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Abstract

This paper investigates an abstract game of political competition
between two parties. All political positions are represented by points in
a plane, and the parties choose positions that are as close as possible to
the greatest number of voters, that are divided into a finite number of
types. To adapt the problem to various political landscapes (different
countries, for example), one simply assumes that the distribution of
voters is not uniform. This complexity can be represented by simply
assigning an appropriate weight to each position in the policy plane.

The existence of Nash equilibria in the game is studied by a geo-
metric argument. This approach, in addition to representing the voting
population as a finite distribution of weights, represents the innovation
of the present work.

An algorithm has been developed in order to search for the equilib-
rium position of a given population.
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1 Introduction.

Most of the works studying political competition and elections are based on
the Spatial Theory of Voting, initially developed by Black [6] and Downs [7]
with later contributions of Hinich and Pollard [11], Shepsle and Weingstag [18],
Enlow and Hinich [8] or Hinich and Munger [10] among others.

The Nash equilibrium is studied in general models of competition. It was
stated by first time by John Forbes Nash in his dissertation Non-cooperative
games [12], as a way to obtain an optimum strategy for games with two or
more players.

This paper presents a political competition two-party game where the exis-
tence of Nash equilibria is studied. The game is defined on a two-dimensional
plane where each point represents a different political position. (For example,
one axis might represent the spectrum of fiscal policy, while the other repre-
sents the spectrum of foreign policy.) The two players of the game represent
political parties, who choose their positions in the plane to attract the largest
possible number of voters. The voters are represented by n fixed points on the
plane.

Each player is considered to capture the points which lie closer to its posi-
tion than that of the other player. The perpendicular bisector of the players
locations thus partitions the plane into two different voting regions. Each
player wins the points in its own half-plane, and the winner will be the player
whose region contains more points [17],[19], [4], [13].

To apply this game to a political landscape, we imagine that the players
are two parties denoted p and ¢g. Their locations in the plane are denoted
t',t* € T = R? determined by the policies they offer (the set of points T
is called the policy space). All the political positions appearing in the voter
population are represented by a finite set of types H = {vy,...,v,} C R? [16],
[1].

In order to adapt this model to a particular political reality, we stipulate
that the voter positions v; are not evenly distributed. That is to say, certain
positions in the policy space will be supported by more voters. Extreme po-
sitions (with respect to the majority of political actions) usually have fewer
supporters than moderate positions, for example. It thus seems more reason-
able to consider a weighted distribution of voters.

In order to describe the political preferences of the voters, we work with a
utility function based on the FEuclidean distance between a voter position and
a party position [2], [15], [20]. In this game, we choose to define the utility
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function 7 of position v; as

1

to) = ——
V(i) d(t,v;)) +1

(1)

where d(t,v;) stands for the Euclidean distance between policy ¢ and posi-
tion v;. We consider a distribution of the different types according to a mea-
sure of probability of the form F({v;}) = k;, where ky + ko +---+ k, = 1 and
all k; > 0. Keeping these considerations in mind, we can model the problem
in this way:

We trace the perpendicular bisector between ¢!, t* (we assume ¢! # ¢?), and
consider the two half-planes so defined. We define Q(#!,#?) as the subset of
positions that prefer ¢! to ¢2, i.e., those belonging to the half-plane containing
t!. The fraction p of voters that choose policy t! over ¢? is thus

p(th, t3) = F(Q(t, %)) Zk (t' # %) (2)

We further assume that points which are equidistant between the two poli-
cies (those located on the bisector) prefer the policy t!. Hence, in this game
there are no indifferent voters. There are other ways to model this problem,
see for example Persson & Tabellini [14] and Roemer [16].

The players payoff functions II can thus be defined as

n,1
It =nd k.
. 8) ; ’ if ¢ # 1%,
(£, 12) = n — (¢, 2) (3)

It £2) = I2(¢, £2) = g if ! = 2
If we define the weight of position v; as weight v; = nk;, then the payoff of
policy t! will be the sum of the weights of all positions located in the same
half-plane as ¢!, including the points on the bisector. Here we assume that the
policies are distinct (¢! # ¢?). The second policy, t?, follows the same pattern,
except for positions on the bisector.
We note that the total payoff is equal to the number of voters:

i weight v; = i nk; =n
i=1 i=1

This game is a discrete version of the Downs game [16], [9], [3].
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2 Nash equilibrium

2.1 Necessary conditions

Let us see the following necessary condition, that is very easy to prove:

Lemma 2.1 In a game with complementary payoffs, if for any position t of
the first player the second player can always obtain a payoff of n/2 (half of the
whole payoff), then the equilibrium position (t*,t*) must satisfy T (t!,1?) =
12t £2).

2.2 Necessary and suficient conditions

k
Definition 2.2 We define the weight of a set {v;,, ... ,v;, } as Z weight v; .
j=1

Definition 2.3 A minimal subset of the set {vq,...,v,} is a subset of
points whose weight is greater than n/2, and that itself contains no other subset
with weight greater than n/2.

Theorem 2.4 Consider all the possible minimal subsets of {vq,...,v,}.
There exist Nash equilibria in the game if and only if the intersection of the
convez hulls [5] of these subsets is not the empty set. Furthermore, the equi-
libria positions are the positions (t*,t%) such that t',t* are in the intersection.

Proof If the intersection of the convex hulls is not empty and ¢!, #* are in
the intersection, then neither of the parties can win more than n/2 voters by
moving to a different point.

If TI* (¢, %) > n/2, for example, then there must exist a minimal subset in
the half-plane not containing 2. If this is true, however, then the convex hull
doesn’t contain t2, a contradiction.

If TI' (¢!, %) < n/2, on the other hand, since the playoffs are complementary
we must have IT?(¢',¢?) > n/2. In this case there exists a minimal subset whose
convex hull doesn’t contain ¢! (because the points are in the half-plane to which
t? belongs). This is also a contradiction. We thus have both IT'(¢!,#?) > n/2
and TI%(t!,#?) > n/2, so the only possible solution for complementary payoffs
is TIL (¢!, ¢2) = TI2(¢, %) = n/2.

To recapitulate, we have II(#,#?) < n/2 = II(t!,t?) for both II' and II2.
The point (¢!, £?) is therefore a position of equilibrium.

Indeed, these are the only positions of equilibrium. If #' did not belong
to the intersection of the convex hulls of minimal subsets, then the second
party could choose a position that separated ¢! from the convex hull of a set
of points with weight greater than n/2. The second party could then gain a
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payoff greater than n/2, which is a contradiction since (t!,¢?) is a position of
equilibrium .

If the intersection of the convex hulls is empty, on the other hand, we
may consider any position (¢',¢?). If IT'(¢!,#?) < n/2, then the first party
can choose a position t' that separates ¢ from a subset of points with weight
greater than n/2 (i.e., a subset of points whose convex hull does not contain
t?).

Then we have TI'(#, %) > n/2 > TI'(t',#?), so (t!,1?) is not a position of
equilibrium. [

2.3 Uniqueness

We will now show that the intersection of the convex hulls of minimal subsets
described in the previous section contains at most a single point, unless the n
voter positions all lie on a single line. We will also look at a particular case
where the intersection must belong to the set of positions {v1, ..., v,}.

Lemma 2.5 If there is no combination of points from the set {vy,...,v,}
with weight n/2, then the intersection of the convex hulls of minimal subsets
is at most in one point of the set: {v;}.

Proof We can always obtain a straight line R containing only one point
from the set {vy,...,v,} such that the positions in the closed half-plane below
R have total weight greater than n/2 and such that no line parallel to R and
below R can meet the same condition. R thus defines a minimal subset of
points whose convex hull is contained in the closed half-plane below R.

Figure 1: Case with no combination of points with weight n/2 .

On the other hand, we next prove that the subset of points in the closed
half-plane above R has a weight greater than n/2:
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If the weight of the subset of points in the closed half-plane above R were
less than n/2; then the subset of points in the open half-plane below R would
have a weight greater than n/2. In this case there would also be a parallel
line R’ below R such that the points in the closed half-plane below R’ have a
weight greater than n/2, a contradiction. (The subset of points in the closed
half-plane above R cannot have weight n/2, since we assume that there is
no combination of points with a weight of exactly n/2). There is therefore
a minimal subset of points whose convex hull is contained in the closed half-
plane above R. The intersection of the two convex hulls must therefore be
contained in R itself, which as we postulated earlier contains only one of the
voter positions. The set of intersections of all the convex hulls, if it is not
empty, must therefore be unitary and in a voter position (Figure 1). [

Now we can get to a more general result:

Lemma 2.6 If the n voter positions are not contained in a single line, then
the convex hulls of minimal subsets intersect is at most in one point.

Proof Let v be a voter position on the boundary of the convex hull of the
set of n points. We may choose v as the point with the lowest z-coordinate
(or if the lowest x-coordinate is shared by more than one point, we may take
v as the point with the lowest y-coordinate as well), then sort the remaining
positions by their angle with respect to v: {v1,...,v,_1} (the angles can be
measured from the vertical half-line below v, for example). Now consider the
first point v; such that weight{vy,...,v;_1} > n/2 (or if such a point doesn’t
exist, define v; = v,_1).

If we have found i < (n — 1), then we have weight{vy,...,v;_1,v} > n/2.
The convex hull of a minimal subset of {vy,...,v;_1,v} is therefore contained
in the closed half-plane below R connecting v and v;_;.

Now consider the set {v;_1,...,v,_1,v}, which is the complementary set
to {v1,...,v;_2}. The latter set must have a weight less than n/2, according
to the definition of v;. We thus have weight{v;,_1,...,v,_1,v} > n/2, and
it follows that the convex hull of a minimal subset of {v;_1,...,v,_1,v} is
contained in the upper closed half-plane defined by R. The intersection of the
two convex hulls is therefore contained in R.

If v; = v,,_1, then each closed half-plane defined by the line joining v, v, _;
contains subsets whose weights are greater than n/2. We thus have two convex
hulls of minimal subsets with weight greater than n/2 whose intersection is
included in the line joining v and v,,_;. Even in this case, we find that there
exists a point v; such that the intersection of the convex hulls is contained in
the line joining v, v;.

Since the n voter positions are not arranged in a line, however, we can
choose a different point v’ to begin the above argument; one that is on the
boundary of the convex hull but not in R. By repeating the process, we will



Two-party political competition 2721

find another two minimal subsets whose convex hulls intersect somewhere along
the line R’ connecting v to some other point v}. The intersection of all four
convex hulls we have considered, if it is not emply, must therefore be the single
point contained in the intersection of R and R’. So the intersection of all the
convex hulls of minimal sets if it is not empty, must be in a single point. [

In the degenerate case that all the points are in a single line and there
exists a combination of points with weight n/2, the intersection of the convex
hulls is an infinite set.

This analysis leads to the following conclusion:

Theorem 2.7 The equilibrium in the present game, if it exists, is the unique
point (t,t) for some t € R?. In other words, both parties will choose to offer
the same policy, except in cases where the voter positions lie along a single
line.

3 The algorithm.

In this section, we develop an algorithm to find the equilibrium position if it
exists. The algorithm is based on the technique described in Proposition 2.6,
and on the following result:

Lemma 3.1 Ift belongs to the intersection of convex hulls of minimal sub-
sets, and R is a line connecting t and some point of the initial position set,
then the subset of positions contained in the set A defined by the union of the
open half-line of R with t as its origin and the open half-plane defined by R,
has a weight that is less than or equal than n/2.

Proof If the positions in A had a weight greater than n/2, then the convex
hull of the minimal subset of these points would also be contained in A, and
then ¢ would not belong to the convex hull, this is a contradiction. []

3.1 Development of the algorithm

Given an initial set of n points, we want to find the intersection of the convex
hulls of minimal subsets.

INPUT: A set of n points in the plane not lying along a single line. Each
of these points has an assigned weight.

e Step 1 (localization of the “candidate” point):

Find the lines R and R’ connecting v,v; and v',v} by the method de-
scribed in Lemma 2.6, such that the weights of the subsets included in
each of the four closed half-planes so defined are greater than n/2. Find
the intersection p of these two lines. Note that R and R’ cannot be
parallel.
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Step 2 (initialization of the weights):

Trace the vertical line containing p, and determine the weight [ of the
points in the union of the open half-line below p and the open left half-
plane (L). Then find the weight k of the points contained in the union of
the open upper half-line and the open right half-plane (K). Note that if
p belongs to the initial set of points, then k + [ + weight p = n; otherwise
k+1=n.

Step 3 (Sort the other points in the set according to the “candidate”):

Sort the points of the subset in L with respect to their angle from the
half-line below p. Also sort by angle any points of the subset in K, taking
as origin the half-line above p. The result is a sorted set {vy,..., v, 1}
containing the points which are distinct from p (v; is the point with the
smallest angle, vq is the point with the second smallest angle, and so on).

Step 4 (calculation of the weights):

For each point v; (i = 1,...,n — 1), trace the line @); connecting (v;, p)
and define:

— k; as the weight of all points in the union of the open half-line to
the left of p and the open half-plane below @);.

— [; as the weight of all points in the union of the open half-line to
the right of p and the open half-plane above Q).

Remark 1f v; lies on the vertical line through p, then the sets that deter-
mine k; and [; are K and L respectively. In this case k; = k and [; = [.
We thus always have k; +1; = k + L.

We also note that the weights k;,[; can be obtained recursively from
kifl, lifl as follows:

For each point, the weight k; is equal to k;_1 plus the weight of the points
in the open half-line (of @;) to the left of p and minus the weight of the
points in the open half-line (of ();) to the right of p.

Similarly, /; is equal to l;_y plus the weight of the points in the open
half-line (of @;) to the right of p and minus the weight of the points in
the open half-line (of @;) to the left of p.

To begin the recursive calculation, we define kg = k, [y = (.

Output: If k;, l; < n/2 for every i = i,...,n— 1, then the unique position
of equilibrium will be (p, p). Otherwise, as Lemma 3.1 shows, the intersection
is an empty set and there is no equilibrium in the game.
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3.2 Remarks on the algorithm

We now discuss the complexity of the above algorithm [5]:
To accomplish the first step of the algorithm, we may arrange the points
by angle and define the recursive function

my = weight v; + weight p, (4)
m; = m;_1 + Welght (U 1> 1. (5)

v; is the first point found for which m; > n/2. The same approach is used to
find v}.

The complexity of this task is linear with respect to n, because in the worst
case we would have to calculate only the n — 1 values mq,...,m,_1.

The complexity of sorting n points is O(nlogn). This step is necessary
to find the initial point v and calculate the values k,l. The complexity of
computing each value k;, [; calculated in the fourth step is O(1). Since in the
worst case we must calculate n — 1 values for both k; and [;, the complexity of
the fourth step is linear.

As sorting is the most complex task, the total complexity of the algorithm
is O(nlogn).

4 Conclusions

This work determined the Nash equilibrium of a competitive political game.
The scenario presented is a discrete version of the Voronoi game in computa-
tional geometry, and also a discrete version of the Downs model in political
economics. Furthermore, we have stated the conditions that must be satisfied
by possible equilibrium positions.

To associate the model with a real political situation, we can divide the
voter population into a finite number of types represented by specific points
on a plane. Each of these positions is then assigned a weight representing
the proportion of voters. Each party chooses a point on the plane represent-
ing their offered policy, and receives the maximum payoff when it minimizes
the Euclidean distance to as many voters as possible. This treatment, when
coupled with a geometric algorithm for determining the equilibrium position,
represents a new insight into the solution of such games. Despite this simplifi-
cation of the voter population, we obtain results similar to those presented by
works where voter types are represented by a continuum [14], [16].

Except for the particular case where all voters are aligned along a single
line of the plane, an equilibrium, if it exists, is attained only when both parties
choose to offer the same policy to their voters. That is to say, the two parties
will converge to essentially the same political program in order to maximize
the number of voters.



2724 M.2 D. Lépez, J. Rodrigo and I. Lillo

Although in this paper we worked with a simplified (two-party) model,
nowadays this treatment is adequate for the majority of countries. In most
democracies there are two parties that represent the vast majority of voters,
and we can observe that in general their policy offerings become more similar
over time (they tend towards the equilibrium position). Our model succeeds
in representing this fact.

To conclude, we note that the geometric scope in the treatment of the model
allows us to obtain results related with geometric structures as the convex hulls
and their intersections, that can have theoretical interest.
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