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Abstract

This paper is an analytical study of the flow of a power-law fluid
through an inclined tube. The effect of the wall slip condition peri-
staltic transport are studied. It serves as a model for the study of
flow of chyme through small intestines. The long wavelength and low
Reynolds number are considered in obtaining solution for the flow. Ex-
pressions for the axial velocity and axial pressure gradient are obtained
analytically. The pressure rise per wavelength and friction force at the
wall are evaluated numerically.
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1 Introduction

Physiological fluids in animal and human bodies are, in general, pumped by
the continuous periodic muscular oscillations of the ducts. These oscillations
are presumed to be caused by the progressive transverse contraction waves that
propagate along the walls of the ducts. Peristalsis is the mechanism of the fluid
transport that occurs generally from a region of lower pressure to higher pres-
sure when a progressive wave of area contraction and expansion travels along
the flexible wall of the tube. Peristaltic flow occurs widely in the functioning
of the ureter, food mixing and chyme movement in the intestine, movement
of eggs in the fallopian tube, the transport of the spermatozoa in the cervical
canal, transport of bile in the bile duct, transport of cilia, and circulation of
blood in small blood vessels. There are many other important applications of
this principle such as the design of roller pumps, which are useful in pumping
fluids without contamination due to contact with the pumping machinery.
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A number of analytical studies of peristaltic transport obtained by a train
of periodic sinusoidal waves in an infinitely long two-dimensional symmetric
channel or ax-symmetric tubes containing a Newtonian or non-Newtonian fluid
with no-slip wall condition have been investigated in refs. [1-18]. Lew et al [10]
suggested chyme as a non-Newtonian material having plastic-like properties.

In several flow problems, the authors assumed adherence, i.e. that the fluid
layer next to a rigid surface moves with that surface. Some authors, considered
hypotheses involving slippage, i.e. a relative motion of the rigid surface and
the fluid next to it. For several fluids including water and mercury, many
experiments, some of them beautifully conceived and carefully performed, have
indicated that the adherence condition is appropriate even when the fluid does
not wet the boundary surface. From time to time, an apparently carefully
experiment has seemed to lead to the opposite conclusion but further analysis
has revealed theoretical or experimental error.

Curiously enough, there two extremely different type of fluids which appear
to slip. One class contains the rarefied gases, the other fluids with much elas-
tic character i.e. fluid with memories that fade very slowly. However, a fluid
having as much elastic character, some slippage occur under a large tangential
traction. It has been claimed that slippage can occur in non-Newtonian fluids,
concentrated polymer solution and, basis of more evidence, molten polymer.
Further, in the flow of dilute suspensions of particles a clear layer is sometimes
observed next to the wall. Poiseuille, in a work which won a prize in experi-
mental physiology, observed such layer with a microscope in the flow of blood
through capillary vessels ref.[19].
Navier [20] proposed boundary conditions that consider the possibility of the
fluid slip at a rigid boundary which states the velocity of the fluid at the plate
is linearly proportional to the shear stress at the plate. Kwang and Fang
[21] studied the peristaltic transport of a Newtonian fluid through a 2D micro
channel where the slip effect is present.
With above dissection in mind, we examine the peristaltic flow of a power-law
fluid through a deformable inclined tube with the wall slip condition. The
considered model of power-law fluid adequately fits the shear stress and shear
rate measurements for many non-Newtonian fluids. It serves as a model for
the study of flow of chyme through small intestines. The present work extends
that Srivastava and Srivastava [18] and Fung, and Yih [7].

2 Formulation and analysis

Consider the flow of an incompressible power-law fluid through an inclined
non-uniform tube such that it has a sinusoidal wave traveling down its’ wall.
The geometry of the wall surfaces is described in Figure 1.
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Figure 1: Peristaltic transport in an inclined non-uniform tube.
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= a + kZ̄, (2)

where a
(
Z̄
)

is the radius of the tube at any axial distance from inlet, a is

the radius of the tube at inlet, k(�1) is a constant whose magnitude depends
length of the tube, exit and inlet dimensions, b is the amplitude of the wave, λ
is the wavelength, c is the wave speed, α is the inclined angle and t̄ is the time
.We choose the cylindrical coordinates system (R̄, Z̄), where Z̄- axis lies along
the centerline of tube, and R̄ is the distance measured radial. In the moving
coordinates (r̄, z̄), which travel in the Z̄-direction with the same speed as the
wave, the flow in the tube is steady but if we choose the fixed coordinates ,
the flow in the tube can be treated as unsteady. The coordinate frames are
related through:

Z̄ = z̄ + ct̄, r̄ = R̄, (3)

W̄ = w̄ + c, Ū = ū. (4)

where Ū , W̄ and ū, w̄ are the velocity components in the radial and axial
directions in the fixed and moving coordinates respectively.

Equations of motion and boundary conditions in the fixed coordinates are:

Continuity equation :
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Navier-Stokes equations :
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∂Ū

∂Z̄
) = −∂P̄

∂R̄
− (

1

R̄

∂(R̄τ̄11)

∂R̄
+

∂τ̄31

∂Z̄
− τ̄22

R̄
), (6)

ρ(
∂W̄

∂t̄
+ Ū

∂W̄

∂R̄
+ W̄

∂W̄

∂Z̄
) = −∂P̄

∂Z̄
− (

1

R̄

∂(R̄τ̄13)

∂R̄
+

∂τ̄33

∂Z̄
) + ρgSin(α), (7)

Constitutive equation:

η = m ¯̇γ
n−1

(8)

τ̄ij = −η¯̇γij, (9)

where ρ is the density, τ̄ij , i, j = 1,2,3 are the components of the extra stress
tensor, P̄ is pressure, m is the consistency, n is the dimensionless power-law
index (When n=1, then η = m is the Newtonian viscosity of the fluid) and ¯̇γ
is defined as :

¯̇γ =

√√√√1

2

∑
i

∑
j

¯̇γij
¯̇γij =

√
1

2
Π¯̇γ , (10)

where Π¯̇γ is second invariant of strain-rate tensor ¯̇γij .

let the velocity vector be
V
(
Ū , 0, W̄

)
,where Ūand W̄ are functions of (R̄, Z̄, t̄),

then the rate of strain tensor, has the components:

¯̇γ11 = 2
∂Ū
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, ¯̇γ22 = 2

Ū
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∂W̄

∂Z̄
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∂Ū
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+

∂W̄

∂R̄
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With the boundary conditions:

Ū = 0, ∂W̄
∂R̄

= 0, R̄ = 0,

W̄ = −Λ∂W̄
∂R̄

, Ū = −c dh̄
dZ̄

, R̄ = h̄ = a
(
Z̄
)

+ bSin(2π
λ

(Z̄ − ct̄)),

(12)

where Λ is the slip parameter.

We will non-dimensionalize the variables appearing in equations (2.1-2.12)
introducing Reynolds number (Re), wave number (δ), Knudsen number (kn)
and Froud number (Fr) as follows:
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and h = h̄

a
= a(Z) + φ Sin(2π(Z) − t),

a(Z) = 1 + λk
a

Z,

where φ = b
a

< 1 is the amplitude ratio.
Equations of motion, boundary conditions, rate of strain tensor components
and extra stress tensor components in the dimensionless form take the following
form: Continuity equation becomes :

1

R
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∂R
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∂Z
= 0, (13)

Navier-Stokes equations become:
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Re δ(
∂W

∂t
+ U

∂W

∂R
+ W

∂W

∂Z
) = −∂P

∂Z
− 1

R

∂(Rτ13)

∂R
− δ

∂τ33

∂Z
+

Sin(α)

f
, (15)

τij = −γ̇n−1γ̇ij, (16)

with the dimensionless boundary conditions:

U = 0, ∂W
∂R

= 0, R̄ = 0,

W = −kn∂W
∂R

, U = − dh
dZ

, R = h = 1 + λk
a

Z + φSin(2π(Z − t)),
(17)

the components of rate of strain tensor in the dimensionless form become:

γ̇11 = 2δ
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, γ̇22 = 2δ

U

R
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Also,γ̇ is defined in the dimensionless form as following:
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√√√√1

2
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γ̇ijγ̇ij for i = j, (19)
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γ̇ =

√√√√1

2

∑
i

∑
j

γ̇ijγ̇ij for i �= j, (20)

Using the long wavelength approximation and neglecting the wave number
then from equations (16), (18) and (20) shearing extra stress tensor becomes.

τ13 = τ31 = (−∂W

∂R
)n, (21)

Using the long wavelength approximation and neglecting the wave number
then from equations (16), (18) and (20) shearing extra stress tensor becomes.

τ13 = τ31 = (−∂W

∂R
)n, (22)

Navier-Stokes equations reduce to:

∂P

∂Z
= − 1

R

∂(Rτ13)

∂R
+

Sin(α)

f
, (23)

∂P

∂R
= 0. (24)

The instantaneous volume flow rate in the fixed coordinate system is given by

Q̄ = 2π
∫ h̄

0
W̄ R̄ dR̄, (25)

where h̄ is a function of Z̄ and t̄ . On substituting equations (3) and (4) into
equation (25), and then integrating, one obtains:

Q̄ = q̄ + πch̄2, (26)

where:

q̄ = 2π
∫ h̄

0
w̄r̄ dr̄, (27)

is the volume flow rate in the moving coordinate system and is independent of
time. Here, h̄ is a function of z̄ alone. Using the dimensionless variables, we
find:

F =
Q̄

2πa2c
=
∫ h

0
RW dR . (28)

The time-mean flow over a period T = λ
c

at a fixed Z̄-position is defined as:

Q =
1

T

∫ T

0
Q̄ dt̄ . (29)

Using equations (26) in equation (29) and integrating, we get:
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Q̄

2πca2
=

Q

2πca2
−φ2

4
+φSin(2π(Z−t))+

λk

a
ZφSin(2π(Z−t))+

φ2

2
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(30)
On defining the dimensionless time-mean flow as :

Θ =
Q

2πca2
, (31)

we rewrite (30)as:

F = Θ−φ2

4
+φSin(2π(Z−t))+

λk

a
ZφSin(2π(Z−t))+

φ2

2
Sin2(2π(Z−t)) (32)

solving equation (23) by using equation (24) and boundary condition (17), we
obtain

W =
n

n + 1

[
1

2

(
−dP

dZ
+

Sin(α)

f

)] 1
n [

h
n+1

n − R
n+1

n +
n + 1

n
kn h

1
n

]
. (33)

Substituting from equation (33) in equation (28) and solving the result in
dP
dZ

we get:

dP

dZ
= −2

(
3n + 1

n

)n (2F )n

h3n+1

[
1 +

3n + 1

n h
kn
]
. (34)

By putting α=0 and kn=0 we obtain the results obtained by Sirvastava
and Sirvastava [17]. The pressure rise ΔPλ (t) and the friction force Fλ (t) (at
the wall) in the tube of length λ, in their non-dimensional forms, are given by:

ΔPλ (t) =
∫ 1

0

dP

dZ
dZ, (35)

Fλ (t) =
∫ 1

0
h2(−dP

dZ
) dZ. (36)

3 Numerical results and discussion

To discuss the results obtained above quantitatively, we shall assume the form
of the flow rate F, in period (Z-t) as in Srivastava and Srivastava [17]:

F n = Θn − φ2

4
+ φSin(2π(Z − t)) + λk

a
ZφSin(2π(Z − t)) + φ2

2
Sin2(2π(Z − t))

This form has been assumed in view of the fact that the constant values of Θ
gives always ΔPλ negative, and hence there will be no pumping action. This
theoretical analysis of peristaltic flow in an axisymmetric non-uniform tube
is applicable the transport of chyme through the small intestine. The value
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of various parameter for the transport of chyme in male small intestine as
reported in Srivastava and Srivastava [17]:

a = 1.25cm, c = 2cm /min, λ = 8.01cm and k = 3a/λ.

It may be noted that the theory of long wavelength of the present investigation
remain applicable here as the radius of the small intestine at inlet a=1.25 cm, is
small compared with the wavelength λ=8.01 cm. It has also, observed by Lew
et al. [10] that Reynolds number in the small intestine was very small. The
average pressure rise ΔP̄λ is evaluated by averaging ΔPλ (t) over one period
of the wave and so the friction force Fλ. As the integral in equations (35) and
(36) are not integrable in the closed form, they are evaluated numerically using
a digital computer.

Figure 2 represent the variation of dimensionless pressure rise with time for
fixed α, φ, kn, f and different values of power law index and flow rate. We
can see that the pressure rise is increases when power-law index (n) increases.
Further, the pressure rise for Newtonian fluid (n=1), is greater than it for
non-Newtonian fluid (n=2/3, n=12). It can also be seen that the effect of
increasing the flow rate is to reduce the pressure rise.

Figure 2: The pressure rise versus time at φ= 0.6, α = π
6
, kn = 0.01 and

f=0.1.

The effects of inclined angle α and the slip boundary conditions on the
pressure rise appears through figure 3. we can notice that the slip boundary
conditions is greatly affected on the pressure rise in the case of Newtonian
fluid and non-Newtonian. We observe that the pressure rise decreases with
increasing knudsen number. Also, the effect of increasing inclined angle α is to
increase the pressure rise. Further, for the fixed at Θ, n, α and f the pressure
rise becomes smaller as φ decreases from 0.6 and it becomes constant with
time when the there is no peristalsis (φ=0) (see figure 4).
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Figure 3: The pressure rise versus time at φ= 0.6, n=2
3
, Θ= 0.22 and f=0.1.

Figure 4: The pressure rise versus flow rate at Θ= 0.22 , n=2/3, α = π/6, kn
=0.01 and f=0.1.

The average pressure rise versus flow rate is plotted for different values of n,
kn and α in figures (5-7). As expected the fugues show a linear relation between
pressure rise and flow rate for Newtonian fluid (n=1) and non-linear for non-
Newtonian (n=2/3, 1/2). Further, it is clear that an increase in flow rat and
knudsen number decreases the pressure rise and thus, maximal pressure rise
is achieved at zero flow rate. Also, an increase the inclined angle α increases
the pressure rise. Furthermore the pressure rise is independent of n and kn
at certain values of flow rate but it is depend on inclined angle for different
values of flow rate. Moreover, In the case of vertical tube (α=π/2) with high
occlusion (φ=0.6), the peristaltic pumping, where ΔP̄λ > 0 and Θ > 0, occur
for different values of flow rate and there is no augmented pumping region,
but the augmented pumping, where Θ > 0 and ΔP̄λ < 0, occurs in the case of
horizontal tube (α=0) at 0.3 < Θ ≤ 1 (figure.7).
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Figure 5: The average pressure rise versus flow rate at φ= 0.6, α= π /6, kn =
0.01and f=0.1.

Figure 6: The average pressure rise versus flow rate at φ= 0.6, α = π /6,
n=2/3 and f=0.1.

Figure 7: The average pressure rise versus flow rate at φ= 0.6, kn = 0.01,
n=2/3 and f=0.1.
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Figure 8: The friction force versus flow rate at φ= 0.6, α = π/6, kn = 0.01
and f =0.1.
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Figure 9: The friction force versus flow rate at φ= 0.6, α = π/6, n=2/3 and
f=0.1.

Figure 10: The friction force versus flow rate at at φ= 0.6, kn = 0.01, n=2/3
and f=0.1.

Finally the friction force have been plotted in Figures (8-10), which show
an opposite character in comparison to pressure rise.

Our results obtained in this study, with no slip condition (kn=0) and hor-
izontal tube (α=0), agree with those obtained by Srivastava and Srivastava
[17].
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