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Abstract

The application of statistical methods to data analysis requires that
the data set concerned should follow some particular assumptions. For
example, AVOVA assumes that the response variable is normally dis-
tributed within groups, and the variances in the different groups are
identical. However such assumptions are generally not observed by data
collected through Likert Scales. This paper presents a computation pro-
cedure for transforming Likert-scale data into numerical scores that bet-
ter follow the assumption of normality, based on the scaling procedure
proposed by E. J. Snell. We have also conducted an empirical study to
investigate the effects of the proposed transformation on data analysis.
Finally this paper addresses the decision on whether or not that Likert-
scale data should be transformed to scores that are more compliant to
statistical assumptions.
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1 Introduction

In the arena of social sciences, Likert scale (Likert, 1932) is a popular instru-
ment to measure constructs such as attitudes, images and opinions. To facil-
itate data analysis, each response category on the scale is generally assigned
successively an integer value. However assigning successive integer values to
scale categories has also been criticised for not being realistic. For example,
for an injury scale of five categories represented by none, minor, moderate,
severe, and fatal, the degree of injury seriousness between severe and fatal is
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more significant than that between none and minor. Assigning successive inte-
gers to the scale categories would not reflect the realistic differences in injury
seriousness between or among scale categories.

Although Likert-scale data can be analysed by nonparametric procedures
(Agresti, 2002; Fleiss, 1981), applying parametric procedures to Likert-scale
data analysis is still conveniently adopted by researchers in social sciences.
Having said that, the application of parametric procedures to data analysis
requires that the data set concerned should conform to some statistical as-
sumptions. For instance, (1) both AVOVA and regression analysis assume,
among others, that the observed response variables are normally distributed.
(Montgomery and Runger, 2006; Neter et. al. 1992) (2) Parametric tests
for population mean rely on the assumption that the sample data has an ap-
proximate normal distribution. Assumptions such as these are generally not
observed by data collected through Likert Scales.

To address the aforementioned problems, we introduce a computation pro-
cedure based on E. J. Snell’s scheme that can efficiently transform Likert scale
data into more realistic and normally distributed data for analysis. This pa-
per also presents an empirical study on two surveys to evaluate the effects of
the transformation on data analysis. Finally we give some suggestions as to
whether or not it is a good practice to proceed with the transformation.

2 REVIEW of E. J. SNELL’s SCALING PRO-
CEDURE

2.1 The Paradigm

An optimal scoring procedure was first suggested by Fisher (1938). However it
takes no account of scale order and distribution assumptions, and thereby could
incorrectly reject the null hypothesis in significance testing. In light of the
problems arise from analysing subjective measurements in many fields, Snell
(1964) presented a method of determining numerical scores for the categories of
subjective scales such as Likert scale. The scores so determined, as proclaimed
by E. J. Snell, are suitable for use in methods of analysis requiring assumption
of normality.

The Snell method assumes that there is an underlying continuous scale of
measurement along which the scale categories represent intervals. For a scale
of k categories, it is defined that category s; corresponds to the interval z;_;
to x; as shown by Figure 1.
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Figure 1: Intervals for scale categories.

Assume that there are m groups of observations, then the probability of an
observation of group ¢ in category s; is defined as:

P(z;) — P(z;j—1), where i = 1,...,m; j = 1,2,... .k (1)

And the underlying continuous distribution function P;(z;) takes the form:
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which is a logistic function with mean —a; and variance 72 /3. Since the logistic
distribution extends in both directions to infinity, zy and x; take the values
—oo and oo respectively, and correspondingly P,y = 0 and Py, = 1. Also since
the choice of origin is arbitrary, x; can be assigned 0.

Let n;; denotes the number of observations of group ¢ in category s; and
N; the total number of observation in category s;, i.e.

Ny => ny (3)
=1

Then the maximum likelihood estimates of the parameter z; can be ob-
tained by solving the equations (4) and (5).
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2.2 The Approximate Solution

Snell had shown that an adequate approximate solution for x; can be achieved
by replacing the theoretical proportions Pj; in equations (4) and (5) by the
observed (accumulative) proportions p;;. Provided that there are no obvious
irregularities in the data that may cause significant discrepancies between the
theoretical and observed proportions, the estimates of z; thus obtained will
be close to the true values for ;. Once the class boundaries x; are estimated,
mid-points are taken as scores for categories, i.e.

(zj +xj1)

2 fOTj:2,3,"',/€—1 (6>

Sj:

For the extreme category sy, we take (zx_1+1.0) or (z5_1+1.1) respectively
as its score according to whether the average of the observed proportions in
category x, (i.e. 1 — p; 1) is less than 0.10, or lies between 0.10 and 0.20. A
point with a similar distance below z; is taken as the score for s;.

2.3 Some Limitations

As pointed out by Snell, the application of the scaling procedure should take
into account the following facts:

1. The method takes no account of the experiment design behind the data.

2. The method is not applicable if there is only one observation in each
group.

3. There should be relatively few observations in the extreme scale cate-
gories.

4. If the grouping is coarse, the estimation and analysis of the parameters
a; is preferable to the use of scores.

5. Irregularities in data should be within tolerance. In cases of doubt,
iteration to a more accurate solution is recommended.

These facts constitute a check list for deciding on the appropriateness of
the data set for scaling.

3 The COMPUTATION PROCEDURE

Before the transformation we need to (1) check the validity of the collected
data, (2) preprocess missing values in the data set, (3) evaluate the appropri-
ateness of the transformation, and (4) select a computation tool. It is possible
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to use a spreadsheet-like tool such as Excel to do the approximate transfor-
mation. However, it may be error prone and troublesome when the size of the
data set is large. This paper presents an algorithm as shown in the following
section that can be used as the core of a generalized tool for scoring.

3.1 The Algorithm

The following is an algorithm for scoring based on Snell’s scaling procedure.
The algorithm is straightforward and simple with the idea of KISS principle in
mind for illustration purposes. A more detailed description of the algorithm
can be found in the appendix.

Procedure SnellTransformation (#OfRespondents, #OfScaleltems, #OfCategories)
BEGIN
1. declare integer array scaleData [#OfRespondents—+1]|[#0OfScaleltems+1],
integer frequencies [#OfScaleltems+1|[ #OfCategories+1],
integer array totalForNj [#OfCategories+1],
integer array totalForGi [#OfScaleltems+1],
integer array accumulativeFrequencies [#OfScaleltems-+1|[ #OfCategories+1|;
2. declare real array accumulativeProportions [#OfScaleltems-+1][#OfCategories+1],
real array interval[#OfCategories+1],
real array X [#OfCategories+1],
real array scores[#OfCategories+1];

3. Initialize all declared array elements to 0.

4. Populate scaleData array.

5 Compute the frequency of each category (n;;) for each scale item.

" Let frequencies(i][j]=n;;.

6. Compute the total frequency (INV;) for each response category. Let totalNj[j]=N;.

7. Compute the total response frequency (G;) for each scale item. Let totalForGi[i]=G;.

3. Compute the accumulative frequencies of response categories (f;;) for each scale item.
Let accumulativeFrequencies|i][j]=fi;

9. Compute the accumulative proportions for response categories (p;;) for each scale
item. Let accumulativProportions|i][j|=p;;.

10. Compute the intervals (z; — x;_1) corresponding to the non-extreme response cate-

gories.
11.  Compute interval boundaries (x;) for non-extreme response categories.
12.  Compute scores (s;) for non-extreme response categories. Let score[j|=s;.
13. If the avg of the observed proportions in the first category is less than 0.10 then
score[1] = X][1] -1.0
else
score[1] = X[1] -1.1
14. If the avg of the observed proportions in the last category k is less than 0.10 then
scorelk] = X[k-1] + 1.0
else
score[k] = X[k-1] + 1.1
END
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3.2 Complexity of the Algorithm

The memory space required for the execution of the algorithm is declared by
statements 1 and 2. For input data set of size n (defined as: #0 f Respondentsx
#O fScaleltems) the memory space for data needed for computation can be
estimated by the following expression, assuming that each array element re-
quires 4 bytes of memory space:

dpytes * [(#O f Respondents x #0O fScaleltems) + 3 * (#0 fScaleltems *
#O fCategories) + 4 x #0 fCategories + #O f Scaleltems]

It can be easily seen from the above expression that the total space re-
quirement is a linear combination of terms dominated by #O f Respondents
and #0 fScaleltems. Under the uniform cost criterion (Aho et.al., 1976), the
space complexity is simply O(n).

The time complexity of the algorithm is dominated by the loops spread
across the rest of the algorithm. Since many of the instructions within loops
perform simple computations only, it is reasonable to assume the uniform cost
criterion for time complexity, and thus the total execution time is a linear
combination of the execution time for statements 3 through 14. Without lost
of generality, the time complexity of the algorithm is O(n).

4 The CASE STUDY

4.1 The Melancholic Survey

To investigate the effect of the transformation on Likert-scale data analysis, we
have conducted a field survey on the melancholic status of junior high school
students by using a well-recognized Melancholy Self-Testing Scale provided
by John Tung Foundation'. The scale is a 4-category scale consisting of 18
items. Alongside the aforementioned scale, the questionnaire for the survey
also contains items related to the demographic characteristics of respondents.

After validation and verification of the collected data, we generated two
sets of data for analysis from the original survey data, each consists of 398
valid observations. The first data set is derived from assigning successive
integers to scale categories. The second data set is generated by applying the
Snell scaling procedure to the categories of the scale. The scores for the scale
categories, shown below, in the second data set are computed by resorting to
the procedure as described in section 2.

S1=-1.0 82=0.704 S3=1.97} S4=3.5)1

!The web site for John Tung Foundation can be reached at http://www.jtf.org.tw/
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Since the scale is a summation scale, the computed scores have been ad-
justed to 1, 2.704, 3.974 and 5.541 respectively for data analysis. The salient
distribution features of the two data sets are shown in Table 1.

Data set 1 Data set 2
Item+# (Integer scores) (Snell scores)
skewness kurtosis normality skewness kurtosis normality
1 1.715 2.713 X 1.494 1.787 X
2 0.624 -0.329 X 0.447 -0.423 X
3 0.860 -0.194 X 0.713 -0.401 X
4 0.818 -0.537 X 0.711 -0.651 X
5 2.042 4.542 X 1.780 3.085 X
6 1.263 0.711 X 1.114 0.330 X
7 0.737 -0.493 X 0.609 -0.614 X
8 0.932 -0.164 X 0.801 -0.363 X
9 0.426 -0.907 X 0.316 -0.880 X
10 0.751 -0.447 X 0.613 -0.567 X
11 0.617 -0.535 X 0.472 -0.598 X
12 1.176 0.670 X 0.997 0.229 X
13 1.232 0.452 X 1.112 0.177 X
14 0.935 -0.356 X 0.839 -0.492 X
18 2.490 5.295 X 2.382 4.767 X
16 1.840 2.576 X 1.690 2.012 X
17 1.304 0.544 X 1.197 0.292 X
18 1.477 1.011 X 1.375 0.731 X
Total Score 1.032 0.801 X 0.951 0.621 X

Note: (1) X represents the rejection of normality. (2) a=0.05 (8) Statistics computed by SPSS.
Table 1: The salient distribution features of the data sets.

Table 2 illustrates the important statistics when applying the selected
statistic techniques to the data sets.

Total variance explained: 56.52%
Grouping of items after Varmax transfor-
mation: same as data set 2

Techniques Data set 1 Data set 2
(Integer scores) (Snell scores)
Cronbach's oo = .923 Cronbach's o« = .923
KMO = .932 KMO = .934
Bartlett's test of sphericity: (p=.000%*) Bartlett's test of sphericity: (p=.000%*)
Factor Analysis | Number of A>1: 3 Number of A>1: 3

Total variance explained: 56.44%
Grouping of items after Varmax Transfor-
mation: same as dataset 1

Pearsony? Test

oGender(Male vs. Female): .000**
oSports Intensity (Strong vs. Normal)
For DF Junior High School: .000**
For KC Junior High School: .223

For Data Set: .475
oSports Type vs.
tion: .561

©oSchool vs. Melancholy Classification: .704

Melancholy Classifica-

oGender(Male vs. Female): .000**
oSports Intensity (Strong vs. Normal)
For DF Junior High School: .004*
For KC Junior High School: .218

For Data Set: .345
oSports Type vs.
tion: .391

©School vs. Melancholy Classification: .183

Melancholy Classifica-

AVOVA

Sports Type vs. Melancholy Status: .521

Sports Type vs. Melancholy Status: .534

Note: (1) a=0.05 (2) Statistics computed by SPSS.
Table 2: Results from applying selected data analysis techniques.
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4.2 The Occupational Stress Survey

The survey data related to the occupational stress of Taiwanese labour (Li,
2002) is used as another example for illustration. In that particular survey,
the occupational stress is measured by a modified six-category scale derived
from the OSI-2 scale items. The scores for the response categories of the scale

are shown below:

S1=-1.1, S2=0.458, S3=1.394, S4=2.456, S5=8.744, S6=5.448

Since the scale is also a summation scale, the computed scores have thus
been adjusted to 1, 2.558, 3.494, 4.556, 5.844 and 7.548 respectively for data
analysis. The salient features of the two data sets are shown in Table 3.

Data set 1 Data set 2
Features
(Integer scores) (Snell scores)
Distribution None of the items conforms to the normal- Non.e of the 1t'ems conforms to the nor
. . mality assumption. However, skewness has
features 1ty assumption.

been improved.

Factor Analysis

Cronbach's a=.959

KMO=.952

Bartlett's test of sphericity:(p=.000**)
Number of A>1: 7

Total variance explained: 60.174%
Grouping of items after Varmax transfor-
mation: slightly different from data set 2.

Cronbach's a=.958

KMO=.950

Bartlett's test of sphericity:(p=.000**)
Number of A>1: 7

Total variance explained: 59.869%
Grouping of items after Varmax Transfor-
mation: slightly different from data set 1.

AVOVA

oEducation level vs. stress: p=.016*
Homogeneity of variances: p=.051

Age group vs. stress: p=.058
Homogeneity of variances: p=.532
oWork shift vs. stress: p=.367
Homogeneity of variances: p=.000**
oSports type vs. stress: p=.296
Homogeneity of variances: p=.000**
oExercise frequency vs. stress: p=.338
Homogeneity of variances: p=.000**
oSports intensity vs. stress: p=.054
Homogeneity of variances: p=.233

oJob title(manager or otherwise) vs. stress:
p=.919; Homogeneity of variances: p=.669
oYears of service vs. stress: p=.026*
Homogeneity of variances: p= .002*

oEducation level vs. stress: p=.022*
Homogeneity of variances: p=.036*

Age group vs. stress: p=.047*
Homogeneity of variances: p=.621
oWork shift vs. stress: p=.286
Homogeneity of variances: p=.000**
oSports type vs. stress: p=.367
Homogeneity of variances: p=.001**
oExercise frequency vs. stress: p=.334
Homogeneity of variances: p=.000**
oSports intensity vs. stress: p=.063
Homogeneity of variances: p=.236

oJob title(manager or otherwise) vs. stress:
p=.856; Homogeneity of variances: p=.576
oYears of service vs. stress: p=.025*
Homogeneity of variances: p=.002*

Note: (1) a=0.05 (2) Statistics computed by SPSS.
Table 3: The salient features of the occupational stress data sets.

4.3 Discussions

Based on results shown in Table 1, Table 2 and Table 3, we have the following

findings:

1. In both scenarios, transformation of scale data based on E. J. Snell scal-
ing procedure does not do much in making the transformed data sets
pass the normality test. However, the transformed data sets, in general,
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conform better to normality.

2. The statistics calculated for factor analysis show that the transforma-
tion does not incur much difference in exploring and interpreting factors.
Still, scale items strongly connected tend to be grouped together in both
scenarios.

3. The Pearson x? tests in the first scenario led to the same decisions for
both data sets.

4. Not surprisingly, since the data sets in both scenarios do not pass the
normality test, many ANOVA computations failed the tests for variances
homogeneity. Having said that, the transformation does have marginal
effects on age groups.

As highlighted in section 2, the scaling procedure has its limitations and as-
sumes that the theoretical probability function is logistic. The transformation
does not guarantee that the derived data set will pass normality tests.

5 CONCLUSIONS

Likert scale is a popular instrument to collect subjective data such as attitudes,
images and opinions in the field of social sciences. Applying parametric proce-
dures to Likert-scale data relies on assumptions about distribution properties
of data, which are often accepted to be true, or are considered irrelevant. And
this convenient approach to either accepting or ignoring statistical assumptions
for parametric methods is considered to be too optimistic. Nonetheless, assign-
ing integer scores successively to scale categories is often criticised for being
not realistic and not conforming to the assumptions required by parametric
methods.

The scaling procedure proposed by E. J. Snell is a candidate procedure,
as pointed out by Fleiss (1981), for determining the scores for the categories
of subjective scales. In this paper we have introduced the concepts and the
computation procedure for determining scores for scale categories based on
Snell’s scaling procedure. The computation procedure has linear complexity in
terms of time and space requirements. The study on the two surveys presented
in this paper shows that the distribution of the transformed data sets tilts more
toward normality; and the results from applying the selected data analysis
techniques are very much the same for both data sets in each survey scenario.
If management practice allows, we would avoid assigning successive integers to
scale categories because integer scoring easily attracts doubts and criticism.

There are other approaches, such as transformations based on fuzzy the-
ory and random-effects models (Fielding, 1999), to dealing with the scoring
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of subjective categories. In the future, we may consider realizing other trans-
formation procedures and conduct more thorough comparisons based on real
world survey data. Furthermore, we may also consider developing the algo-
rithm and system to obtain the iterative estimates of a; and z; for E. J. Snell’s
scaling procedure.

APPENDIX:Detailed Algorithm

Procedure SnellTransformation (#0fRespondents, #0fScaleltems, #0fCategories)
BEGIN
declare integer array scaleData [#0fRespondents+1] [#0fScaleltems+1],

integer frequencies [#0fScaleItems+1][ #O0fCategories+1],

integer array totalForNj [#0fCategories+1],

integer array totalForGi [#0fScaleltems+1],

integer array accumulativeFrequencies [#0fScaleltems+1][ #0fCategories+1];
declare real array accumulativeProportions [#0fScaleltems+1][ #0fCategories+1],

real array interval[#0fCategories],

real array X [#0fCategories+1],

real array scores[#0fCategories+1];

Initialize all declared array elements to O.
Populate scaleData array.

// Compute the frequency of each category (nij) for each scale item.
// Let frequencies[i] [jl=nij.
for (r=1; r<=#0fRespondents; r++)
for (s=1; s<=#0fScaleltems; s++)
begin
response=scaleDatalr] [s]
if (response >=1) and (response <=#0fCategories) then
frequencies[s] [response] ++
end

// Compute the total frequency (Nj) for each of response category.
// Let totalNj[j] = Nj.
for(c=1; c<=#0fCategories; c++)
for (s=1; s<=#0fScaleltems; s++)
totalForNj[cl=totalForNj[c]+frequencies[s] [c]

// Compute the total response frequency (Gi) for each scale item.
// Let totalForGil[i]=Gi.
for(s=1; s<=#0fScaleltems; s++)
for(c=1; c<=#0fCategories; c++)
totalForGi[s]=totalForGi[s]+frequencies[s] [c]

// Compute the accumulative frequencies of response categories (fij) for
// each scale item. Let accumulativeFrequencies[i] [j]=fij.
for(s=1; s<=#0fScaleltem; s++)
for(c=1; c<=#0fCategories; c++)
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if ( ¢ is equal to 1) then
accumulativeFrequencies[s] [c]=frequencies[s] [c]
else
accumulativeFrequencies[s] [c]=accumulativeFrequencies[s] [c-1]+
frequencies[s] [c]

// Compute the accumulative proportions for response categories (pij) for
// each scale item. Let accumulativProportions[i] [j]=pij.
for(c=1; c<=#0fCategories; c++)
accumulativeProportions[s] [c]=accumulativeFrequencies[s] [c]/totalForGi [s]

// Compute the intervals corresponding to the non-extreme response categories.
for (c=#0fCategories-1; c>1; c--)
if (c is equal to #O0fCategories-1) then
interval [c]=F1(frequencies,accumulativeProportions,
totalFoNj,#0fScaleltems,#0fCategories,c)
else
interval [c]=F2(frequencies,accumulativeProportions,totalFoNj,
interval[c+1] ,#0fScaleltems, #0fCategories, c)

// Compute interval boundaries (xj) for non-extreme response categories.
let X[0]=(minimum int value), X[1]=0, and X[#0fCategories]=(maximum int value)
for (c=2; c<#0fCategories; c++)
X[cl=X[c-1] + intervals[c]

// Compute scores for response categories.
for (c=2; c<#0fCategories; c++)
scores[c]=(X[c]+X[c-11)/2

if the average of the observed proportions in the first category is
less than 0.10 then
core[1]=X[1]-1.0
else
score[1]=X[1]-1.1

if the average of the observed proportions in the last category k is
less than 0.10 then
score[k]=X[k-1]+1.0
else
score[k]=X[k-1]+1.1
END

Function Fl(frequencies, accumulativeProportions, totalFoNj, #0fScaleltems,
#0fCategories, c)
BEGIN
Return a value representing the interval corresponding to the last
but one category using formula 4.
END

Function F2 (frequencies,accumulativeProportions,totalFoNj,
interval [c+1] ,#0fScaleltems, #0fCategories, c)
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BEGIN
Return a value representing the interval corresponding to a category in between

the second and the last but two categories using formula 5.
END
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