Applied Mathematical Sciences, Vol. 1, 2007, no. 59, 2913 - 2915

Delayed Response Times
George Stoica and Michael T. Bradley

University of New Brunswick, 100 Tucker Park Road
Saint John NB, E2L4L5, Canada
{stoica, bradley}@Qunbs;j.ca

Abstract

We compute the performance of delayed responses within stochastic
decision models, and give examples when the underlying is a diffusion.
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1 Problem

A stochastic process X = {X; = X;(w),t > 0,w € 2} defined on a probability
space (2, F, P) and taking values in Z C (—o0,400) can be used to model
stochastic decision models in the following way. The function X;(-) : Q@ — 7
represents a potential response at time ¢, and the accumulated information
available at time ¢ is the sigma-algebra F; generated by the random variables
{X,(+),0 < s < t}. Using the probabilistic notion of stopping times, we argued
in [3] that the best response in a stochastic decision model is obtained by
solving an optimal stopping problem, and explicit examples were given when
the underlying process is a diffusion process.

In this note we consider the situation when there is a delay 6 > 0 in the flow
in information available for the decision mechanism to respond. More precisely
(cf. [2], [1]), there is a delay 6 > 0 from the decided response time, based on
the complete current information available, to the time when the response is
given. A function 7 : Q — [0, +0o0] is called d-delayed stopping time for the
stochastic process X if {w € Q : n(w) < t} € F_5 for t > §. We denote by
D? the set of all §-delayed stopping times. Notice that n(w) represents the
response time and n € D? if the decision whether or not to respond at or
before time ¢ is based on the information contained in F,_s. In particular, D°
is exactly the set of all classical stopping times.

We consider in the sequel a standard Brownian motion {W,(-),¢ > 0} on a
complete probability space (€2, F, P) and assume that X is a diffusion process,
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homogeneous, continuous, with state space Z and dynamics given by
(1) dXi(-) = p(Xe(-))dt 4 o (Xe(-))dWi(),

for some Borel measurable functions i : Z — (—o00,4+00) and o : Z — (0, 4+00).

Definition. The best §-delayed response in the stochastic model based on
(1) is denoted by (Q°,n*) and consists of the performance function Q°, solution
to the stopping problem
(2) Q°(z) = sup E*(X,),

neD?
where E* denotes expectation with respect to the probability measure giving
the law of X when Xy = x, X,, denotes the process X stopped at 7, that is,
Xy(w) == Xy (w), and n* is an optimal 6-delayed stopping time, for which
the sup in formula (2) is attained.

Remark that Q°(z) is the performance function in the best response (non-
delayed) problem from [3]. In the sequel we are interested in the relationship
between the delayed and non-delayed performances. It is rather elementary to
see that n € D° if and only if 7 :=n — § € D°, therefore the following formula
holds:

(3) Q°(z) = sup E*( X 1s).

TeDO
As such, the optimal stopping problem (2) is over classical stopping times, but
with delayed effect of responding: if 7 € DU is chosen, then the response is
given at time 7 + § (after a delay of §). Note that D° C D hence formulas
(2) and (3) imply that Q°(x) < Q°(z), that is, the delayed performance Q° is
weaker that the non-delayed performance Q° by the quantity Q°(z) — Q°(x).

2 Examples

Example 1. Brownian motion with drift on Z = [a,b] with p(z) = u < 0
and o(z) = 1. We have E*(X,) = E*(W, + un) = = + pE*(n), therefore
Q°(x) = v+ pé and n* = §+ the first entrance of X in [a,b]. In particular, the
performance in the delayed case is weaker than the non-delayed performance
by the linear factor —pud.

Example 2. Ornstein-Uhlenbeck process on Z = [a,b] with p(z) = px and
o(x) = o (with p < 0,0 > 0). Solving equation (1) we obtain

t
X; = exp(ut) (x + 0/ exp(—,us)dWs>,
0

hence E*(X,) = xE”(exp(un)), therefore Q°(z) = zexp(ud) and n* = 6+ the
first entrance of X in [a, b]. In particular, the performance in the delayed case
is weaker than the non-delayed performance by the factor x(1 — exp(ud)).
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Example 3. Geometric Brownian motion on Z = [a,b] C (0,400) with
pu(x) = px and o(z) = ox (with u < 0,0 > 0). Solving equation (1) we obtain
2

X, = xexp{(u — %)t+ aWt].

Unfortunately, £%(X,,) cannot be computed directly, as in Examples 1-2 above;
instead, we use formula (4) below, and obtain
2

(8% (X)) = B % (v (= 5 )+ 03] )}
= ggexp[(u - %2)(5] E* (EXT (exp(aW(;))),

hence Q°(z) = wexp(ud) and n* = J+ the first entrance of X in [a,b]. In
particular, the performance in the delayed case is weaker than the non-delayed
performance by the factor z(1 — exp(ud)).

All the above computations rely on the following
Theorem. (cf. 2], [1]) With the above notations and hypotheses, we have:

(4) sup E*(X,) = sup E” (EXT (X(g)),

neD? TeDO

where EX7 denotes expectation with respect to the probability measure giving

the law of X starting at X,.. In addition, n* is optimal for the left-hand side

in (4) if and only if " :=n* — § is optimal for the right- hand side in (4).
Proof. Let n € D% and put 7 =1 — § € D°. We have

E*(X,) = E*(Xr15) = E*(E"0,(X5)),

where 6, is the shift operator 6,(X,) = X, s, s > 0. By the strong Markov
property of W (hence of X), the above identities also equal to

E*(E*[0.(X)|7.]) = B*(E*(X5))

and the rest of the proof follows easily (we denoted by F. the following sigma-
algebra: A € F, if and only if AN{w € Q:7(w) <t} € F for all t > 0).
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