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Delayed Response Times
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Abstract

We compute the performance of delayed responses within stochastic
decision models, and give examples when the underlying is a diffusion.
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1 Problem

A stochastic process X = {Xt = Xt(ω), t ≥ 0, ω ∈ Ω} defined on a probability
space (Ω,F , P ) and taking values in I ⊆ (−∞, +∞) can be used to model
stochastic decision models in the following way. The function Xt(·) : Ω → I
represents a potential response at time t, and the accumulated information
available at time t is the sigma-algebra Ft generated by the random variables
{Xs(·), 0 ≤ s ≤ t}. Using the probabilistic notion of stopping times, we argued
in [3] that the best response in a stochastic decision model is obtained by
solving an optimal stopping problem, and explicit examples were given when
the underlying process is a diffusion process.

In this note we consider the situation when there is a delay δ > 0 in the flow
in information available for the decision mechanism to respond. More precisely
(cf. [2], [1]), there is a delay δ > 0 from the decided response time, based on
the complete current information available, to the time when the response is
given. A function η : Ω → [δ, +∞] is called δ-delayed stopping time for the
stochastic process X if {ω ∈ Ω : η(ω) ≤ t} ∈ Ft−δ for t ≥ δ. We denote by
Dδ the set of all δ-delayed stopping times. Notice that η(ω) represents the
response time and η ∈ Dδ if the decision whether or not to respond at or
before time t is based on the information contained in Ft−δ. In particular, D0

is exactly the set of all classical stopping times.
We consider in the sequel a standard Brownian motion {Wt(·), t ≥ 0} on a

complete probability space (Ω,F , P ) and assume that X is a diffusion process,
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homogeneous, continuous, with state space I and dynamics given by

(1) dXt(·) = μ(Xt(·))dt + σ(Xt(·))dWt(·),
for some Borel measurable functions μ : I → (−∞, +∞) and σ : I → (0, +∞).

Definition. The best δ-delayed response in the stochastic model based on
(1) is denoted by (Qδ, η∗) and consists of the performance function Qδ, solution
to the stopping problem

(2) Qδ(x) = sup
η∈Dδ

Ex(Xη),

where Ex denotes expectation with respect to the probability measure giving
the law of X when X0 = x, Xη denotes the process X stopped at η, that is,
Xη(ω) := Xη(ω)(ω), and η∗ is an optimal δ-delayed stopping time, for which
the sup in formula (2) is attained.

Remark that Q0(x) is the performance function in the best response (non-
delayed) problem from [3]. In the sequel we are interested in the relationship
between the delayed and non-delayed performances. It is rather elementary to
see that η ∈ Dδ if and only if τ := η − δ ∈ D0, therefore the following formula
holds:

(3) Qδ(x) = sup
τ∈D0

Ex(Xτ+δ).

As such, the optimal stopping problem (2) is over classical stopping times, but
with delayed effect of responding: if τ ∈ D0 is chosen, then the response is
given at time τ + δ (after a delay of δ). Note that Dδ ⊆ D0, hence formulas
(2) and (3) imply that Qδ(x) ≤ Q0(x), that is, the delayed performance Qδ is
weaker that the non-delayed performance Q0 by the quantity Q0(x) − Qδ(x).

2 Examples

Example 1. Brownian motion with drift on I = [a, b] with μ(x) = μ ≤ 0
and σ(x) = 1. We have Ex(Xη) = Ex(Wη + μη) = x + μEx(η), therefore
Qδ(x) = x+μδ and η∗ = δ+ the first entrance of X in [a, b]. In particular, the
performance in the delayed case is weaker than the non-delayed performance
by the linear factor −μδ.
Example 2. Ornstein-Uhlenbeck process on I = [a, b] with μ(x) = μx and
σ(x) = σ (with μ < 0, σ > 0). Solving equation (1) we obtain

Xt = exp(μt)
(
x + σ

∫ t

0
exp(−μs)dWs

)
,

hence Ex(Xη) = xEx(exp(μη)), therefore Qδ(x) = x exp(μδ) and η∗ = δ+ the
first entrance of X in [a, b]. In particular, the performance in the delayed case
is weaker than the non-delayed performance by the factor x(1 − exp(μδ)).
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Example 3. Geometric Brownian motion on I = [a, b] ⊆ (0, +∞) with
μ(x) = μx and σ(x) = σx (with μ ≤ 0, σ > 0). Solving equation (1) we obtain

Xt = x exp
[(

μ − σ2

2

)
t + σWt

]
.

Unfortunately, Ex(Xη) cannot be computed directly, as in Examples 1-2 above;
instead, we use formula (4) below, and obtain

Ex
(
EXτ (Xδ)

)
= Ex

{
EXτ

(
x exp

[(
μ − σ2

2

)
δ + σWδ

])}

= x exp
[(

μ − σ2

2

)
δ
]
Ex

(
EXτ (exp(σWδ))

)
,

hence Qδ(x) = x exp(μδ) and η∗ = δ+ the first entrance of X in [a, b]. In
particular, the performance in the delayed case is weaker than the non-delayed
performance by the factor x(1 − exp(μδ)).

All the above computations rely on the following
Theorem. (cf. [2], [1]) With the above notations and hypotheses, we have:

(4) sup
η∈Dδ

Ex(Xη) = sup
τ∈D0

Ex
(
EXτ (Xδ)

)
,

where EXτ denotes expectation with respect to the probability measure giving
the law of X starting at Xτ . In addition, η∗ is optimal for the left-hand side
in (4) if and only if τ ∗ := η∗ − δ is optimal for the right- hand side in (4).

Proof. Let η ∈ Dδ and put τ = η − δ ∈ D0. We have

Ex(Xτ ) = Ex(Xτ+δ) = Ex
(
Exθτ (Xδ)

)
,

where θτ is the shift operator θτ (Xs) = Xτ+s, s ≥ 0. By the strong Markov
property of W (hence of X), the above identities also equal to

Ex
(
Ex

[
θτ (Xδ)|Fτ

])
= Ex

(
EXτ (Xδ)

)

and the rest of the proof follows easily (we denoted by Fτ the following sigma-
algebra: A ∈ Fτ if and only if A ∩ {ω ∈ Ω : τ(ω) ≤ t} ∈ Ft for all t > 0).
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