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Abstract

We consider a lognormal diffusion market and prove that the average
portfolio does not provide accurate dynamics of the real portfolio, and
the expected functionals of the average portfolio do not approximate
efficiently the option pricing dynamics on the real portfolio.
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1 Introduction and results

Our aim is to analyze one intuitive approximation of the random evolution
of a portfolio on the basis of the dynamics of its assets. The model for the
asset prices that we consider here is based on a (m+1)-dimensional lognormal
diffusion process consisting of one riskless asset or bond, m risky assets or
stocks, and m driving processes or sources of randomness. The asset price
processes Si

t (i = 0, 1, . . . , m) over a finite horizon t ∈ [0, T ], T < +∞, are
given on a filtered probability space (Ω,F , (Ft)0≤t≤T , P ) by

dS0
t = rtS

0
t dt, dSi

t = Si
t

(
bi
tdt +

m∑
j=1

σij
t dW j

t

)
for i = 1, 2, . . . , m, (1.1)

where S0
0 = 1 and Si

0 > 0 (i = 1, 2, . . . , m) are constant. We may and shall
suppose that Ft is the minimal σ-algebra generated by the m-dimensional
standard Brownian motion (W 1

t , . . . , W m
t ) augmented by the P -null sets. The

appreciation rate bi
t, white noise volatility σij

t and interest rate rt are deter-
ministic and continuous on [0, T ].

Let us consider an investor holding gi
t shares of the ith asset (i = 0, 1, . . . , m)

at time t ∈ [0, T ]. We assume (see [1]) that the functions gi
t are strictly positive
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and continuous. Think for instance to the case of financial indices, that can
be regarded as portfolios with time-constant strategy. Then the value of the
investor’s portfolio at time t ∈ [0, T ] is given by

Vt :=
m∑

i=0

gi
tS

i
t . (1.2)

The product gi
tS

i
t can therefore be interpreted as the value of investment in

the ith asset at time t, where the asset price Si
t follows (1.1). In the sequel we

assume the so-called self-financing constraint that at trading times the value
of the portfolio does not change, that is, between trading times the number of
invested shares gi

t remains constant (cf. [1], [2]). As a consequence of (1.2) we
have that V0 is constant and

dVt =
m∑

i=0

gi
tdSi

t for t ∈ (0, T ]. (1.3)

Due to the nature of the component asset dynamics in (1.1), it is not obvious
to identify in a simple way the dynamics of the appreciation rate and volatility
of V from the coefficients of the underlying assets. Indeed, by (1.3) and Itô’s
formula for mutidimensional diffusion processes (see [2]), we can write for the
portfolio V the following stochastic differential equation

dVt = Vt

(
btdt +

m∑
j=1

σj
t dW j

t

)
, (1.4)

where the appreciation rate bt and noise volatility σj
t are given by

bt =
1

Vt

(
rtg

0
t S

0
t +

m∑
i=1

bi
tg

i
tS

i
t

)
, σj

t =
1

Vt

m∑
i=1

gi
tS

i
tσ

ij
t for j = 1, 2, . . . , m.

Obviously the latter expressions are difficult to handle, as the price processes
Si

t (therefore the noises (W 1
t , . . . , W m

t )) are involved therein.
Instead, we shall consider that the portfolio dynamics is approximated by

a process with average appreciation rate and average volatility that do not
depend on the Brownian noise in the market, but only on the coefficients rt,
bi
t and σij

t . More precisely, we consider the average portfolio process V̄t defined
by the diffusion stochastic differential equation

dV̄t = V̄t

(
b̄tdt +

m∑
j=1

σ̄j
t dW j

t

)
, (1.5)

with V̄0 = V0, and where the appreciation rate b̄t and noise volatility σ̄j
t are

given by

b̄t =
1

m + 1

(
rt +

m∑
i=1

bi
t

)
, σ̄j

t =
1

m + 1

m∑
i=1

σij
t for j = 1, 2, . . . , m.
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For each time t ∈ [0, T ] we consider the proportions between the value that
is held in the ith stock (i = 1, 2, . . . , m) and the value that is held in the bond
(i = 0), namely:

gi
tS

i
t = (1 + εi

t)g
0
t S

0
t for i = 1, 2, . . . , m, (1.6)

for some deterministic and continuous functions εi
t > −1 (i = 1, 2, . . . , m) on

[0, T ]. The next theoretical result (1.8)-(1.9) is a standard application of Itô
stochastic calculus; although “déjà vu”, we included a proof in the appendix.

Consider the financial model (1.1) and denote for t ∈ [0, T ]

Λt :=

∣∣∣∣
m∑

i=1

εi
t

∣∣∣∣ +
m∑

i=1

∣∣∣∣−ε1
t − . . . − εi−1

t + mεi
t − εi+1

t − . . . − εm
t

∣∣∣∣

m + 1 +
m∑

i=1

εi
t

. (1.7)

With the definitions and notations (1.4), (1.5) and (1.6), there exists a positive
finite constant C depending on the model (1.1) but not on εi

t (i = 1, 2, . . . , m),
and such that

E|VT − V̄T | ≤ C ·
(∫ T

0
Λtdt

)1/2

, (1.8)

If f is twice continuously differentiable on R and, together with its derivatives
up to and including the order two, have at most polynomial growth, then there
exists a positive finite constant C depending on the model (1.1) and f but not
on εi

t (i = 1, 2, . . . , m), and such that

|E[f(VT ) − f(V̄T )]| ≤ C ·
∫ T

0
Λtdt. (1.9)

Observe that the function Λt in (1.7) approaches 0 if εi
t (i = 1, 2, . . . , m)

are all approaching 0 for almost all t ∈ [0, T ], therefore, the intuition beyond
(1.8)-(1.9) is the following. When the values of investment in stocks are close to
each other at any time t ∈ [0, T ], the average portfolio matches rather closely
the evolution of the real portfolio, and option price based on the average port-
folio reasonably fits to the option price on the real portfolio. However, we
performed the following simulations and obtained rather contradictory results!
More precisely, we considered the case m = 2, choose the initial values Si

0 = 1
(i = 1, 2), V0 = 1, terminal value T = 1, interest rate r = 0.01, appreciation
rates b1

t = 0.01, b2
t = 0.015, volatilities σ11

t = σ12
t = 0.1, σ21

t = σ22
t = 0.15, and

proportions of investment value ε1
t = −0.2, ε2

t = −0.1. Using (1.5), we com-
puted directly the mean E(V̄1) = 1.13 and the variance V ar(V̄1) = 0.063 of
the average portfolio. By Monte-Carlo simulation with 10, 000 realizations
we obtained for the difference E(V1) − E(V̄1) the 99% confidence interval
[−0.034, 0.0061], and for the difference of variations V ar(V1) − V ar(V̄1) the
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99% confidence interval [0.85, 0.93]. The first confidence interval shows that
the average portfolio matches rather closely the first moment of the real port-
folio, whereas the second confidence interval says that the second moment of
the real portfolio may be extremely far from the second moment of the aver-
age portfolio. We went further and, using the same data as above, we priced
a European call option with strike price K = 1 and maturity T = 1. By
the well-known analytical formula for European call options (see [2]), its price
equals 0.072 on the average portfolio V̄ . On the other hand, by Monte-Carlo
simulation with 10, 000 realizations, we obtain the corresponding 99% confi-
dence interval for the option price on the real portfolio, namely [0.969, 0.974].
As the latter is way too large, we have no match between the two prices. The
latter confidence interval becomes even more precise, namely [0.971, 0.973],
when the proportions of investment value are ε1

t = ε2
t = −0.05, yet the“no

match” conclusion persists.
The explanation of the above paradox resides in the value of the constant

C in (1.8)-(1.9). Although Λt in (1.7) approaches 0 if εi
t (i = 1, 2, . . . , m) are all

approaching 0, the constant C, depending on each individual model (and f),
may become extremely large and give a rather poor approximation in formulas
(1.8) and (1.9). It would be interesting to find out what models provide good
approximations between the real and average portfolios (1.4)-(1.5).

2 Appendix

Proof of 1.8. With the notations from (1.6), the coefficients of (1.4) become

bt =
(
m + 1 +

m∑
i=1

εi
t

)−1[
rt +

m∑
i=1

(1 + εi
t)b

i
t

]
, σj

t =
(
m + 1 +

m∑
i=1

εi
t

)−1 m∑
i=1

(1 + εi
t)σ

ij
t

for j = 1, 2, . . . , m, hence

|bt − b̄t|, |σj
t − σ̄j

t | ≤ C · Λt for t ∈ [0, T ] and j = 1, 2, . . . , m. (2.1)

Solving (1.4) and (1.5) we have

VT = V0 exp
[∫ T

0

(
bt − 1

2

m∑
i=1

(σj
t )

2
)
dt +

m∑
i=1

∫ T

0
σj

t dW j
t

]
,

V̄T = V0 exp
[∫ T

0

(
b̄t − 1

2

m∑
i=1

(σ̄j
t )

2
)
dt +

m∑
i=1

∫ T

0
σ̄j

t dW j
t

]
.

Conditions Si
0 > 0 and εi

t > −1 (or gi
t > 0) (i = 1, 2, . . . , m) for t ∈ [0, T ] ensure

that Si
t > 0, Vt > 0 and V̄t > 0 for almost all t ∈ [0, T ] and i = 1, 2, . . . , m.

Consider the expression (VT − V̄T )2, with VT and V̄T given in explicit form as
above; using (2.1), we obtain the estimate

E(VT − V̄T )2 ≤ C ·
∫ T

0
Λtdt
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for some constant C depending on the coefficients in (1.1) hence, by Hölder’s
inequality, the required inequality in (1.8) now follows.

Proof of 1.9. By the Markov property of the process (1.5), the function
u(t, x) := E[f(V̄T )|V̄t = x] solves the backward integro-differential problem

Lu(t, x) = 0 for (t, x) ∈ [0, T ) × R; u(T, x) = f(x) for each x ∈ R, (2.2)

where

Lu(t, x) :=
∂u

∂t
+ b̄tx

∂u

∂x
+

1

2

m∑
j=1

(σ̄j
t )

2x2 ∂2u

∂x2
.

By Itô’s formula we have

E[f(VT ) − f(V̄T )] = E[u(T, VT ) − u(0, V0)]

= E
∫ T

0

{
∂u

∂t
(t, Vt) + btVt

∂u

∂x
(t, Vt) +

1

2

m∑
j=1

(σj
t )

2V 2
t

∂2u

∂x2
(t, Vt)

}
(2.3)

It follows from (2.2) and (2.3) that

|E[f(VT ) − f(V̄T )]| =∣∣∣∣E
∫ T

0

[
(bt − b̄t)Vt

∂u

∂x
(t, Vt) +

1

2

m∑
j=1

[(σj
t )

2 − (σ̄j
t )

2]V 2
t

∂2u

∂x2
(t, Vt)

∣∣∣∣. (2.4)

By the polynomial growth constraint on f (hence on u), formula (2.4) and es-
timates (2.1) give the required inequality (1.9), for some constant C depending
on the coefficients in (1.1) and f .
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