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Abstract

The purpose of the paper is to model the nonlinear relation char-
acterizing the ferroelectric properties of polycrystals and to frame the
paraelectric-ferroelectric transition as a classical transition between dif-
ferent phases. The thermodynamic analysis is developed by regarding
the polycrystal as a mixture of two phases. The constitutive functions
allow for a dependence on the first- and second-order gradient of the
polarization. Furthermore the polarization is regarded as an internal
variable, which means that its evolution equation is characterized by
an unknown constitutive function to be compatible with the thermody-
namic requirements. The phase transition is framed within the phase-
field model and the order parameter is an internal variable. The advan-
tage of the approach is the unified scheme of constitutive equations and
phase transitions.
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1 Introduction

Paraelectric crystals exhibit a linear relation between the electric field E and
the electric polarization P. Ferroelectric crystals show a spontaneous polar-
ization, namely a nonzero P when E = 0, and also a nonlinear behaviour
and hysteretic effects in the P-E relation. A paraelectric crystal undergoes
a change to the ferroelectric state when it is cooled down below a tempera-
ture θc, called the Curie temperature, thus showing that a transition, from
the paraelectric state to the ferroelectric state, has occurred. Above the Curie
temperature, the materials are paraelectric in that the relation is linear with
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a coefficient, the electric susceptibility, which is inversely proportional to the
difference θ − θc between the current temperature θ and θc.

The purpose of this paper is twofold. First, to provide the nonlinear
relation, characterizing the ferroelectric properties, within a thermodynamic
framework. Secondly, to model the paraelectric-ferroelectric transition across
θc as a classical phase transition.

The thermodynamic analysis is developed by modelling the body as a mix-
ture of two phases or constituents, the paraelectric and the ferroelectric ones.
The constitutive functions allow for a dependence on the first- and second-order
gradient of P. Consistent with such a non-simple character, a non-zero extra
entropy flux is admitted. Furthermore P is regarded as an internal variable,
which means that the evolution equation for P is characterized by an unknown
constitutive function to be compatible with the thermodynamic requirements.
For simplicity, the body is regarded as undeformable.

The phase transition is framed within the phase-field model. The order
parameter, which describes the transition between the two phases, is taken
to occur smoothly, within an appropriate layer or diffuse interface [1, 3]. We
follow the view that the order parameter, ϕ, is an internal variable whose
time dependence is subject to the requirements of thermodynamics. There is
not a common view, in the literature, about the choice and the role of the
order parameter. In [1] ϕ for the ferroelectric transition is identified with the
polarization. Instead, in [10] ϕ is identified with the volume concentration (or
the volume fraction) of the ferroelectric phase. I think that, in general, the
appropriate order parameter is a concentration for compressible mixtures [9]
or a volume fraction.

The advantage of this approach is the unified scheme of constitutive equa-
tions and phase transitions. The dependence of the polarization P on the state
independent variables, as far as all constitutive equations, is characterized by
the thermodynamic restrictions. Indeed we find that the time derivative of P
enters an inequality which involves the free energy. Hence we find that the
evolution of P is governed by the appropriate free energy. Motivated by a
recent model of ferroelectricity [5], where the evolution equation is in fact a
wave equation, a further approach is developed where the second-order time
derivative is given by a constitutive function to be characterized.

Notation. Throughout R and R
+ stand for the reals and the positive reals.

An undeformable dielectric body occupies the region Ω ⊆ R
3. By x ∈ Ω we

mean the position vector of a point of the body.

The symbols ∇,∇·,∇×× and ∆ stand for the gradient, the divergence, the
curl and the Laplacian operators whereas ∂t or a superposed dot denote the
time derivative.
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2 Balance equations

The electric field E, the magnetic induction B, the electric displacement D and
the magnetic intensity H, on the space-time domain Ω × R, satisfy Maxwell’s
equations

∇××E = −Ḃ, ∇××H = Ḋ + J, (2.1)

∇ · B = 0, ∇ ·D = ρ, (2.2)

where J is the current density and ρ is the charge density. The balance of
energy is based on the view that E××H is the vector flux of energy of elec-
tromagnetic character. This view hinges on Poynting’s theorem which merely
shows that the equation

−∇ · (E××H) = H · Ḃ + E · Ḋ + E · J (2.3)

follows from Maxwell’s equations. Since the body is undeformable the me-
chanical power vanishes and the balance of energy is taken in the form

ė = −∇ · (q + E××H) + r,

where e is the energy density (per unit mass) and r is the heat supply. By
(2.3) we can write the balance of energy as

ė = H · Ḃ + E · Ḋ + J ·E −∇ · q + r. (2.4)

The second law of thermodynamics is taken as the statement that the
Clausius-Duhem inequality holds for any set of functions which satisfy Maxwell’s
equations (2.1)-(2.2) and the energy equation (2.4). Also because of possible
nonlocal effects, the entropy flux is likely to be different from q/θ, θ being
the absolute temperature. Hence, letting η be the entropy density and k the
extra-entropy flux vector, we write the Clausius-Duhem inequality in the form

η̇ ≥ −∇ · (q/θ) −∇ · k +
r

θ
. (2.5)

By (2.4) and (2.5) we have

ė− θη̇ −H · Ḃ −E · Ḋ − J ·E +
1

θ
q · ∇θ − θ∇ · k ≤ 0.

The extra entropy flux k is required to satisfy the boundary condition

∫
∂Ω

k · n da = 0
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for the whole body. This allows (2.5) to provide the standard global statement

d

dt

∫
Ω

η dv ≥
∫

Ω

r

θ
dv −

∫
∂Ω

1

θ
q · n da.

Having in mind a model for dielectrics, we disregard the magnetization and
let

B = µ0H, D = ε0E + P.

For later convenience we consider the free-energy density ψ = e−θη. Upon
substitution we find that the Clausius-Duhem inequality takes the form

ψ̇ + ηθ̇ − µ0H · Ḣ− ε0E · Ė − E · Ṗ − J ·E +
1

θ
q · ∇θ − θ∇ · k ≤ 0. (2.6)

Restrictions placed by the inequality (2.6) are now evaluated for a rather gen-
eral set of constitutive equations.

3 Thermodynamic restrictions

The constitutive assumptions are suggested by the need of accounting for non-
linearities and hysteretic effects of the ferroelectric phase and the bi-stable
dynamics of the phase transition. Hence we let Ṗ be governed by the indepen-
dent variables so that the ferroelectric behaviour is modelled. Also, the time
derivative ϕ̇ of the order parameter ϕ is assumed to be given by a function
which models the phase transition.
Constitutive assumptions. We assume that ψ, η,q,k and Ṗ, ϕ̇ are given by
continuous functions of the set of variables

Γ = (θ,E,H,P, ϕ,∇θ,∇P,∇ϕ,∇∇θ,∇∇P,∇∇ϕ)

and, moreover, ψ is continuously differentiable but is independent on the
higher-order gradients ∇∇θ,∇∇P,∇∇ϕ.

Let Γ1 = (θ,E,H,P, ϕ,∇θ,∇P,∇ϕ), the subset of Γ with derivatives up
to first-order. Hence ψ = ψ(Γ1). Also, denote by the scalar- and vector-valued
functions f, g the constitutive functions for ϕ̇ and Ṗ, whence

ϕ̇ = f(Γ), Ṗ = g(Γ). (3.1)

To investigate the restrictions placed by (2.6) on the constitutive functions
we need to understand the arbitrariness allowed on the fields Γ. Maxwell’s
equations read

µ0Ḣ = −∇××E, ∇××H = ε0Ė + Ṗ + J,
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∇ · H = 0, ∇ · E = 0.

As a consequence, we can take the values of Ḣ, Ė as arbitrary whereas Ṗ is
provided by g(Γ).

The chain rule and use of (3.1) allow us to write (2.6) in the form

(ψθ + η)θ̇ + ψ∇θ∇θ̇ + (ψE − ε0E) · Ė + (ψH − µ0H) · Ḣ + (ψP − ε0E) · g
+ψϕf + ψ∇P · ∇g + ψ∇ϕ · ∇f − J · E +

1

θ
q · ∇θ − θ∇ · k ≤ 0, (3.2)

where the subscripts θ,∇θ,E,H,P,∇P,∇ϕ denote partial derivatives. The
arbitrariness of θ̇, ∇θ̇, and Ḣ, Ė requires that

η = −ψθ, ψ∇θ = 0, (3.3)

and

ψH = µ0H, ψE = ε0E. (3.4)

As a consequence,

ψ =
1

2
µ0H

2 +
1

2
ε0E

2 + Ψ(θ,P, ϕ,∇P,∇ϕ). (3.5)

Upon some rearrangements, the inequality (3.2) becomes

(ΨP − ε0E −∇ · Ψ∇P) · g + ∇ · (Ψ∇Pg + Ψ∇ϕf − θk)

+(Ψϕ −∇ · Ψ∇ϕ)f + k · ∇θ − J · E +
1

θ
q · ∇θ ≤ 0. (3.6)

Rather than investigating the structure of ∇ · (Ψ∇Pg + ψ∇ϕf − θk) we look
for a simple scheme compatible with (3.6). We let

θk = Ψ∇Pg + Ψ∇ϕf (3.7)

so that the divergence is identically zero. Now,

(ΨP − ε0E −∇ · Ψ∇P) · g +
1

θ
(Ψ∇Pg) · ∇θ = [θ(Ψ̂P −∇ · Ψ̂∇P) − ε0E] · g,

where

Ψ̂ =
Ψ

θ
.

Also,

(ψϕ −∇ · ψ∇ϕ)f +
1

θ
Ψ∇ϕf = θ(Ψ̂ϕ −∇ · Ψ̂∇ϕ) · f.
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Hence, letting

δPΨ̂ := Ψ̂P −∇ · Ψ̂∇P, δϕΨ̂ := Ψ̂ϕ −∇ · Ψ̂∇ϕ,

we can write (3.6) in the form

(θδPΨ̂ − ε0E) · g + θδϕΨ̂ f − J · E +
1

θ
q · ∇θ ≤ 0. (3.8)

The conditions (3.1), (3.3)-(3.5), (3.7), (3.8) are sufficient for the identical
validity of (2.6).

The inequality (3.8) holds if each term has the right sign. Such is the case
if

J = ΣE, q = −K∇θ,

with positive-definite tensors Σ and K, possibly dependent on Γ. This means
that the general forms of Ohm’s and Fourier’s laws are compatible with the
thermodynamic requirements. The inequalities

(θδPΨ̂ − ε0E) · g ≤ 0, (3.9)

δϕΨ̂ f ≤ 0, (3.10)

are restrictions on the evolution of P and ϕ.
It is worth remarking that δPΨ̂ and δϕΨ̂ are the variational derivative of

the functional

F [θ,P, ϕ] =

∫
Ω

1

θ
Ψ(θ,P, ϕ,∇P,∇ϕ)dv

with respect to P and ϕ.

4 Restrictions on the evolution equation of P

We now determine sufficient conditions for the validity of (3.9). Let

u = θδPΨ̂ − ε0E, w = Ṗ.

The inequality (3.9) can then be written as

u · w ≤ 0. (4.1)
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Let v = u + ξP××w, ξ ∈ R. The inequality (4.1) is equivalent to

v · w ≤ 0 (4.2)

and (4.2) holds if

w = −Av + βP××v + νP×× (P××v),

where A is a positive-definite tensor, ν ∈ R
+ and β ∈ R. This is so because,

upon substitution, we have

v · w = −v · Av − ν|P××v|2.

As a consequence, we can write the following result.
Proposition. The inequality (3.9) holds if Ṗ is given by

Ṗ = −Av + βP××v + νP×× (P××v), v = θδPΨ̂ − ε0E + ξP×× Ṗ, (4.3)

for every positive-definite tensor A, every ν ∈ R
+ and every β, ξ ∈ R.

For definiteness let

Ψ = G(θ, ϕ,P) +
1

2
κθ|∇P|2.

Hence we have

θδPΨ̂ = GP(θ, ϕ,P) − κθ∆P.

The vector v takes the form

v = GP(θ, ϕ,P) − ε0E − κθ∆P + ξP×× Ṗ.

If β, ν = 0 then eq. (4.3) gives the evolution equation

Ṗ = −A[ξP×× Ṗ − (ε0E −GP(θ, ϕ,P) + κθ∆P)]. (4.4)

In stationary and uniform conditions (Ṗ = 0,∆P = 0) eq. (4.4) reduces to

ε0E = GP(θ, ϕ,P). (4.5)

4.1 Relations to other approaches

The evolution equation (4.3) for P looks very general. The occurrence of P×× Ṗ
seems to be new in the literature about ferroelectricity. The analogue, M×× Ṁ
occurs in the Gilbert form of the evolution equation for M in ferromagnetism
[4]. Also, it seems that the terms P××v and P×× (P××v) have not been pointed
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out so far. Anyway, it is remarkable that compatibility of ferroelectricity with
thermodynamics holds for the general equation (4.3).

Look now at eq. (4.5). If

G = a(θ − θc)P
2 + bP4, a, b > 0, (4.6)

then P and E are collinear and

ε0E = [2a(θ − θc) + 4bP2]P. (4.7)

The relation (4.7) is a standard model equation of ferroelectricity which traces
back to Ginzburg (see [7]) and is the strict analogue of a model of ferromag-
netism (see [8]). It is a disadvantage of the potential (4.6) that, for large values
of |P|, we have (4bP2)P = ε0E and hence

P = (4bε20E
2)−1/3ε0E.

This shows that, according to (4.6), P does not attain saturation conditions
for large values of |E|.

The model in [2] accounts also for gross motion, which here is disregarded,
and ascribes to the continuum a vectorial microstructure. A mathematical
difference is due to the simultaneous occurrence, here, of E and P as indepen-
dent variables whereas, in [2], P is a function of E. The ferroelectric behaviour
indicates that such dependence is only local.

A thermodynamic approach for deformable ferroelectric crystals is devel-
oped in [6]. However the assumption is made that the polarization P has a
constant magnitude, which strongly influences the constitutive equation for P.

5 A free energy potential

In actual ferroelectrects P attains a constant saturation value for large values of
E. On the basis of (4.5) we now look for a free energy G, in uniform conditions,
such that the paraelectric and the ferroelectric behaviour are recovered and the
saturation value is provided.

Let Ps denote the saturation value of |P|. Let ϕ ∈ [0, 1] denote the volume
fraction (or concentration) of the ferroelectric phase. The dependence of G
on P is now established so that (4.5) models paraelectricity if ϕ = 0 and
ferroelectricity if ϕ = 1.

Let

G(θ, ϕ,P) =
1

2χ
(1 − ϕ)P2 − 1

2
ϕ[(au+ b) ln(1 − p2) + bp2] + G(θ, ϕ), (5.1)
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where a, b are positive constants, a ≤ b, and

χ =
χ0θc

θ − θc
, u =

θ − θc

θc
, p =

P

Ps
.

As ϕ = 0, eq. (4.5) provides

P = ε0χE

thus ascribing to χ the meaning of dielectric susceptibility. As ϕ = 1, eq. (4.5)
gives

Psε0E =
au+ bp2

1 − p2
p. (5.2)

By (5.2), E and P are collinear and then we can restrict attention to the
significant component E, p in the common direction,

Psε0E =
au+ bp2

1 − p2
p, p ∈ (−1, 1). (5.3)

The remanent or spontaneous polarization, that is the nonzero value Pr of P
as E = 0, is given at once by (5.3). We have

Pr = ±Ps
a

b

θc − θ

θc
.

The experimental knowledge of Pr, and Ps, provides the ratio a/b.
The coercive electric field, Ec, is the value of E at the local maximum and

minimum of p. By (5.3) we have

dE

dp
=
au+ (au+ 3b)p2 − bp4

(1 − p2)2
. (5.4)

Hence we have dE/dp = 0 as p = ±pi,±po where

p2
i =

1

2
(3 − a

b
|u|) −

√
(3 − a|u|/b)2 − 4a|u|/b,

p2
o =

1

2
(3 − a

b
|u|) +

√
(3 − a|u|/b)2 − 4a|u|/b.

As we show in a moment, p2
i < 1 and p2

o > 1. Hence it follows that only
pi,−pi are admissible solutions, in (−1, 1). As a consequence the values of the
coercive field Ec are given by

Ec = ± b

ε0Ps

|pi|
1 − p2

i

(p2
i − a|u|/b)
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and are affected by a/b and b. In conclusion, the knowledge of pr and Ec allows
us to find a/b and b and hence the parameters a and b separately.

We now show that p2
i < 1. Since a < b then p2

r = |u|a/b < 1. To prove
that p2

i < 1 we show that

3 − p2
r −

√
(3 − p2

r)
2 − 4p2

r < 2

that is

1 − p2
r <

√
(3 − p2

r)
2 − 4p2

r.

This is so because, squaring both sides, we have

1 + 2p2
r + p4

r < (3 − p2
r)

2,

which is true in that p2
r < 1.

To show that p2
o > 1 we observe that p2

o > 1 is equivalent to

3 − p2
r +

√
(3 − p2

r)
2 − 4p2

r > 2,

namely

1 − p2
r +

√
(3 − p2

r)
2 − 4p2

r > 0.

This inequality is obviously true because of the condition p2
r < 1.

The function G is essential in the determination of the entropy function
and of the evolution equation for ϕ. By (5.1) and (3.3) we have

η = (1 − ϕ)
1

2χ0θc
P2 + ϕ

a

2θc
ln(1 − p2) − Gθ. (5.5)

Hence the energy density e = ψ + θη takes the form

e =
1

2
µ0H

2 +
1

2
ε0E

2 − 1

2χ0
(1 − ϕ)P2 − 1

2
ϕ[(b− a) ln(1 − p2) − bp2] + E ,

where

E = G − θGθ.

By (3.10) we have

ϕ̇ = −κδϕΨ̂,

κ being a positive-valued function of Γ. By disregarding ∇ϕ dependences, we
find that

ϕ̇ = κ[
1

2χ
P2 +

1

2
(au+ b) ln(1 − p2) − 1

2
bp2 + Gϕ]. (5.6)
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Meanwhile, by (2.4) we have

Eθθ̇ + eϕϕ̇+ (eP −E) · Ṗ = J · E −∇ · q + r. (5.7)

Equations (4.4), (5.6), (5.7) constitute the system of evolution equations for
P, ϕ, θ.

The key point in the proof that p2
i < 1 and p2

o > 1 is that a|u|/b < 1 as
θ ∈ (0, θc). A more general, monotone increasing, function u with the same
property is

u(θ) =
θ − θc

θc
(
b

a
+ cθ), c ∈ [0, b/aθc].

It involves an additional parameter, c, and provides |Pr| → Ps without any
requirement on a and b.

5.1 The Curie-Weiss law

In the paraelectric phase, θ > θc, the electric susceptibility obeys the Curie-
Weiss law, χ ∝ (θ − θc)

−1. This is the obvious consequence of the form (5.1).
The Curie-Weiss law holds also for θ < θc (see [10] and [8] for ferromagnetism).
In the ferroelectric phase, θ < θc, only the differential suceptibility dP/dE is
meaningful. By (5.4) we have

dP

dE
= Ps

(1 − p2)2

au+ (au+ 3b)p2 − bp4
.

As p2 is around zero we have

dP

dE
= −Psθc

a

1

θc − θ
.

In particular dP/dE < 0, and this happens in the unstable part of the P −E
curve. The proportionality to (θc − θ)−1 is affected more and more as p2

increases. Indeed, dP/dE = 0 as E = Ec and dP/dE > 0 as E2 > E2
c .

5.2 Latent heat

The phase transition occurs at the temperature θc and hence the latent heat
λ is related to the entropy function η(θ,P, ϕ) by

λ = θc[η(θc,P, 1) − η(θc,P, 0)].

By (5.5) we have

λ =
1

2
[a ln(1 − p2) − 1

χ0
P2] + θc[Gθ(θc, 0) − Gθ(θc, 1)].

There are two contributions to λ, one from the change of the electrical content
(P), the other from the change of the chemical content (Gθ). In [10] the entropy
consists of the chemical content only.
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6 A second-order evolution equation

A recent model of ferroelectricity [5] involves a second-order evolution equation
for the polarization P. They argue as follows. The polarization is regarded as
an internal variable which evolves through

ε1(Ṗ +
1

d
l) = ∇××m

while

µ1(ṁ +
a

d
m) = −∇××P.

Here m has the interpretation of an internal magnetic field and l is a current
density which is driven by the difference between an equilibrium electric field,
Ẽ(P), and the electric field E, that is

l̇ +
a

d
l =

b

d
[Ẽ(P) − E].

Upon substitution it follows that P is governed by the second-order differential
equation

d2[P̈ +
1

ε1µ1
∇×× (∇××P)] + adṖ = b[E − Ẽ(P)]. (6.1)

We now examine how a second-order differential equation for P can arise
from a thermodynamic scheme without involving additional internal fields l,m
which do not seem to have an operative physical meaning.

We parallel the analysis of §4 though with more involved constitutive as-
sumptions. We let Ṗ and ∇Ṗ enter the independent variables so that

Γ = (θ,E,H,P, ϕ,∇θ,∇P, Ṗ,∇ϕ,∇∇θ,∇∇P,∇Ṗ,∇∇ϕ)

is the set of independent variables.
Constitutive assumptions. We assume that η,q,k and P̈, ϕ̇ are continuous
functions of Γ whereas ψ is continuously differentiable but is independent of
the higher-order derivatives ∇∇θ, ∇∇P,∇Ṗ,∇∇ϕ.

Denote by h and f the constitutive functions for P̈ and ϕ̇,

P̈ = h(Γ), ϕ̇ = f(Γ). (6.2)

The arbitrariness of θ̇,∇θ̇, Ḣ, Ė holds again and provides eqs (3.3) and (3.4)
so that

ψ =
1

2
µ0H

2 +
1

2
ε0E

2 + Ψ(θ,P, ϕ,∇P, Ṗ,∇ϕ). (6.3)
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Hence the Clausius-Duhem inequality (2.6) becomes

(ΨP − ε0E−∇ · Ψ∇P) · Ṗ + ΨṖ · h + (Ψϕ −∇ · Ψ∇ϕ)f

+∇ · (Ψ∇Pg + Ψ∇ϕf − θk) + k · ∇θ − J · E +
1

θ
q · ∇θ ≤ 0. (6.4)

We let (3.7) hold whence ∇ · (Ψ∇Pg + Ψ∇ϕf − θk) = 0 identically. Hence we
have

(ΨP − ε0E −∇ · Ψ∇P) · Ṗ + (Ψϕ −∇ · Ψ∇ϕ)f + k · ∇θ
= [ΨP − ε0E −∇ · (Ψ∇P/θ)] · Ṗ + [Ψϕ −∇ · (Ψ∇ϕ/θ)]f.

Letting again Ψ̂ = Ψ
θ

and using the derivatives δPΨ̂ and δϕΨ̂ we can write (6.4)
as

(θδPΨ̂ − ε0E) · Ṗ + ΨṖ · h + θδϕΨ̂ f − J · E +
1

θ
q · ∇θ ≤ 0. (6.5)

Incidentally, because of the occurrence of Ṗ, δPΨ̂ is no longer the variational
derivative of Ψ̂ with respect to P.

The inequality (6.5) holds if

δϕΨ̂ f ≥ 0, J · E ≥ 0, q · ∇θ ≤ 0, (6.6)

as in §4, and

(θδPΨ̂ − ε0E) · Ṗ + ΨṖ · h ≤ 0. (6.7)

Of course the new inequality (6.7), which is affected by the dependence of Ψ
on Ṗ, holds if the left-hand side is negative definite. In particular, (6.7) holds
if

(θδPΨ̂ − ε0E) · Ṗ + ΨṖ · h = −γṖ2, (6.8)

γ being a positive-valued function of Γ. The conditions (3.3), (3.4) and (6.2)-
(6.4), (3.7), (6.6), (6.8) are sufficient for the identical validity of the Clausius-
Duhem inequality (2.6).

We now show that (6.1) is an evolution equation compatible with, or a
particular case of, (6.8). To this end we observe that if Ψ̂ depends on ∇P
through ∇××P then

∇ · Ψ̂∇P = −∇×× Ψ̂∇××P. (6.9)

In suffix notation, letting εjkh be the permutation symbol we have

∂Ψ̂

∂Pk,j

=
∂Ψ̂

∂(∇××P)h

∂(∇××P)h

∂Pk,j

= εjkh
∂Ψ̂

∂(∇××P)h



2952 A. Morro

and hence

∂

∂xj

∂Ψ̂

∂Pk,j
= −εkjh

∂

∂xj

∂Ψ̂

∂(∇××P)h
,

which is the k-th component of (6.9).
As a choice, let

Ψ(θ,P, ϕ,∇P, Ṗ,∇ϕ) = Ψ̄(θ,P, ϕ,∇ϕ) +
1

2
κθ|∇××P|2 +

1

2
λṖ2,

where κ, λ > 0. As a consequence,

θδPΨ̂ = Ψ̄P + κθ∇×× (∇××P), ΨṖ = λṖ.

Hence (6.8) becomes

[Ψ̂P − ε0E + θκ∇×× (∇××P) + λP̈ + γṖ] · Ṗ = 0

which is the inner product with Ṗ of

λ[P̈ +
θκ

λ
∇×× (∇××P)] + γṖ = ε0(E − 1

ε0
Ψ̄P). (6.10)

The identification of (6.10) with (6.1) is complete. Indeed, we see that the
equilibrium electric field Ẽ(P) [5] is to be identified with Ψ̄P/ε0.
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