for every f ∈
L2(0, +∞; Z) and every ε > 0, there exists u ∈ L2(0, +∞; U) such that

∥∥K∞
C,ωu + R∞

C,ωf
∥∥ < ε

Let us note that for T > 0; f ∈ L2(0, +∞; Z) and u ∈ L2(0, +∞; U), the
operators HT and RT defined by:

HT uT ≡
∫ T

0

S(t)Bu(t)dt

and

RT
ωfT ≡

∫ T

0

CiωpωS(t)f(t)dt

verifies

HT uT = HTvT and RT
ωfT = Rω

T gT

where uT and fT are respectively the restrictions of the functions f and
u to the interval [0, T ]; vT (t) = uT (T − t) and gT (t) = fT (T − t). Moreover,
under hypothesis (16)

K∞
C,ωu + R∞

C,ωf = CiωpωHT uT + RT
ωfT

+
∫ +∞

T
CiωpωS(t)Bu(t)dt +

∫ +∞
T

CiωpωS(t)f(t)dt

= CHω
T vT + Rω

T gT + [ε1(T ) + ε2(T )]

with ε1(T ) + ε2(T ) −→ 0 when T −→ +∞, then for any f ∈ L2(0, +∞; Z)
and u ∈ L2(0, +∞; U), we have

lim
T→+∞

(CHω
T vT + Rω

T gT ) = K∞
C,ωu + R∞

C,ωf
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3.2 Characterization

Let us note that for f = −Bu, we have R∞
C,ωf = −K∞

C,ωu, consequently

Im(K∞
C,ω) ⊂ Im(R∞

C,ω) (18)

We have the following characterization result:

Proposition 3.3 Under hypothesis (16):

(i) (S) + (Eω) is exactly ω−remediable asymptotically if and only if

Im(R∞
C,ω) ⊂ Im(K∞

C,ω)

this is equivalent to:

(ii) ∃γω > 0 such that ∀ θ ∈ Y
′
, we have

‖S∗(.)iωpωC∗θ‖L2(0,+∞;Z ′) ≤ γω ‖B∗S∗(.)iωpωC∗θ‖L2(0,+∞;U ′) (19)

Proof:
(i) derives from the definition.
(i) ⇐⇒ (ii) derives from the following lemma [4,5] �

Lemma 3.4 Let X, Y, Z be Banach reflexive spaces, P ∈ L(X, Z) and Q ∈
L(Y, Z). There is equivalence between:

Im(P ) ⊂ Im(Q)

and

∃γ > 0 such that for any z∗ ∈ Z ′, we have ‖P ∗z∗‖X′ ≤ γ ‖Q∗z∗‖Y ′

Concerning the weak regional asymptotic remediability, we have the fol-
lowing result.

Proposition 3.5 Under hypothesis (16):
(i) (S) + (Eω) is weakly ω−remediable asymptotically if and only if

Im(R∞
C,ω) ⊂ Im(K∞

C,ω) (20)
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or equivalently

(ii)

Ker[B∗(R∞
C,ω)∗] = Ker[(R∞

C,ω)∗] (21)

Proof:
(i) derives from the definition.
(ii) ⇐⇒ (iii) is proved by considering the orthogonal spaces, and using (18)
and the fact that

(K∞
C,ω)∗ = B∗(R∞

C,ω)∗ (22)

�

We examine hereafter the case where the system is exited by actuators and
the observation is given by sensors [6,7].

3.3 Case of actuators and sensors

In the case of p actuators (Ωk, gk)1≤k≤p, we have U = IRp, Z = L2(Ω) and

B : IRp −→ L2(Ω)
u(t) −→ Bu(t) =

∑p
k=1 gkuk(t)

(23)

where u = (u1, ···, up)
tr ∈ L2(0, +∞; IRp) and gk ∈ L2(Ω) ; Ωk = supp(gk) ⊂

Ω, we have

B∗z = (〈g1, z〉, · · ·, 〈gp, z〉)
〈., .〉 is the inner product in L2(Ω). It is easy to show the following result:

Corollary 3.6 (S) + (Eω) is exactly ω− remediable asymptotically, if there
exists γω > 0 such that: ∀θ ∈ Y ′, we have∫ +∞

0

‖S∗(t)iωpωC∗θ‖2
Z′ dt ≤ γω

∫ +∞

0

p∑
k=1

(〈gk, S
∗(t)iωpωC∗θ〉)2dt (24)

Now, if the output is given by q sensors (Dl, hl)1≤l≤q ; hl ∈ L2(Ω); Dl =
supp(hl) and for l �= j, Dl ∩Dj = ∅, Y = IRq and the operator C is defined by:

C : L2(Ω) −→ IRq

z −→ Cz = (〈h1, z〉, · · ·, 〈hq, z〉)tr (25)
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we have

C∗θ =

q∑
l=1

θlhl for θ = (θ1, ··, θq) ∈ IRq (26)

We have the following characterization result:

Corollary 3.7 (S)+(Eω) is exactly ω− remediable asymptotically if and only
if, there exists γω > 0 such that ∀θ = (θ1, ··, θq) ∈ IRq

∫ +∞

0

∥∥∥∥∥
q∑

l=1

S∗(t)iωpωθlhl

∥∥∥∥∥
2

dt ≤ γω

∫ +∞

0

p∑
k=1

(

q∑
l=1

〈gk, S
∗(t)iωpωθlhl〉)2dt (27)

3.4 Regional asymptotically efficient actuators

We introduce hereafter the notion of regional asymptotically efficient actuators
[1,2,3] and we give characterization results in the case of a class of linear
systems.

Definition 3.8 Actuators (Ωk, gk)1≤k≤p are ω -efficient asymptotically ( or
just ω− efficient), if the corresponding system (S) + (Eω) is weakly ω− reme-
diable asymptotically.

For the characterization, we consider without loss of generality, the system
(S) with a dynamics A of the form

Az =
+∞∑
n=1

λn

rn∑
j=1

〈z, ϕnj〉ϕnj (28)

where λ1, λ2, ..... are reals such that λ1 > λ2 > λ3 > ...., {ϕnj, n ≥ 1; j =
1, rn}, is an orthonormal basis of Z, rn is the multiplicity of the eigenvalue λn.

It is well known that A generates a s.c.s.g. (S(t))t≥0 given by

S(t)z =
+∞∑
n=1

eλnt
rn∑

j=1

〈z, ϕnj〉ϕnj (29)

Obviously, if

sup
n≥1

λn = λ1 < 0 (30)
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(S(t))t≥0 is exponentially stable and then ω−exponentially stable. The
system (S) is augmented by the regional output equation

(Eω) yω = Ciωpωz

and the operator B is given by (23) , i.e.

Bu(t) =

p∑
k=1

gkuk(t)

For n ≥ 1, let Mn be the matrix defined by

Mn = (〈gk, ϕnj〉)1≤k≤p;1≤j≤rn (31)

We have the following characterization result.

Proposition 3.9 The actuators (Ωk, gk)k=1,p are ω− efficient if and only if

Ker(pωC�) =
⋂
n≥1

Ker(Mnfω
n )

where fω
n is defined by

fω
n : θ ∈ Y � −→ fω

n (θ) = (< C�θ, ϕn1 >ω, ..., < C�θ, ϕnrn >ω)tr ∈ IRrn

(32)

Y � is the dual of Y and < ., . >ω is the inner product in L2(ω).

Proof: For such systems and using the analyticity property, the proof is
similar to that established in the finite time case. Indeed, (S)+(Eω) is weakly
ω−remediable asymptotically if and only if

Ker[B�(R∞
C,ω)�] = Ker[(R∞

C,ω)�]

For θ ∈ Y �, we have

(R∞
C,ω)�θ =

∑
n≥1

eλnt

rn∑
j=1

< iωpωC�θ, ϕnj > ϕnj

by analyticity, we have

(R∞
C,ω)�θ = 0 ⇐⇒

rn∑
j=1

< iωpωC�θ, ϕnj > ϕnj = 0 ; ∀ n ≥ 1

⇐⇒ pωC�θ = 0
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then

Ker[(R∞
C,ω)�] = Ker[pωC�] (33)

On the other hand

[B�(R∞
C,ω)�θ](t) =

(∑
n≥1

eλnt

rn∑
j=1

< gk, ϕnj >< iωpωC�θ, ϕnj >

)tr

k=1,p

and also by analyticity, we obtain

B�(R∞
C,ω)�θ = 0 ⇐⇒

rn∑
j=1

< gk, ϕnj >< C�θ, ϕnj >ω= 0 ; ∀ n ≥ 1, ∀ k = 1, p

⇐⇒ Mnfω
n (θ) = 0 ; ∀ n ≥ 1

then

Ker[B�(R∞
C,ω)�] =

⋂
n≥1

Ker(Mnfω
n )

and hence

Ker[pωC�] =
⋂
n≥1

Ker(Mnfω
n )

�

Now, we assume that the output is given by q zone sensors (Dl, hl)1≤l≤q

with hl ∈ L2(Dl), Dl = supp(hl) ⊂ Ω and measure(Dl ∩ω) > 0 for 1 ≤ l ≤ q.
In this case, the functions (hl)l=1,q are linearly independent, because Dl∩Dj =
∅ for l �= j, and measure (Dl ∩ ω) > 0, then

Ker[pωC�] = {0}
and using (33), we have

Ker[(R∞
C,ω)�] = {0}

On the other hand

B�(R∞
C,ω)�θ =

(∑
n≥1

eλnt
rn∑

j=1

< gk, ϕnj >

q∑
l=1

θl < hl, ϕnj >ω

)tr

k=1,p
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consequently

B�(R∞
C,ω)�θ = 0 ⇐⇒

rn∑
j=1

< gk, ϕnj >

q∑
l=1

θl < hl, ϕnj >ω= 0 ; ∀ k = 1, p ; ∀ n ≥ 1

⇐⇒ MnGtr
n,ωθ = 0 ; ∀ n ≥ 1

where Gn,ω is the matrix defined by

Gn,ω = (< hl, ϕnj >ω) l =1,q
j=1,rn

then

Ker[B�(R∞
C,ω)�] =

⋂
n≥1

Ker(MnGtr
n,ω)

and using (21), we have the following characterization result.

Proposition 3.10 The actuators (Ωk, gk)k=1,p are ω− efficient if and only if

⋂
n≥1

Ker(MnGtr
n,ω) = {0} (34)

It is easy to deduce the following corollary.

Corollary 3.11 If there exists n0 ≥ 1 such that

rank(Mn0G
tr
n0,ω

) = q (35)

or such that

rank(Gtr
n0,ω) = q (36)

and

rank(Mn0) = rn0 (37)

then the actuators (Ωk, gk)k=1,p are ω−efficient.



2672 L. Afifi, M. Bahadi and A. Chafiai

4 Regional asymptotic remediability with min-

imum energy

In this part and under hypothesis (16), we consider the following optimal
control problem:

For f ∈ L2(0, +∞; Z), does exists a control u ∈ L2(0, +∞; U) such that:

K∞
C,ωu + R∞

C,ωf = 0 ?

If u exists, is it optimal ?
Let

Dω =
{
u ∈ L2(0, +∞; U) such that K∞

C,ωu + R∞
C,ωf = 0

}
Dω is supposed to be a non empty set. We consider the function:

Jω(u) =
∥∥K∞

C,ωu + R∞
C,ωf

∥∥2

Y
+ ‖u‖2

L2(0,+∞;U)

The problem becomes

Minu∈DωJω(u)

and will be resolved using an extension of the Hilbert Uniqueness Method
(H.U.M.). For θ ∈ Y

′ ≡ Y , we consider

‖θ‖Fω
= (

∫ +∞

0

‖B∗S∗(t)iωpωC∗θ‖2
U

′ dt)
1
2

‖.‖Fω
is a semi-norm. We suppose that it is a norm, this is equivalent to

assume that (S) + (Eω) is weakly ω−remediable asymptotically. Let

Fω = Y
‖.‖Fω

Fω is a Hilbert space with the inner product

〈θ, τ〉Fω
=

∫ +∞

0

〈B∗S∗(t)iωpωC∗θ,B∗S∗(t)iωpωC∗τ〉 dt; ∀θ, τ ∈ Fω

Let Λ∞
C,ω be the operator defined by

Λ∞
C,ω = K∞

C,ω(K∞
C,ω)∗

Λ∞
C,ω has a unique extension as an isomorphism Fω → F ′

ω such that:

〈Λ∞
C,ωθ, τ〉Y = 〈θ, τ〉Fω ; ∀θ, τ ∈ Fω
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and

∥∥Λ∞
C,ωθ

∥∥
F ′

ω
= ‖θ‖Fω

; ∀θ ∈ Fω

We show hereafter how to find the optimal control ensuring the regional
asymptotic compensation of a disturbance f .

Proposition 4.1
If R∞

C,ωf ∈ F ′
ω, then there exists a unique θf in Fω such that

Λ∞
C,ωθf = −R∞

C,ωf

and the control uθf
= (K∞

C,ω)∗θf verifies

K∞
C,ωuθf

+ R∞
C,ωf = 0

Moreover, uθf
is optimal with

∥∥uθf

∥∥
L2(0,+∞;U)

= ‖θf‖Fω

Proof: We have

Λ∞
C,ωθf =

∫ +∞

0

CiωpωS(t)BB∗S∗(t)iωpωC∗θfdt = K∞
C,ωuθf

= −R∞
C,ωf

Dω is closed, convex and non empty. For u ∈ Dω, we have

Jω(u) = ‖u‖2
L2(0,+∞;U)

Jω is strictly convex on Dω , then it admits a unique minimum in u� ∈ Dω

characterized by

〈u�, v − u�〉 ≥ 0; ∀v ∈ Dω

If v ∈ Dω, we have

〈uθf
, v − uθf

〉 = 〈(K∞
C,ω)∗θf , v − (K∞

C,ω)∗θf 〉
= 〈θf , K

∞
C,ωv − K∞

C,ω(K∞
C,ω)∗θf 〉 = 〈θf , K

∞
C,ωv − Λ∞

C,ωθf〉 = 0

Since u� is unique, then u� = uθf
and uθf

is optimal with

∥∥uθf

∥∥2
=
∥∥(K∞

C,ω)∗θf

∥∥2
= 〈θf , Λ

∞
C,ωθf 〉 = ‖θf‖2

Fω
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Remark 4.2 This result can be extended to the case where the observation is
not exact, i.e. is as follows

zω(t) = yω(t) + eω(t)

where yω(t) is the exact observation given by (3) and eω(t) is a measurement
error. The result is similar.

Now, we give hereafter a characterization of the set Eω of disturbances f
which are exactly ω−remediable asymptotically, i.e.

Eω =
{
f ∈ L2(0, +∞; Z) : ∃u ∈ L2(0, +∞; U) such that K∞

C,ωu + R∞
C,ωf = 0

}
Proposition 4.3 Eω is the inverse image of F ′

ω by the operator R∞
C,ω, i.e.

R∞
C,ωEω = F

′
ω

Proof:

For y ∈ F
′
ω , there exists a unique θ in Fω such that Λ∞

C,ωθ = y, then

K∞
C,ω(K∞

C,ω)∗θ = y

Let u be the control defined by

u = (K∞
C,ω)∗θ

we have K∞
C,ωu = y, and for f = −Bu ∈ L2(0, +∞; L2(Ω)), we have

K∞
C,ωu = −R∞

C,ωf = y, then y ∈ R∞
C,ωEω .

Conversely, let y ∈ R∞
C,ωEω, then there exists f ∈ L2(0, +∞; L2(Ω)) such

that y = R∞
C,ωf and K∞

C,ωu + R∞
C,ωf = 0 with u ∈ L2(0, +∞; U).

If we identify K∞
C,ωu with the linear mapping Lω : θ ∈ Y −→ 〈K∞

C,ωu, θ〉,
we have:

Lω(θ) = 〈K∞
C,ωu, θ〉 = 〈u, (K∞

C,ω)∗θ〉
Then |Lω(θ)| ≤ ‖u‖L2(0,+∞;U) . ‖θ‖Fω

and consequently Lω is continuous on
Y for the topology of Fω and can be extended continuously, in a unique way,
to the space Fω. Then Lω ∈ F ′ and K∞

C,ωu = R∞
C,ωf = y ∈ F ′

ω. �
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5 Regional asymptotic remediability and re-

gional asymptotic controllability

In the finite time case, it is shown that the controllability is stronger than the
remediability. In the asymptotic one, this relation is not obvious and needs
more mathematical precautions. Hence, as it will be seen in the next paragraph
(example 2), a system can be asymptotically remediable even if the asymptotic
controllability problem is not well defined or has no sense.

In this part, with a convenient choice of spaces and operators and un-
der convenient hypothesis, we define and we characterize the notion of re-
gional asymptotic controllability and we study its relationship with the re-
gional asymptotic remediability. More precisely, we show that also in the
regional asymptotic case, the controllability remain stronger than the reme-
diability. The case of multi-actuators is examined and an application with
various illustrative situations is presented.

5.1 Regional asymptotic controllability

We consider the system described by the following equation

(S0)

{
ż(t) = Az(t) + Bu(t) ; t > 0
z(0) = z0

We suppose that A generates a s.c.s.g.(S(t))t≥o such that:

∃Mω(.) ∈ L2(0, +∞; R+) such that ‖pωS(t)‖ ≤ Mω(t) ; ∀t ≥ 0 (38)

In this case, the notion of regional asymptotic controllability introduced
hereafter is well defined.

Definition 5.1 The system (S0) is said to be exactly ( resp. weakly ) ω−controllable
asymptotically if

Im(pωH∞) = L2(ω) ( resp. Im(pωH∞) = L2(ω) )

Using Lemma 3.4, it is easy to show that the system (S0) is exactly ω−
controllable asymptotically if and only if

∃γω > 0 such that ‖ z� ‖Z′≤ γω ‖ (pωH∞)�z� ‖L2(0,+∞;U ′); ∀z� ∈ L2(ω)

or equivalently
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‖ z� ‖Z′≤ γω ‖ B�S�(.)iωz� ‖L2(0,+∞;U ′); ∀z� ∈ L2(ω)

Concerning the weak regional asymptotic controllability, the system (S0)
is weakly ω-controllable asymptotically, if and only if

Ker[(pωH∞)�] = {0}
This is equivalent to

The operator = pωH∞(H∞)�iω is positive definite

In the case of an operator A given by (28):

Az =
∑
n≥1

λn

rn∑
j=1

< z, ϕnj > ϕnj (39)

and (S0) excited by p zone actuators, i.e.

Bu(t) =

p∑
k=1

gkuk(t)

For n ≥ 1, let Mn be the matrix defined by

Mn = (〈gk, ϕnj〉)1≤k≤p;1≤j≤rn (40)

and γn(ω) defined by

γn(ω) =

⎛
⎜⎜⎜⎜⎝

γn,1(ω)
.
.
.

γn,rn(ω)

⎞
⎟⎟⎟⎟⎠

with

γn,j(ω) = (γnj,km(ω){k≥1;m=1,rn}

and

γnj,km(ω) = 〈ϕnj, ϕkm〉ω
Then, using the analyticity property, (S0) is weakly ω− controllable asymp-

totically if and only if
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⋂
n≥1

Ker[Mnγn(ω)] = {0} (41)

Such actuators are said to be asymptotically ω− strategic.
We have the following result showing that equally in the regional asymp-

totic case, the controllability is stronger than the remediability.

Proposition 5.2 If (S0) is exactly (respectively weakly) ω− controllable asymp-
totically, then (S)+(Eω) is exactly (respectively weakly) ω− remediable asymp-
totically.

Proof:

1) For θ ∈ Y ′, we have

‖ S�(.)iωpωC�θ ‖2
L2(0,+∞;L2(Ω)) =

∫ +∞
0

‖ S�(t)iωpωC�θ ‖2
L2(Ω) dt

≤ ∫ +∞
0

‖ S�(t)iω ‖2 dt ‖ pωC�θ ‖2
L2(ω)

≤ Mω ‖ pωC�θ ‖2
L2(ω) with Mω > 0

Since (S0) is exactly ω− controllable asymptotically, there exists γω > 0
such that

‖ pωC�θ ‖2
L2(ω)≤ γω ‖ B�S�(.)iωpωC�θ ‖2

L2(0,+∞;U ′)

then

‖ S�(.)iωpωC�θ ‖2
L2(0,+∞;L2(Ω))≤ γ ‖ B�S�(.)iωpωC�θ ‖2

L2(0,+∞;U ′)

with γ = Mωγ2
ω > 0. The result is then given by proposition 3.3.

2) (S) + (Eω) weakly ω− remediable asymptotically is equivalent to

Ker[B�(R∞
C,ω)�] = Ker[(R∞

C,ω)�]

i.e.

Ker[B�(R∞
C,ω)�] ⊂ Ker[(R∞

C,ω)�)]

this is equivalent to
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Ker[(K∞
C,ω)�] ⊂ Ker[(R∞

C,ω)�]

because (K∞
C,ω)� = B�(R∞

C )�. For θ ∈ Ker[(K∞
C,ω)�], we have

(K∞
C,ω)�θ = 0, then (pωC�)θ = 0 because Ker[(pωH∞)�] = {0}, then

θ ∈ Ker[pωC�]. Since Ker(pωC�) ⊂ Ker[(R∞
C,ω)�], we have the result. �

Remark 5.3

The converse is not true, this is illustrated in the following paragraph.

5.2 Example 1

We consider the following diffusion system with a Dirichlet boundary condition:

(S1)

⎧⎨
⎩

∂z(x,t)
∂t

= Δz(x, t) +
∑p

k=1 gk(x)uk(t) + f(x, t) in Ω×]0,+∞[
z(x, 0) = z0(x) in Ω
z(x, t) = 0 in ∂Ω×]0,+∞[

(42)

augmented by the following output equation given by q zone sensors

(Eω
1 ) yω = (〈h1, z〉ω, · · ·, 〈hq, z〉ω)tr

In the one dimension case with Ω = ]0, 1[, the Laplacian operator Δ admits
an orthonormal basis of eigenfunctions defined by

ϕn(ξ) =
√

2 sin(nπξ); n ≥ 1

the corresponding eigenvalues are simple and given by

λn = −n2π2; n ≥ 1

Δ generates a self adjoint s.c.s.g. (S(t))t≥0 defined by:

S(t)z =
+∞∑
n=1

e−n2π2t〈z, ϕn〉ϕn (43)

and which is exponentially stable. (S(t))t≥0 is then ω−exponentially
stable and the operators
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H∞u =

p∑
k=1

+∞∑
n=1

∫ +∞

0

e−n2π2tuk(t)dt〈gk, ϕn〉ϕn

and

H
∞

f =
+∞∑
n=1

∫ +∞

0

e−n2π2t〈f(., t), ϕn〉ϕndt

are well defined and (S1)+ (Eω
1 ) is ω−exactly remediable asymptotically if

and only if , there exists γω > 0 such that: ∀ θ = (θ1, · · ·, θq) ∈ IRq, we have

∑
n≥1

1

2n2π2
(

q∑
l=1

θl〈hl, ϕn〉ω)2 ≤ γω

p∑
k=1

∫ +∞

0

(
∑
n≥1

e−n2π2t〈gk, ϕn〉
q∑

l=1

θl〈hl, ϕn〉ω)2dt

In the case of one sensor and one actuator, this inequality becomes:

∑
n≥1

1

2n2π2
[θ〈h, ϕn〉ω]2 ≤ γω

∫ +∞

0

[
∑
n≥1

e−n2π2t〈g, ϕn〉θ〈h, ϕn〉ω]2dt; ∀ θ ∈ IR

or equivalently

∑
n≥1

1

2n2π2
[〈h, ϕn〉ω]2 ≤ γω

∫ +∞

0

[
∑
n≥1

e−n2π2t〈g, ϕn〉〈h, ϕn〉ω]2dt

this is verified for example for ω = Ω, g = h = ϕn0 with n0 ≥ 1. But
the corresponding system (S1) is not exactly Ω -controllable asymptotically
because it is not weakly Ω− controllable asymptotically.

Concerning the weak asymptotic regional remediability, the general charac-
terization result is given in proposition 3.10. In the case of an actuator (Ω1, g1)
and a sensor (D, h), we have p = q = 1.
Let n0 ≥ 1 such that 〈h, ϕn0〉 �= 0, then rank(Gtr

n0,ω) = 1.
The actuator (Ω1, g1) is Ω−efficient asymptotically if 〈g1, ϕn0〉 �= 0, i.e.∫

Ω1

g1(ξ)sin(nπξ)dξ �= 0

For example, if g1 = ϕn0, (Ω1, g1) is Ω−efficient asymptotically but not
Ω−strategic asymptotically, because the condition

∫ 1

0

sin(nπξ)sin(n0πξ)dξ �= 0; n ≥ 1
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is not satisfied. On the other hand, for ω =
]
0, 1

2

[
, h = ϕ1 and g = ϕ2, the

actuator (Ω, g) is not Ω−efficient asymptotically because

〈g, ϕn〉〈h, ϕn〉Ω = 0; ∀ n ≥ 1

But (Ω, g) is ω−efficient asymptotically, because for n0 = 2, we have

〈g, ϕ2〉〈h, ϕ2〉ω = 〈ϕ1, ϕ2〉ω �= 0

Then the relation (35) in corollary 3.11 is verified. Hence, also in the
asymptotic case, a system can be regionally remediable without being it on
the whole domain.

6 Asymptotic remediability and stabilizabil-

ity

In this section, we study regionally the relation between the asymptotic com-
pensation and the notions of stability and stabilizability. We particularly show
that the problem of regional asymptotic compensation may be well defined
even if the system is not regionally stable and that a non stable system may
be remediable without being stabilizable. The nature of this relation depend
on the choice of the actuators, the sensors and the other parameters of the
considered system. To show this, we consider without loss of generality, the
case where ω = Ω. We assume that (S0) is not exponentially stable and that
the unstable part is a finite dimension subspace of the state space Z.

These properties and other situations are illustrated with more details by
considering as second example, a diffusion system with a Neuman boundary
condition.

6.1 Stabilizability and actuators

First, let us recall the notion of stabilizability.

Definition 6.1
The system (S0) is said to be exponentially stabilizable if there exists a feedback
control

u = −Fz

such that the operator A − BF generates a s.c.s.g. (SF (t))t≥o which is
exponentially stable.
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With the same notations, we consider the case of actuators (Ωi, gi)i=1,p and
an operator A defined by (39) and generating a non stable s.c.s.g. (S(t))t≥o.
We have the following characterization result showing the relation between the
unstable part and the choice of actuators stabilizing the system [8,9]

Proposition 6.2
We assume that the system (S0) is not exponentially stable and that there

exist a finite number J ≥ 1 of non negative eigenvalues noted λ1, ..., λJ . Then
the system (S0) excited by p actuators (Ωi, gi)i=1,p is stabilizable if and only if

i) p ≥ sup
1≤n≤J

rn

ii) rankMn = rn for 1 ≤ n ≤ J , with Mn defined in (31).

Proof:

Let

z =

(
zu

zs

)

where zu and zs are respectively the projections of the state z on the un-
stable and the stable parts. We have

{
(Su) żu(t) = Auzu(t) + PBu(t)
(Ss) żs(t) = Aszs(t) + (I − P )Bu(t)

(44)

P is the projection operator on the unstable part and Au is the diagonal
matrix given by

Au =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ1

. . .

λ1

. . .

λJ

. . .

λJ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(45)

where λi appears ri times for i = 1, J . The order of Au is then (

J∑
i=1

ri,

J∑
i=1

ri).

On the other hand, we have
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PB =

⎛
⎜⎜⎜⎝

MT
1

MT
2

...
MT

J

⎞
⎟⎟⎟⎠ (46)

MT
i is the transposal matrix of Mi. Under the condition ii) in the propo-

sition, the finite dimension system (Su) is controllable and hence is stabiliz-
able. Consequently, there exists a control

u = −Fzu

such that

‖ e(Au−PBF )t ‖≤ βe−αt with β, α > 0 and t ≥ 0

Then

‖ zu(t) ‖ ≤ ‖ Pz0 ‖ βe−αt

and

‖ u(t) ‖ ≤ ‖ F ‖‖ Pz0 ‖ βe−αt

Concerning the system (Ss), the operator As generates a s.c.s.g. which is
exponentially stable, then there exist β, α > 0, with α < α, such that

‖ zs(t) ‖ ≤ β ‖ (I − P )z0 ‖ e−αt + β ‖ (I − P )z0 ‖
∫ t

0

e−α(t−τ)u(τ)dτ

≤ β ‖ (I − P )z0 ‖ e−αt+

ββ ‖ F ‖‖ Pz0 ‖ (I − P )z0 ‖
∫ t

0

e−αte−(α−α)τdτ

We then have the result. �

If a non stable system is stabilizable, we have rankMn = rn for 1 ≤ n ≤ J ,
i.e.

kerMn = {0} ; 1 ≤ n ≤ J

then for convenient sensors ( satisfying (34) in proposition 3.10 ), the system
is also weakly asymptotically remediable.
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On the other hand, a non stable system may be asymptotically remediable
but not stabilizable. This is illustrated by the following example.

6.2 Example 2

We consider, without loss of generality, the following one dimension system
with Ω = ]0, 1[ and a Neumann boundary condition:

(S2)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂z(x, t)

∂t
= Δz(x, t) + f(x, t) +

p∑
i=1

gi(x)ui(t) in ]0, 1[×]0, +∞[

z(x, 0) = z0(x) in ]0, 1[

∂z(0, t)

∂x
=

∂z(1, t)

∂x
= 0 in ]0, +∞[

In this case, we have

S(t)z =
∑
n≥0

e−n2π2t 〈z, ϕn〉ϕn

with

ϕn(ξ) =
√

2 cos(nπξ); n ≥ 1 and ϕ0 ≡ 1

The eigenvalues are given by

λn = −n2π2 ; n ≥ 1 and λ0 = 0

(S(t))t≥0 is not exponentially stable and the number of non negative
eigenvalues is J = 1. The operators

H∞u =

p∑
i=1

∑
n≥0

∫ +∞

0

e−n2π2tui(t)dt 〈gi, ϕn〉ϕn

H
∞

f =
∑
n≥0

∫ +∞

0

e−n2π2t〈f, ϕn〉ϕndt

and hence the asymptotic controllability problem are not generally well
defined. The system (S2) is augmented by the output equation:

(E2) y = (〈h1, z〉 , · · ·, 〈hq, z〉)tr

with h1, · · ·, hq orthogonal to ϕ0 , i.e. to the unstable part:

〈hi, ϕ0〉 = 0; 1 ≤ i ≤ q
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The operators K∞
C and R∞

C are then well defined and the characterization
results are similar to those obtained in example 1 for a Dirichlet boundary
condition.

On the other hand, concerning the stabilizability, in the case of one actua-
tor, we have

p = 1 ≥ r0 = 1

and using proposition 6.2, the system is stabilizable if and only if

rankM0 = r0 = 1

i.e.

〈g, ϕ0〉 �= 0

For g = ϕn0 with n0 ≥ 1, we have 〈g, ϕ0〉 = 0 and then the system is not
stabilizable. But for example, if also h = ϕn0 , we have

〈h, ϕ0〉 = 0

The problem of asymptotic compensation is well posed. We have

〈g, ϕn0〉〈h, ϕn0〉 = 1 �= 0

The system is then remediable asymptotically.
This not means that the asymptotic remediability is weaker than the stabi-
lizabilty. The relation between these two notions depend on the choice of the
sensors and the actuators. Indeed:

If g(x) = 2x, we have 〈g, ϕ0〉 = 1, the system is then stabilizable. On the
other hand, for h = ϕ1, we have

〈h, ϕ0〉 = 0

In this case, the problem of asymptotic compensation is well posed. More-
over, we have

〈g, ϕ1〉〈h, ϕ1〉 �= 0

and hence, the system is also asymptotically remediable.

Now, if g = ϕ0, we have 〈g, ϕ0〉 �= 0 and then the system is stabilizable.
But for h = ϕn0 with n0 ≥ 1, we have

〈g, ϕn〉〈h, ϕn〉 = 0 ; ∀n ≥ 1
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consequently, the system is not asymptotically remediable.

Obviously, with a non convenient choice of the sensors and the actuators,
the system may be non remediable asymptotically and non stabilizable. Hence,
for g = ϕ1, we have 〈g, ϕ0〉 = 0 and then the system is not stabilizable.
Concerning the remediability, if h = ϕ2, we have

〈g, ϕn〉〈h, ϕn〉 = 0 ; ∀n ≥ 1

then, the system is not also asymptotically remediable.

Conclusion

In this paper, we have presented a regional asymptotic analysis of the
compensation problem. Indeed, under convenient hypothesis and a convenient
choice of operators and spaces, we have first introduced and characterized the
notions of weak and exact regional asymptotic remediability and regionally
asymptotic efficient actuators. Then, we have introduced and characterized the
notions of weak and exact regional asymptotic controllability and regionally
asymptotic strategic actuators.

Using an extension of the Hilbert Uniqueness Method, we have equally
shown how to find, with respect to the observation only, the optimal con-
trol ensuring regionally the asymptotic compensation of a known or unknown
disturbance. We have also characterized the set of disturbances which are
asymptotically remediable in a region ω of Ω.

We have shown that also in the asymptotic case, a system can be regionally
remediable but not regionally controllable or without being remediable on the
whole domain Ω.

The relation between the regional asymptotic compensation and the notions
of stability and stabilizability is also examined. It is particularly shown that a
system can be asymptotically remediable in a region without being stable or
stabilizable in this region.

Applications to a diffusion system are given and various other situations
are considered.

The results are developed essentially for a class of linear distributed systems
and for zone sensors and actuators, but these results can be extended to other
systems and, with a convenient choice of spaces, to the case where the input and
output operators are not bounded (pointwise sensors and pointwise actuators).
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des Sciences, Rabat, Maroc, 1993.

Received: April 28, 2007


