Delayed Response Times

George Stoica and Michael T. Bradley

University of New Brunswick, 100 Tucker Park Road Saint John NB, E2L4L5, Canada {stoica, bradley}@unbsj.ca

Abstract

We compute the performance of delayed responses within stochastic decision models, and give examples when the underlying is a diffusion.

Mathematics Subject Classification: 91E45; 60G40

Keywords: decision model, delayed response time

1 Problem

A stochastic process $X = \{X_t = X_t(\omega), t \geq 0, \omega \in \Omega\}$ defined on a probability space (Ω, \mathcal{F}, P) and taking values in $\mathcal{I} \subseteq (-\infty, +\infty)$ can be used to model stochastic decision models in the following way. The function $X_t(\cdot) : \Omega \to \mathcal{I}$ represents a potential response at time t, and the accumulated information available at time t is the sigma-algebra \mathcal{F}_t generated by the random variables $\{X_s(\cdot), 0 \leq s \leq t\}$. Using the probabilistic notion of stopping times, we argued in [3] that the best response in a stochastic decision model is obtained by solving an optimal stopping problem, and explicit examples were given when the underlying process is a diffusion process.

In this note we consider the situation when there is a delay $\delta > 0$ in the flow in information available for the decision mechanism to respond. More precisely (cf. [2], [1]), there is a delay $\delta > 0$ from the decided response time, based on the complete current information available, to the time when the response is given. A function $\eta : \Omega \to [\delta, +\infty]$ is called δ -delayed stopping time for the stochastic process X if $\{\omega \in \Omega : \eta(\omega) \leq t\} \in \mathcal{F}_{t-\delta}$ for $t \geq \delta$. We denote by D^{δ} the set of all δ -delayed stopping times. Notice that $\eta(\omega)$ represents the response time and $\eta \in D^{\delta}$ if the decision whether or not to respond at or before time t is based on the information contained in $\mathcal{F}_{t-\delta}$. In particular, D^0 is exactly the set of all classical stopping times.

We consider in the sequel a standard Brownian motion $\{W_t(\cdot), t \geq 0\}$ on a complete probability space (Ω, \mathcal{F}, P) and assume that X is a diffusion process,

homogeneous, continuous, with state space \mathcal{I} and dynamics given by

(1)
$$dX_t(\cdot) = \mu(X_t(\cdot))dt + \sigma(X_t(\cdot))dW_t(\cdot),$$

for some Borel measurable functions $\mu: \mathcal{I} \to (-\infty, +\infty)$ and $\sigma: \mathcal{I} \to (0, +\infty)$.

Definition. The best δ -delayed response in the stochastic model based on (1) is denoted by (Q^{δ}, η^*) and consists of the performance function Q^{δ} , solution to the stopping problem

(2)
$$Q^{\delta}(x) = \sup_{\eta \in D^{\delta}} E^{x}(X_{\eta}),$$

where E^x denotes expectation with respect to the probability measure giving the law of X when $X_0 = x$, X_{η} denotes the process X stopped at η , that is, $X_{\eta}(\omega) := X_{\eta(\omega)}(\omega)$, and η^* is an optimal δ -delayed stopping time, for which the sup in formula (2) is attained.

Remark that $Q^0(x)$ is the performance function in the best response (non-delayed) problem from [3]. In the sequel we are interested in the relationship between the delayed and non-delayed performances. It is rather elementary to see that $\eta \in D^{\delta}$ if and only if $\tau := \eta - \delta \in D^0$, therefore the following formula holds:

(3)
$$Q^{\delta}(x) = \sup_{\tau \in D^0} E^x(X_{\tau+\delta}).$$

As such, the optimal stopping problem (2) is over classical stopping times, but with delayed effect of responding: if $\tau \in D^0$ is chosen, then the response is given at time $\tau + \delta$ (after a delay of δ). Note that $D^{\delta} \subseteq D^0$, hence formulas (2) and (3) imply that $Q^{\delta}(x) \leq Q^0(x)$, that is, the delayed performance Q^{δ} is weaker that the non-delayed performance Q^0 by the quantity $Q^0(x) - Q^{\delta}(x)$.

2 Examples

Example 1. Brownian motion with drift on $\mathcal{I} = [a, b]$ with $\mu(x) = \mu \leq 0$ and $\sigma(x) = 1$. We have $E^x(X_\eta) = E^x(W_\eta + \mu \eta) = x + \mu E^x(\eta)$, therefore $Q^\delta(x) = x + \mu \delta$ and $\eta^* = \delta +$ the first entrance of X in [a, b]. In particular, the performance in the delayed case is weaker than the non-delayed performance by the linear factor $-\mu \delta$.

Example 2. Ornstein-Uhlenbeck process on $\mathcal{I} = [a, b]$ with $\mu(x) = \mu x$ and $\sigma(x) = \sigma$ (with $\mu < 0, \sigma > 0$). Solving equation (1) we obtain

$$X_t = \exp(\mu t) \left(x + \sigma \int_0^t \exp(-\mu s) dW_s \right),$$

hence $E^x(X_\eta) = xE^x(\exp(\mu\eta))$, therefore $Q^\delta(x) = x\exp(\mu\delta)$ and $\eta^* = \delta +$ the first entrance of X in [a,b]. In particular, the performance in the delayed case is weaker than the non-delayed performance by the factor $x(1 - \exp(\mu\delta))$.

Example 3. Geometric Brownian motion on $\mathcal{I} = [a, b] \subseteq (0, +\infty)$ with $\mu(x) = \mu x$ and $\sigma(x) = \sigma x$ (with $\mu \leq 0, \sigma > 0$). Solving equation (1) we obtain

$$X_t = x \exp\left[\left(\mu - \frac{\sigma^2}{2}\right)t + \sigma W_t\right].$$

Unfortunately, $E^x(X_\eta)$ cannot be computed directly, as in Examples 1-2 above; instead, we use formula (4) below, and obtain

$$E^{x}\left(E^{X_{\tau}}(X_{\delta})\right) = E^{x}\left\{E^{X_{\tau}}\left(x\exp\left[\left(\mu - \frac{\sigma^{2}}{2}\right)\delta + \sigma W_{\delta}\right]\right)\right\}$$
$$= x\exp\left[\left(\mu - \frac{\sigma^{2}}{2}\right)\delta\right]E^{x}\left(E^{X_{\tau}}(\exp(\sigma W_{\delta}))\right),$$

hence $Q^{\delta}(x) = x \exp(\mu \delta)$ and $\eta^* = \delta +$ the first entrance of X in [a, b]. In particular, the performance in the delayed case is weaker than the non-delayed performance by the factor $x(1 - \exp(\mu \delta))$.

All the above computations rely on the following

Theorem. (cf. [2], [1]) With the above notations and hypotheses, we have:

(4)
$$\sup_{\eta \in D^{\delta}} E^{x}(X_{\eta}) = \sup_{\tau \in D^{0}} E^{x}(E^{X_{\tau}}(X_{\delta})),$$

where $E^{X_{\tau}}$ denotes expectation with respect to the probability measure giving the law of X starting at X_{τ} . In addition, η^* is optimal for the left-hand side in (4) if and only if $\tau^* := \eta^* - \delta$ is optimal for the right- hand side in (4).

Proof. Let $\eta \in D^{\delta}$ and put $\tau = \eta - \delta \in D^{0}$. We have

$$E^{x}(X_{\tau}) = E^{x}(X_{\tau+\delta}) = E^{x}(E^{x}\theta_{\tau}(X_{\delta})),$$

where θ_{τ} is the shift operator $\theta_{\tau}(X_s) = X_{\tau+s}, s \geq 0$. By the strong Markov property of W (hence of X), the above identities also equal to

$$E^{x}\left(E^{x}\left[\theta_{\tau}(X_{\delta})|\mathcal{F}_{\tau}\right]\right) = E^{x}\left(E^{X_{\tau}}(X_{\delta})\right)$$

and the rest of the proof follows easily (we denoted by \mathcal{F}_{τ} the following sigma-algebra: $A \in \mathcal{F}_{\tau}$ if and only if $A \cap \{\omega \in \Omega : \tau(\omega) \leq t\} \in \mathcal{F}_t$ for all t > 0).

References

- [1] L.H.R. Alvarez and J. Keppo, The impact of delivery lags on irreversible investment under uncertainty, Eur. J. Oper. Res. 136 (2002), 173–180.
- [2] B. Oksendal, Optimal stopping with delayed information, Stoch. Dyn. 5 (2005), 271–280.
- [3] G. Stoica and M.T. Bradley, Best response in stochastic decision models, *Int. J. Appl. Math.* **19** (2006), 299-308.

Received: July 18, 2007