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Abstract

In this paper, we are interested in control of a substance which cir-
culate among organs in leaving being. We determine, under certain con-
ditions, the optimal control which steers such systems from an initial
state to a desired one.The linear quadratic optimal control problem of
such systems is analyzed using the Hilbert Uniqueness Method (HUM).
To illustrate our approach, some examples and numerical simulations
are given.

Keywords: Compartment models, controllability, optimal control, impul-
sive commands

1 Introduction

There is no exact definition in the literature of a compartment model. For
Jacquez [6]: "a compartment system is a system which is made of a finite
number of macroscopic sub-systems called compartments exchanging mate-
rial”. According to Legay [12]: ”a compartment system is a set of two or more
compartments communicating and among which one or more determined ele-
ments circulate. The number of compartments and circulation rules make up
the system rules”.
Different biological systems are modelled as compartment systems: in ”can-
cer chemotherapy” (see, for instance [10], [14], [18]), in ”pharmacokinetics”
and ”computer-assisted clinical pharmacokinetics” (see, for instance [4], [5]), in
”blood glucose control for diabetic patients” [15],

In this work, we adopt a compartmental model to determine the optimal
manceuvre which allows a biological system to reach a predefined profile. More
precisely, we consider a system made of n compartments exchanging a given
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substance. It is known (see [3], [7], [17]) that if we allocate a number from 1 to
n and if z;(¢) is the amount of substance transferred from compartment i to
compartment j and z;(¢) the amount of substance contained in compartment
i at time t, then the evolution in time of the vector

z(t) = (21(t), 2(t), ..., z,(t))T, is described by the differential equation

{ (t) = Ax(t) + BU(t) 1)
x(0) is given

where A = (kij)1<ij<n 1S an n X n square matrix; k;; is the proportionality
ratio between £x;;() and x;(t) ( the model we adopt is based on the fact that
ki; is constant).

Ut) = (UYt),U3(t)...,U™(t))T where U'(t) is the rate of external input of
the substance to compartment i at time t ; U(t) represent then the control
variable.

B is the n x n diagonal matrix given by

by 0 0 - 0
0 b, 0 :
B=1 0 o 0
0 . 0
0 0 by,

where b; = 1 when compartment i receives the substance from outside and
b; = 0 when it doesn’t . (for example: for cancer chemotherapy, in the 2-
compartment model made of different phases of the cell-cycle; blocking agents
like Cyclophosphamide act during synthesis (compartment 1) and killing agents
like Taxol act during mitosis (compartment 2) (see [9]).

In order for the mathematical model to be representative of various situa-
tions, it is incorrect to assume that the control U(t) is a continuous function
in time. Therefore we take into consideration both impulsive and continuous
controls: For example, in the case of treating a patient, an injection can be
interpreted as impulsive control and a perfusion is the continuous one. We
assume that the control U(t) = (u(t) , v(t)) where v(t) is continuous in time,
and u(t) = (u'(t),u(t) ..., u™(t))" with u'(t) is a sequence of impulsive controls
(u )k, where every action u} has a time support [ti,t: + ei[ (for example, in
case of treating a patient, ti € [0,T] means time of taking medicine meant to
compartment i and £i means the necessary time for compartment i to absorb
the medicine).

In other words, we consider the system described by

{ i(t) = Ax(t) + Biu(t) + Bov(t) 0<t<T
x(0) is given
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where A, By, By € L(R™); By and By are diagonal matrices; u € £ and
v € L*(0,T;R"™); £ is the set of impulsive controls (the set £ will be highlighted
in section 2).

we investigate the optimal control (u*,v*) € & x L*(0,T;R™) such that

{ 1) x?3*7v*)(T) = Xq
2) |[(us, vl = min{||(u, )|/ 2y, (T) = za}

where z;. . (T') is the solution of system (2) corresponding to the control
(u*,v*) at time T and ||.|| is the usual norm of L?(0,T;R") x L*(0,T;R"). To
illustrate this work, some examples are given.

The section 3 of this paper is devoted to the study of the problem of linear

quadratic optimal control for such systems, i.e, we investigate the control u =
N-1

Z“iX[tu ti+e;] € En which minimizes the cost functional
i=0

J(u) =< x(T),Gx(T) > —l—Z_ < x(t;), Mx(t;) > +/T < u(t), Ru(t) > dt

=0

where z(t;) is the solution of system (1) corresponding to the control u at time
ti, G, M and R are self-adjoint and non-negative with < Ru,u >> a||ul|* for
some o > 0 and all u € Ey.

The technic used for this is similar to HUM method (see [1], [2], [8], [13]),we
adapt the technic of [16] to our system, the optimal control is given by inversion
of some isomorphism in an adequate Hilbert space.

2 Mathematical Modelling of the problem

Let’s consider the system

{ i(t) = Ax(t) + Biu(t) + Bov(t) 0<t<T )
x(0) is given

where A = (kij)1<ij<n IS an n X n square matrix; By and By are n x n diagonal
matrix.

The controllability problem as it was defined in the previous section, may be,
mathematically interpreted by the determination of a control (u* , v*) which
allows to steer the system from the initial state xz to a desired one x4 at time
T and with minimal-costs. In others words, we investigate u* and v* such that
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N—1
i)u* € &={ue L0, T;R")/u= Zukx[thtwgk[, u € R"} 5 v* € L2(0,T;R")
k=0
(P) tk:k%, N e N* tp +ep < tk41-
W) Ty - )(T) =24

iii) [[(u*, v*)|| = min{||(u, v)||/(u, v) € E x L*(0, T;R" )andx(u v)(T) =14}

where 7)) (T') is the solution of the system (2), corresponding to con-

trol (u, v) at time T and initialization z¢ and |.|| is the usual norm on
L2(0,T;R") x L2(0, T; R™).

Remark 2.1 i) The choice of € as a control space, suppose that the absorption
ratios (ex)o<k<n—1 are the same for every compartment.

N-1 N-1
i) For every u = E UEX[ty, totex] » U = E UVkX[ty, tutex] € E
k=0 k=0
N-1
< U,V >12(0,1R) = E €k < Uk, Vi >Rn
k=0

i) ||ull 20 74y Z&‘kHUkHQ

iv) & endowed with LQ(O T;R™) topology is a Hilbert space.

The solution of the system (3) is

t t
x(t) = etdry + / e(t_S)ABlu(s)dS + / e(t_S)ABgv(s)ds , te€[0,T].
0 0

N-1
We deduce that for u = ZukX[% trte[ 3 WE have
k=0
N-1
o(T) = Mg+ tht:ﬁk “Brugds + [ T4 Byu(s)ds

k=0
= ey + H(u,v)
where H is an operator defined from £ x L?*(0,T;R") to R" by

tr+ek T
/ A Brugds + / e(T_S)ABgv(s)ds.
0

N-1
UU:
=0
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Lemma 2.1 H is a linear continuous operator, and if we consider the inner
product defined on L?(0,T;R™) x L*(0,T;R"); H* the adjoint operator of H is
defined, for all x € R™, by

Ha = (Hir . Hio)
where . "
(Hrz)(0) = { f rtek B e(T—s AYupds)r, 0 € [ty tr+en], ke {0,1,...,N—1}
1

elsewhere
(H32)(0) = BoeT=04" 9 € [0,T]

Proof
The linearity is obvious, moreover

N—
[H(u, v) || Z 1A ugllds + (fy (164 By|ds) B ([, [|o(s)]2ds)®

IN

T
Lo

IN

— T — L
Jo NeT=94By ds|lurl| + (fy e =4 Bs||2ds)¥ [[v]]12(0,r;2n)

=~
Il
o

N—-1

T _ T — 1
o 1l€T=2Bullds) D urll + (fy €T 94 Bs||*ds)? [[v]| 2(o,7:mm)
k=0

N—-1 N—-1
1 l
(o eT=4B1]lds) (32128 (3 llunl®)® + (fy lle® =94 B|2ds)® ||v|
k=0

IN

IN

k=0
N—-1

(Jo lle™=4By||ds) VN ( Z%kl\wl\ )2+ (Jy =948y |2ds)* o]

IN

where « is a constant verifying 1 < agy for every k (for example a =
1
sup  (—)).
0<k<N-1 €k

Hence

T T
MG, 0] < ( / [T By |ds).v/Nar [lul] + ( / |74 By Pds)? o]

That establishes the continuity of H.
On the other hand, since B = B, for i = 1, 2; we have
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N-1
< H(u,v),z> = Z < t'“;f%k eT=9)AB upds , &>+ < fOT eT=9)AByu(s)ds , = >
k=0

N—1
= Z ftifﬂk < g, Bre =943 > ds + foT < v(s), BeeT=94" 5 > ds

T
Ly

t _g)AT
< u, L:+€k BieT=94 pds > + < v, Hix > 12(0,T:R ™)

(]

T
Ly

T
= Zsk <uy, é ftiﬁek B1eT=942ds > + < v, Hiz >
k=0

= <u, Hix>+<v, Hiz >
= <(u,wv), Hz>.

Thus, the adjoint of H is
H'x = (Hix , Hyx)

where e o
(Hiz)(0) = { 6_k(ftk Bie =94 wds)x, 0 € [ty ty+ex, k€{0,1,..,N—1}

elsewhere
(H32)(0) = BoeT=94" = 9 € [0,T)]
[ |

Definition 2.1 The system (3) is said to be controllable on [0,T] if the oper-
ator 'H s surjective.

Proposition 2.1 H is surjective if and only if for all x¢, x4 € R™ it exists
a controlu € € and a controlv € L*(0,T;R™) such that T (1) = xa , where
Ty (1) 15 the solution of the system (3) corresponding to control (u,v).

Proof

If ‘H is surjective then 3 u € £ , v € L*(0,T;R") such that H(u , v) =
g — €720 hence x4 = x(x;jjv) (T).

Conversely, if for o = 0 and any x4 in R, there exists u € £, v € L?(0, T; R"™)
such that z)) \(T') = x4, then H(u,v) = z4

that establishes that H is surjective .
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Remark 2.2 [t follows from the previous proposition that
The system (3) is controllable on [0, T] & ImH =R" & KerH* = {0}.
Proposition 2.2 The system (3) is controllable on [0,T] if and only if

[1FE0 BeT=9)A" g
t

t —s
ft11+€1 BpeT=947 g

tN—1teN—1 : (T—s)AT
KET' ftN—l Ble dS = {0}
By
By AT
B2(AT>TL—1

Proof
It is an immediate consequence of the definition of H* and the remark 2.2 .

In order to lighten the matrix condition in the previous proposition, we give
the following necessary condition

Proposition 2.3

[0 BreT=94" 45
fgﬁal ByeT=947 s
t1

tN—1teN—1 : (T—s)AT
Ker ftN—l 516 ds = {0}
2

By AT

B2(AT>n—1
By
B AT
T\n—1
= Ker Bl(%) = {0}
2
By AT

B2(A:I'>TL—1
& rank | By | BIAT | .| Bi(AT)"Y | By | B2 AT || By(AT)" T | =
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Proof
If we suppose that
By
B AT
Bl (AT)n—l
r € Ker B,
By AT
B2(AT>TL—1
then
le = BlATJZ' = ....= Bl(AT)n_ll' =0
by the Cayley-Hamilton theorem, there exist reals ag, a1, ..., a,_1 such that

A" = a()I -+ alA + ...+ an_lA”_l

we deduce by immediate recurrence that, for any integer k,

By (ATYrr =0
thus for any t € [0,T],

Btz =0
consequently, for any k = 0,1,...,N-1

tptek -
(/ BieT=94%ds) 2 = 0
23

therefore
ft;O'f'€O Ble(T_S)ATdS
ft11+€1 BpeT=9)4% 4

x € Ker ftt]]vv__11+€N_1 BieT=94" s
B,

By AT

B2(AT>TL—1
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Remark 2.3 The reciprocal of proposition 2.3 is false. Indeed

11 10 0 0
T _ _ _ .
forA—(O0),31—(00),32—(00),wehcwe
rank|[B;|B1AT|By| B AT] = 2 and

M
M,
: trtex T
Ker ‘ # {0} where My :/ BieT=94 45
Mpy_1 te
B,
By AT
Indeed, we have
T 1 1 00 0 -1
A" = ( -1 0 01 1 1
_ (T—S)AT]tk+5k [_e(T—S)AT]tk+€k
M — [ € tr tE
= )
then
M
M,
( ! ) € Ker :
-1 Mpy_1
B,
By AT
[ |
Consider A the n * n matrix defined by
AN=HH"
we have then
Az = H(H*z)
= H(Hiz , Hiz)
N-1
_ Z( t:c+€k €(T_S)A31(é L1k+5k Ble(T_S)ATdS ) .1') ds
k=0
T

e(T_S)ABg(Bge(T_S)AT) xds

_l’_
—

0

=

(]

é( tl;k+€k eT=9AB ds )( Lik-l—ék BeT-9)AT 44 ) x
0

(foT e(T—s)ABge(T—s)ATdS) T

It’s easy to show that A is a bounded self-adjoint operator.

_i_e'\;‘
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Lemma 2.2 the system (3) is controllable on [0,T] if and only if KerA = {0}.

Proof

It is sufficient to show the equality

Let’s consider

KerA = Ker

r € Ker

that implies that

and

thus

tg

and

hence

to+eo (T—s)AT
L& +e1 Ble(T—s)AT o
ft1 Bye ds

N _ VAT
fN 1t+EN 131€(T 5)A d
tN—1

Bs
By AT

B2(AT>TL—1

[0 BreT=94" 45
f'?ﬁal BieT=9)4" g
i1

tN_1+eEN— _ T
t]iv_; N 131€(T s)A ds

B;
By AT

B2(AT>TL—1

tptek -
/ BieT=94 2ds = 0, Vk € {0,1,.

BQJZ’ = BQATJZ' = .= BQ(AT)TL_IJZ' =

tg

T
/ e(T_S)ABg(Bge(T_S)ATx)dS =0
0

S

N -1}

0

tpter tptek T
(/ e(T_smBldS)(/ Bie™ 94 24s) = 0, Vk € {0,1,..N —1}
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Az =0

which means
z € KerA.

Conversely, if we suppose that Az = 0 then < Az,xz >= 0 and < HH*z,z >=
0, which implies that ||H*z| = 0 ie H*z = 0. Consequently,

ftto+€° ByeT=94" g
ft bivar BT 45

t +e T—
r € Ker ft]iivll NlBe( I ds

By
By AT
B2(AT>TL—1
|
Now, we establish the fundamental result of this section.
Theorem 2.1 If we suppose that the system (3) is controllable on [0,T],
to+eo (T—s
f Bie AT s
ftl+€lB (T=5)AT ]
tN—1teEN-1 (T—s)AT
i.e., Ker ftN 1 B € ds | — {0}
By
By AT
B2(AT>n—1
then the unique control solution (u*, v*) of the problem (P) is given by
S 11 ferer T—s5)AT T-9)AT
(u(6), ZS— / B ds )Xy, t4e,(0) f, Bae ™04 f)
k=0 tr

where f is the unique solution of the linear system

ANf =x4— T,
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Proof
If the system (3) is controllable, by lemma 2.2, we have

KerA = {0}

A € L(R™), then A is bijective, hence there exists f € R", unique solution of
the equation
Af = x4 — e .
Observe that the control (u*,v*) may be written as follows
(u*,v*) = H*f € & x L*(0,T;R")

we have

B (T) = P+ Hw, v7)
= €TA33'0 +HH* f
— €TA33'0 + Af
then the control (u*, v*) allows to steer the system from the initial state z¢ to

the desired one z,4 at instant T.

Let (u, v) € € x L*(0,T;R") another control such that T(y (1) = za, then

H(u*, v)=H(u, v) = <H((u* v*)—=(u,v)), f>=
= <5 v)—(u,v), H*f>=10
= < (uv)—(u,v), (U5 v*)>=0
= |l(w o) =< (u, v), (@ v*) > < (w, v)[lll(u* v*)].

Consequently
that establishes the optimality of (u*, v*).

Example : Let us consider a 2-compartment model, then A is a 2 x 2 square
matrix which supposed diagonalisable, so we can write

AT = PDP!

where

CfabN . 1 (d b\ - (A0
p_(c d)’P _detP(—ca )’D_(O )\2)

A1, Ao are the eigenvalues of A. Therefore

(=97 _ (“dekl(T_s)—bceMT—@ —abe’\l(T—S)+abe/\2(T—S))

‘ T detP \ cdeMT=9) — cde?2 =) _pee(T=5) 1 gder>(T—5)
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10
B=t=( o)

which means that the impulsive control (for example injection) and the con-
tinuous control (for example perfusion) act only on compartment 1. Let we
call

If we take

M
M,
: tk+€k "
M = ’ where My :/ BeT-9A" g5
Mny_4 b
B,
By AT
then
1 Yk 2k
M, =
* 7 detP ( 0 0 )
where
y = adage Tt — pefer2(T—t)
2 = ab [—akekl(T—tk)_i_ﬂke)\g(T—tk)]
with
L1 —e M) if A 0 (1 — e=Re=k) if A 0
ak = Al( ‘ ) 1 175 ;Bk: >\2( (& ) 1 27‘_é
o it A =0 Ek if A=0

Using proposition 2.2, the system is controllable if and only if KerM = {0}.
For N = 1and By = 0; M = M then detM = 0, i.e., KerM # {0}; the system
is not controllable, it means that if the control acts on only one compartment,
taking medicine (for example) only one time is not sufficient to lead the system
to the desired state.

For N =2, t=0, t =%

det ( %o % ) = ab(detP)eM-2M2 (—alﬁoe%T + ozoﬁle%lT)
Y1 21

if we suppose ab # 0; g9 = 1 = € and A\ # Ay (i.e. a9 = aq, [y = (1) then

det Yo 20

Y1~
Using theorem 2.1, if \; # 0, Ay # 0 and A\; + Ay # 0 and when the system is

controllable, the optimal control (u*,v*) which allows the system to be leads
from a state x( to a desired final state x4 at time T is given by

1 Yk 2k .
u*(@) — ey, (detP) ( 0 0 ) f Zf 0 e [tk,tk—l—{;k[

0 elsewhere

# (; in which case the system is controllable.
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X ( ad MT=0 _ pe X210 _gh (M(T=0) _ Ha(T=0))

/0*(0) = JoiP

0 0
where
N1y N-1 -1
—yity ) i
f=(detP)? | 70 k=0 (g — Ty)
LIV S
Yk2k o A
k=0 k=0
Y = ado&kekl(T—tk) _ bCﬁk@Ag(T_tk) Q= %1(1 _ e_)‘15k>
2z = ab [_akeh(T—tk) + ﬂkekz(T—tk)] ﬂk _ %(1 B 6_)‘261“)
y = —a’d*y, + 2abedy — by, "= %(1 — e2Th)
z=ab [gd;h — (be + ad)y + beys) Yo = %(1 ezTT,\QA) /\
w = —a"b*(y1 — 27+ 72) »y:/\1+>\2(1 eT(a+ 2)>

Numerical simulation
The parameter values chosen for the model are taken from [5] and are

—0.15—-0.081 0.56 . [ 11x107 o
( 0.081 —0.56 ) the unit is h™" , 24 = ( 0 ) the unit is
g and

Ka = 2.3 h~! the absorption constance.
Then , in the case when there is only an impulsive control,

fongzO;xoz(O) ;gk:es:%h_l,k:Q 1, ..., N-1; and for T = 120

0
h and
N = 5, we have
a=1;b=1;c=-3.31838022; d = 1.125046886; det P = 4.443427106; \; = -
0.728757033; Ay = - 0.0622429671; oy, = 0.5118514633 and (3, = 0.4409424737,
k=0,1, .., N-1
The parameters y; and z; are given in table 1.

k 0 1 2 3 4
yr x 101 | 8.346315978 | 37.175556 | 165.584669 | 737.535242 | 3285.076055
2, X 10% | 2.515177714 | 11.202922 | 49.899246 | 222.257605 | 989.963728

Table 1. The parameters y;, and zj .

— 0.1081830018 x 10?
0.3589923336 x 10°

g

and the optimal control u* is given in table 2; u*(0) =
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0

[0; 0.435]

[24'; 24.435]

[48 ; 48.435]

[72; 72.435]

[96 ; 96.435]

ui(6) x 10*

0.2567294553

-67.1249512

114.823352

-69.0944365

63.57317267

Table 2. The evolution of the control uj.

3 Linear quadratic optimal control

In this section, we consider the problem of linear quadratic optimal control
related to the system described by

{ i(t) = Ax(t) + Bu(t)
x(0) is given

0<t<T

(4)

where A € L(R"); B is an n x n diagonal matrix;
N-1

ueéy={u= Z“kX[tk,twek[a up € R", tp = k%,
k=0

Our control problem is to determine the control © € £y which minimizes the

cost functional

t + ek < thtr}

N-1 T
J(u) =< z(T),Gx(T) > +Y < x(t;), Ma(t;) > +/ < u(t), Ru(t) > dt
i=0 0
where G, M and R are self-adjoint and non-negative operators of L(R")
with < Ru,u >> a|lul|? for some o > 0 and all u € Ey.

3.1 Preliminary properties

In this subsection, we will develop an optimality system from which derives
the optimal control u* € Ey. For this, let we call x; = z(t;), 0 <i < N, so we
have

Tiy = ety —l—foti“ eti1=94A By (s)ds
eMAetidpy + [o e =4 By(s)ds + ftii“ etit1=9)A By (s)ds
€6A.23'i + ( tt-i+€i e(tH_l_S)ABdS)U/Z‘
Then

Tip1 = Cy + By,
where C' = ¢4 and B; = f;i+€i eltitn=5)AB(s.
We can establish easily that

i—1
T; = Cil'() -+ Zci_j_lBjUj 1<i<N
=0
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Where
Hy : En — l2(1,2, ey N,R™)
N-1
U = ZuiX[ti,ti—I—ai[ E— ((HN(U))L (HN(U))% ceey (HN(U))N>
i=0
with .
(Hn(u)i =Y _C"7 7' Bju 1<i<N
§=0

The adjoint operator H} is given by

Hy: *(1,2,..,N,R") — En
(x1, 22, ...,xy) — Hy(r1,22,...,TN)
such that
1 & .
Hy (1, T2, ..., zn)(0) = — Z BiC** "l if € [titite| 1<i< N-1
i =
k=i+1

Indeed, for u € Ey and (w1, 22, ..., zx) € 1*(1,2,..., N,R") ; we have

N
< Hyu, (z1,22,....,TN) > = Z < (Hyu)g , xp >
N
= Z < C’“_i_lBiui , T >
k=1 =0
N k-1
= ZZ <, BfC* gy >
k=1 i

=0
N
s vkk—i—1
Z <uw;, BC Ty >

0 k=i+1
N—1 N
= € < Ui, é Z By C*F gy >
i=0 k=i+1
We deduce that
N—1
Ju) = <zny, Gry > —|—Z <xi, Mx; >+ <u, Ru>p20rrn
i=1
= < CNJZ'O + (HNU)N , G(CNJZ'O + (HNU)N) >

N-1

+3 < Clzg + (Hyu)i , M(Clzo + (Hyu)i) >+ <u, Ru>
i=1 _
= J() + J(u)
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Where

N-1
Jo = < CNJZ'() , GCNJZ'() > +Z < Cil'o , MCZJZ'() >

i=1
J(u) = < (HNU)N , G HNU > +Z HNU Z , (HNU)Z) >

N 1

+2( < (HNU)N , GCNZ'()) > +Z (HNU)Z , MC%O > )+ <u, Ru>
Let D; = M if 1 <i<N—1et Dy =G and consider the linear, auto-adjoint
operator D defined by

D: 1*(1,2,..,N,R") — I2(1,2,..., N,R")
(21, 22,..., TN) — (Dyx1, Daxa, ..., Dyzy).

If we call
a;=MClzg 1<i<N-1
{ ay = GCNz, (5)
Then
J(u) = <Hyu, DHyu>+2<Hyu, (a1,as,...,ay) >+ <u, Ru>

= <u, (HYDHyx + Ru>+2<u, Hy(a,as,...,an) >
We deduce that the optimal control u* of the quadratic function J is such that
(HyDHN + R)u™ = —Hy(as, az, ..., an)

Thus, we can establish easily that:

u = —RYH(Max¥ ..., Mx¥ |, Gx¥)
= —RYHy(Dia¥, Do, ..., Dy
Therefore
N .
u*(g) — ——R IB* Z C*k—z—lex}:* if 0e [ti,ti +€i[ 0<i<N_1
) -
k=i+1

Let’s consider the signal (p;)o<i<n—1 defined by

N
=Y "Dy if Oeltitital 0<i<N-1
k=i+1
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Then the signal p; verify
pi=Cpis1+ Mz, 0<i<N-2
pn-1 = Gzl

Finally, we have the following optimality system

w(f) =—2R'Bipi ifbetititea] 0<i<N-1
pz:C*pz‘Hj‘Mxﬁl 0<i<N-—-2 (1)
PN-1 = Gx}‘v

24, =Cx¥ + B, i=0,..,N—1

Where €' = e ; ft e etin=94Bds and Bf = ft T8 Beltinn—9)AT jg.

3.2 An adequate topology

The technic developed here is similar to HUM method (see [16]). For f =
(fi, f2, ., fn) € F =13(1,2,..., N,R") ; we define the signal 2/ = (zg,z{;, s z]’i,_l)
by the difference equation

N
=Y DR 0<i<N-1
k=i+1
The following functional defined in F by

N— 1

1115 = ILf1F + Z—HR_EBZ‘ZfHQ

zOZ

is a norm in F equivalent to the norm ||.||» de F. Let’s us define the operator
AN by
AN : F — F
f — f+D:ul

where \Iff = (\If{)lgiSN is given by
= (Hyuy); ZC”lBuf 1<i<N

N-1
with uy = ZU{X[% ti+e;] 18 described by
i=0

1
ul = =R'B2/ 1<i<N-1
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Lemma 3.1 Ay is a bounded, self-adjoint operator satisfying
<AnfL =% VfEF
Proof: We have

<Anf,g> = <f, g>+Z<D vl >

= 1

= <f, g>+Z<\I} DZg; >

1
- <Siam ey <SR ) ol >
NlN )
= <f.g9>+) Y L<Bjz, R'BC"'Dig >
J=01=j+1
al 1
= <f,g>+Y t<By, R'B Y DG >
§=0 i=j+1

= < f, g>+Z§j<szjf, R—lsz§>

N-1

= <f.g9>+) L<RBjz RB>
i=0
Then
<ANf7 g>:<f7 ANg>

and

<Anf, f> = HfHQerZE%HR‘EB* |

§=0
= |Ifl%

Finally, we prove the following main result

Theorem 3.1 The optimal control minimizing the functional J in Ex is given
by:

1
uw(@) = —R'B'2  feltutiteal, i=02.,N-1
3

where z 1s the solution of the difference equation

N-1

= Y CHMTIMEf 4+ VTG Y 0< i< N -2 .
h—it1 (8)

1
ZN—I = GQfN
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with C = €4 ; B; = ftii+€i eltit1=s)AB g
and f = (f1, fa, ..., fn) is the unique solution of the equation

Anf =—(MzCux, ..., M2CN "1z, M2CNzy)
Moreover , the optimal cost is
J(u) = | flIx
Proof: From the optimality system (9) ; it is enough to establish that

zzf:—pi 0<i<N-1

ie.,
1
fi=—-Dx} 1<i<N
We have
Anf =—(M2Cux, ... , M2CN "2y, G2CNay)
Then
f o= (Mél(cgcowf ), . %(cN Leg + 04 ), G%(cho+1\1/{v))
= (Mf(C’xo—l—(HNu) ) MZ(C’N Yro + (Hyu)n—1), G2(CNxo+ (Hyu)n )
—( Mz zy, .. , M3 %1, Gz %)
Therefore )
fi=—-D2x} 1<i<N
Moreover
N-1
Ju) = <azf, Gaf, > +Z <z, Mz} >+ <u, Ru>r27rrn
1 1 . fle 1 1
= < G2z%, G2zl > +Z < Mzaz}, M2z} > —|—f0T < u(f), Ru(f) > db

i=1
zz’

N-— N—
= <IN N> <o fi> ) [T R <RUBr] Bzl > df

N—-1
= IfIP+Y L <RriBr2f  REBr2f >
=1

= fIP+ > LR 2B |2

i=1
= [Ifll
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