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Abstract

In this paper, we establish the local existence and uniqueness of the
solution for the degenerate parabolic equation with a nonlocal source
and homogeneous Dirichlet boundary condition. Moreover, we prove
that the solution blows up in finite time and obtain the blow-up set in
some special case.
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1 Introduction

In this paper, we consider the following degenerate parabolic equation with a
nonlocal source

ut = (um)xx + aup
∫ l

−l
uqdx − kur, x ∈ (−l, l), t > 0,

u(±l, t) = 0, t > 0, (1.1.1)

u(x, 0) = u0(x), x ∈ [−l, l],

where a, k > 0, p, q ≥ 0, p + q > r > m > 1.
Problem (1.1) arises in the study of the flow of a fluid through a porous

medium or in study of population dynamics. Over the last few years, many
physical phenomena were formulated into non-local mathematical models.

1E-mail: yangshuo3721@gmail.com
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In [3], Deng et al. studied the following problem

ut = (um)xx + a
∫ l

−l
uqdx, x ∈ (−l, l), t > 0,

u(±l, t) = 0, t > 0,

u(x, 0) = u0(x), x ∈ [−l, l],

where a > 0, q > m > 1. Under certain conditions, they obtained that the
solution blows up in finite time and got the estimate of blow-up rate.

Souplet [8] and Wang [10] considered the following problem

ut −�u =
∫
Ω

up(y, t)dy − uq(x, t), x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

where p > q ≥ 1. They proved that the solution blows up in finite time for
large data u0(x), and obtained the following blow-up rate

lim
t→T ∗(T

∗ − t)
1

p−1 u(x, t) = [(p − 1)|Ω|] −1
p−1 ,

where T ∗ is the blow-up time of u(x, t).
Motivated by these results, in this paper, we will study the blow-up and

blow-up set of (1.1). Firstly, we give a definition of classical solution for prob-
lem (1.1).

Definition 1.1 If there exists some T ∗ ∈ (0, +∞] such that for any T ∈
(0, T ∗), function u(x, t) ∈ C2,1(DT ) ∩ C(DT ) and satisfies (1.1), then u(x, t)
is a classical solution of (1.1) on [0, T ∗), where DT = (−l, l) × [0, T ], DT =
[−l, l] × [0, T ]. If T ∗ = +∞, then u is a global solution.

Definition 1.2 A point x0 ∈ [−l, l] is a blow-up point of u(x, t) if there exists
a sequence {xn, tn} such that tn → T ∗, xn → x0, and

lim
n→∞u(xn, tn) = ∞.

We call the set of all blow-up points the blow-up set. If the blow-up set is
(−l, l), we say that (1.1) has global blow-up.

Before stating our main results, we make some assumptions for initial data
u0(x) as follows:
(H1) u0(x) ∈ C2+α([−l, l]) for some 0 < α < 1, u0(x) > 0 in (−l, l);
(H2) u0(±l) = 0, u0x(l) < 0, u0x(−l) > 0, (um

0 )xx + aup
0

∫ l
−l u

q
0dx − kur

0|±l = 0;

(H3) (um
0 )xx + aup

0

∫ l
−l u

q
0dx − kur

0 ≥ 0, x ∈ (−l, l);



Existence and blow-up 2055

(H4) (um
0 )xx ≤ 0, x ∈ [−l, l].

Remark 1.1 we can choose u0 = C(cos π
2l

x)
1
m to satisfy the above conditions

(H1)-(H4), where C is a sufficiently large positive constant.
Our main results are stated as follows.

Theorem 1.1 Suppose that u0(x) ∈ C2(−l, l) ∩ C([−l, l]) and satisfies (H1)-
(H3), then (1.1) there exists a unique classical solution.

Theorem 1.2 Suppose that u0(x) satisfies (H1)-(H3). Then

(i) (1.1) has a global solution if u0(x) ≤ ( k
2al

)
1

p+q−r ;
(ii) the solution of (1.1) blows up in finite time if u0(x) is sufficiently large.

Theorem 1.3 Suppose that u0(x) satisfies (H1)-(H4), p + m < 2. Then the
solution u(x, t) of (1.1) blows up globally.

This paper is organized as follows. In section 2, we state the local existence
and uniqueness of the solution and prove that the solution is a classical one by
adding some assumptions on u0(x). The results of global existence and finite
time blow-up are shown in section 3. In section 4, we prove that (1.1) has
global blow-up.

2 Local existence and uniqueness

To investigate the local existence and uniqueness of the solution of problem
(1.1), let um = v, t = 1

m
τ , then (1.1) becomes

vτ = vm1(vxx + avp1

∫ l

−l
vq1dx − kvr1), x ∈ (−l, l), τ > 0,

v(±l, τ) = 0, τ > 0, (2.2.1)

v(x, 0) = v0(x), x ∈ [−l, l],

where 0 < m1 = m−1
m

< 1, p1 = p
m

≥ 0, q1 = q
m

≥ 0, r1 = r
m

, p1 + q1 > r1 > 1,
v0(x) = um

0 (x).
Under this transformation, assumptions (H1)-(H4) become

(H1)′ v0(x) ∈ C2+α([−l, l]) for some 0 < α < 1, v0(x) > 0 in (−l, l);
(H2)′ v0(±l) = 0, v0x(l) < 0, v0x(−l) > 0, v0xx + avp1

0

∫ l
−l v

q1
0 dx − kvr1

0 |±l = 0;

(H3)′ v0xx + avp1
0

∫ l
−l v

q1
0 dx − kvr1

0 ≥ 0, x ∈ (−l, l);
(H4)′ v0xx ≤ 0, x ∈ [−l, l].

Because (2.1) is a degenerate equation, the standard parabolic theory can’t
be used to give the local existence of the solution, we consider the regularized
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problem

vετ = (vε + ε)m1(vεxx + avp1
ε

∫ l

−l
vq1

ε dx − kvr1
ε ), x ∈ (−l, l), τ > 0,

vε(±l, τ) = 0, τ > 0, (2.2.2)

vε(x, 0) = v0(x), x ∈ [−l, l].

Lemma 2.1 Suppose that w(x, τ) ∈ C2,1(DT ) ∩ C(DT ) and satisfies

wτ − d(x, τ)wxx ≥ c1(x, τ)w + c3(x, τ)
∫ l

−l
c2(x, τ)w(x, τ)dx, (x, τ) ∈ DT ,

w(±l, τ) ≥ 0, τ ∈ (0, T ],

w(x, 0) ≥ 0, x ∈ (−l, l),

where c1(x, τ), c2(x, τ), c3(x, τ) are bounded functions and c2(x, τ) ≥ 0, c3(x, τ) ≥
0, d(x, τ) ≥ 0 in DT . Then w(x, τ) ≥ 0 on DT .

Proof. The proof is similar to the proofs of Lemma 1 in [7] or Lemma 2.1 in
[10], we omit it.

Lemma 2.2 Assume that vε(x, τ) ∈ C2,1(DT )∩C(DT ) is a nonnegative solu-
tion of (2.2) and a nonnegative function of w(x, τ) ∈ C2,1(DT ) ∩ C(DT ), and
satisfies

wτ ≥ (≤)(w + ε)m1(wxx + awp1

∫ l

−l
wq1dx − kwr1), (x, τ) ∈ DT ,

w(±l, τ) ≥ (≤)0, τ ∈ (0, T ], (2.2.3)

w(x, 0) ≥ (≤)v0(x), x ∈ (−l, l),

Then w(x, τ) ≥ (≤)vε(x, τ) on DT .

Proof. We only consider the case ≥. Let z(x, τ) = w(x, τ) − vε(x, τ). Sub-
tracting (2.2) from (2.3), we obtain

zτ = wτ − vετ

≥ m1(ξ2 + ε)m1−1(wxx + awp1

∫ l

−l
wq1dx)z + a(vε + ε)m1wp1q1

∫ l

−l
ξq1−1
3 zdx

+[a(vε + ε)m1pξp1−1
4

∫ l

−l
vq1

ε dx]z + (vε + ε)m1zxx

+(−k)[m1(ξ1 + ε)m1−1ξr1
1 + r1(ξ1 + ε)m1ξr1−1

1 ]z

with the initial-boundary conditions

z(x, 0) ≥ 0 and z(±l, τ) ≥ 0,

where ξ1, ξ2, ξ3, ξ4 > 0. By Lemma 2.1, it follows that w(x, τ) ≥ vε(x, τ).
By Lemma 2.2, we have the following result of monotonicity.
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Lemma 2.3 Let 0 < ε2 < ε1 < 1 and suppose that v0(x) satisfies (H1)′-
(H3)′,and vε1(x, τ)and vε2(x, τ) are solution of (2.2) on DT0. Then vε1 ≥ vε2

on DT0.

Lemma 2.4 Suppose that v0(x) satisfies (H1)′-(H3)′, and vε(x, τ) is the solu-
tion of (2.2) on DT0. Then uετ ≥ 0 on DT0.

Proof. Let w = vετ . Differentiating (2.2) with respect to τ gives

wτ = m1(vε + ε)m1−1(vεxx + avp1
ε

∫ l

−l
vq1

ε dx − kvr1
ε )w

+(vε + ε)m1(wxx + ap1v
p1−1
ε w

∫ l

−l
vq1

ε dx + aqvp1
ε

∫ l

−l
vq1−1

ε wdx − kr1v
r1−1
ε w)

By (H1)′ and (H3)′, we have

w(x, 0) = vετ (x, 0) = (v0(x) + ε)m1(v0xx + avp1
0

∫ l

−l
vq1
0 dx − kvr1

0 ) ≥ 0

In view of w(±l, τ) = vετ (±l, τ) = 0, by Lemma 2.1, it follows that w(x, τ) ≥ 0
for any (x, τ) ∈ DT0 .

Lemma 2.5 Suppose v0(x) satisfies (H1)′-(H3)′. Then there exist T0 and a
priori bound M such that for all ε ∈ (0, 1), the solution of (2.2) satisfies

v0(x) ≤ vε(x, τ) ≤ M, (x, τ) ∈ DT0 .

Proof. By Lemma 2.3, we know that vε(x, τ) is monotone with respect to ε.
Suppose the solution of (2.2) is v1(x, τ) when ε = 1, and T1 is the maximal
existence time of v1. For any T0 ∈ (0, T ), we can conclude that

vε(x, τ) ≤ v1(x, τ) ≤ v1(x, T0) ≤ max
x∈[−l,l]

v1(x, T0) = M, (x, τ) ∈ DT0 .

Since vετ ≥ 0, vε(x, 0) = v0(x). It follows that

v0(x) ≤ vε(x, τ), (x, τ) ∈ DT0 .

According to Lemma 2.3-2.5, we know that vε is monotone with respect to ε
on DT0 and is bounded from below to above. Thus we have

v(x, τ) = lim
ε→0

vε(x, τ), (x, τ) ∈ DT0 . (2.2.4)

Proposition 2.1 Suppose that v0 ∈ C2((−l, l))∩C([−l, l]) and satisfies (H1)′-
(H3)′, then the function v(x, τ) defined by (2.4) is a classical solution of (2.1)
in DT0.
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Proof. It is required to prove that v belongs to C2,1(DT0) ∩ C(DT0). Choose
a point (x1, τ1) ∈ (−l, l) × (0, T0). Then select a domain Q = (a1, a2) × (0, τ2)
such that

−l < a1 < x1 < a2 < l and 0 < τ1 < τ2 < T0

Let C0 = infx∈[a1,a2] u0(x). By Lemma 2.5, we have that vε ≥ C0 > 0 in Q,
then (vε)

m1 ≥ Cm1
0 . By Schauder interior estimate, we have

‖vε‖C2+α(Q) ≤ M,

where M depends only on Cm1
0 , v0, α, Q.

Now an appeal to Ascli-Arzelá Theorem show that v ∈ C2+α′
(Q), 0 < α′ <

α < 1, with ‖v‖C2+α′ (Q) ≤ M . This shows that v is in C2,1 at (x1, τ1). Notice
that

0 ≤ lim
x→±l

v(x, τ) ≤ lim
x→±l

vε(x, τ) = 0, (ε → 0),

we have that v is continuous on {±l} × (0, T0).

Proposition 2.2 Suppose that v0 ∈ C2((−l, l))∩C([−l, l]) and satisfies (H1)′-
(H3)′, then the function v(x, τ) defined by (2.4) is unique.

Proof. Suppose that v(x, τ), u(x, τ) are two classical solution of (2.1). By
using the same method used in Lemma 2.2, we can easily prove that v ≥ u
and v ≤ u. So v ≡ u.
The proof of Theorem 1.1 According to Proposition 2.1 and 2.2, we can
easily get Theorem 1.1.

3 Global existence and blow-up

In this section, by constructing sub- and super-solution, we shall prove Theo-
rem 1.2.

Proposition 3.1 Let v(x, τ) be the solution of problem (2.1). Suppose that v0

satisfies (H1)′-(H3)′. Then (2.1) has a global solution if v0(x) ≤ ( k
2al

)
1

p1+q1−r1 .

Proof. Let w = ( k
2al

)
1

p1+q1−r1 , then

wτ = (w + ε)m1(wxx + awp1

∫ l

−l
wq1dx − kwr1) = 0, (x, τ) ∈ DT ,

w ≥ 0, τ ∈ (0, T ],

w ≥ v0(x), x ∈ (−l, l).

Thus w(x) is a supersolution of (2.1), which means that (2.1) has a global
solution.
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Proposition 3.2 Suppose that u0(x) satisfies (H1)-(H3). Then the solution
of (1.1) blows up in finite time if u0(x) is sufficiently large.

Proof. Since problem(1.1) does not a prior make sense for negative values of
u, we actually consider the following problem

ut = (um)xx + aup
+

∫ l

−l
uq

+dx − kur, x ∈ (−l, l), t > 0,

u(±l, t) = 0, t > 0,

u(x, 0) = u0(x), x ∈ [−l, l],

We set

z(x, t) =
1

(T − t)γ
V

1
m [

|x|
(T − t)σ

], V (y) = 1 +
A

2
− y2

2A
, y ≥ 0,

where γ, σ > 0, A > 1, and 0 < T < 1 are to be determined. First note that

suppz(t) = B(0, R(T − t)σ) ⊂ B(0, RT σ) ⊂ (−l, l), (3.3.1)

for sufficiently small T > 0 with R = (A(2 + A))
1
2 .

Calculating directly, we obtain

−[zm(x, t)]xx =
N/A

(T − t)mγ+2σ
.

For all (x, t) ∈ (−l, l) × (0, T ), we find

|z(x, t)| ≤ 1 + A + 4l2

(T − t)γ+2σ
.

The remaining terms are estimated in two different ways according to the size
of y = |x|

(T−t)σ . If 0 ≤ y ≤ A, we have 1 ≤ V (y) ≤ 1 + A
2

and V ′(y) ≤ 0, then

zt(x, t) =
mγV

1
m (y) + σyV ′(y)V

1−m
m

m(T − t)γ+1
≤ γ(1 + A

2
)

1
m

(T − t)γ+1

zp
+

∫ l

−l
zq
+dx =

V
p
m

+ (y)

(T − t)γ(p+q)

∫
B(0,R(T−t)σ )

V
q
m

+ [
|x|

(T − t)σ
]dx ≥ M

(T − t)γ(p+q)−Nσ
,

where M =
∫
B(0,R) V

q
m

+ (|ξ|)dξ.
Hence,

zt − (zm)xx − azp
+

∫ l

−l
zq
+dx + kzr ≤ γ(1 + A

2
)

1
m

(T − t)γ+1
+

N/A

(T − t)mγ+2σ

− M

(T − t)γ(p+q)−Nσ
+

k(1 + A + 4l2)r

(T − t)(γ+2σ)r
. (3.3.2)
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On the other hand, if y > A, we have V (y) ≤ 1 and V ′(y) ≤ −1, so that

zt(x, t) ≤ γ − σA/m

(T − t)γ+1
.

Therefore, for all (x, t) ∈ (−l, l) × [0, T ) such that y ≥ A, we obtain

zt − (z)xx − azp
+

∫ l

−l

zq
+dx + kzr ≤ γ − σA/m

(T − t)γ+1
+

N/A

(T − t)mγ+2σ
+

k(1 + A + 4l2)r

(T − t)(γ+2σ)r
. (3.3.3)

Since p + q > r > 1, we can choose σ > 0 and γ > 0, such that

γ(p + q) − Nσ > γ + 1 > (γ + 2σ)r > mγ + 2σ.

Select A > max{1, mγ
σ
}, then for T > 0 sufficiently small, (3.2) and (3.3) imply

that

zt − (zm)xx − azp
+

∫ l

−l
zq
+dx + kzr ≤ 0, (x, t) ∈ (−l, l) × (0, T ).

Let ϕ ∈ C1([−l, l]), ϕ(x) ≥ 0, ϕ(x) �≡ 0, and ϕ(±l) = 0. By translation,
we may assume without loss of generality that ϕ(0) > 0. Since ϕ(0) > 0
and ϕ is continuous, there exist two positive numbers ρ and ε > 0, such that
ϕ(x) > ε, for all x ∈ B(0, ρ) ⊂ (−l, l). Taking T small enough to insure
B(0, RT σ) ⊂ B(0, ρ), and hence z ≤ 0 on {±l}× (0, T ). From (3.1), it follows
that z(x, 0) ≤ λϕ(x) for sufficiently large λ. By Lemma 2.2, we have z ≤ u
provided that u0(x) > λϕ(x) and u can exist no later than t = T . This shows
that u blows up in finite time.
The proof of Theorem 1.2 By Proposition 3.1 and 3.2, we can prove

Theorem1.2.

4 Blow-up set

In this part, we assume that v0(x) is sufficiently large, the solution v(x, τ) of
(2.1) blows up in finite time and the blow-up time is T1

∗.

Lemma 4.1 Suppose that v0(x) satisfies (H1)′-(H4)′, p1 + 2m1 < 1. Then
vxx < 0 in any compact subsets of (−l, l) × [0, T ∗).

Proof. Let w = vεxx. According to (2.2), we have

wτ = (vε + ε)m1wxx + 2m1(vε + ε)m1−1vεxwx

+[m1(vε + ε)−1vετ + (vε + ε)m1(ap1v
p1−1
ε

∫ l

−l
vq1

ε dx − kr1v
r1−1
ε )]w

+m1(m1 − 1)(vε + ε)−2(vεx)
2vετ

+(vε + ε)m1 [ap1(p1 − 1)vp1−2
ε (vεx)

2
∫ l

−l
vq1

ε dx − kr1(r1 − 1)vr1−2
ε (vεx)

2]

+2m1(vε + ε)m1−1(vεx)
2[ap1v

p1−1
ε

∫ l

−l
vq1

ε dx − kr1v
r1−1
ε ]
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Since vε, vετ ≥ 0 and p1 + 2m1 < 1, we have

wτ − (vε + ε)m1wxx − 2m1(vε + ε)m1−1vεxwx

−[m1(vε + ε)−1vετ + (vε + ε)m1(ap1v
p1−1
ε

∫ l

−l
vq1

ε dx − kr1v
r1−1
ε )]w ≤ 0.

By vετ (±l, τ) = 0 and (H4)′, we conclude that

w(x, 0) ≤ 0, w(±l, τ) = −avp1
ε (±l, τ)

∫ l

−l
vq1

ε dx + kvr1
ε (±l, τ) = 0.

It follows that w ≤ 0. That is to say vxx ≤ 0(ε → 0).

Proposition 4.1 Suppose that v0(x) satisfies (H1)′-(H4)′, p1+2m1 < 1. Then
the solution v(x, τ) of (2.1) blows up globally.

Proof. Let x0 ∈ (−l, l) be a blow-up point. Namely, there exists a sequence
{xn, τn}, such that

τn → T1
∗, xn → x0, and lim

n→∞ v(xn, τn) = +∞.

It is obvious that for any point y ∈ (x0, l) there exists μ and 0 < μ < 1 such
that y = (1 − μ)l + μx0. Defining the sequence yn = (1− μ)l + μxn, it follows
that

lim
n→∞ yn = y.

By Lemma 4.1 we have

v(yn, τn) = v[(1 − μ)l + μxn, τn] ≥ (1 − μ)v(l, τn) + μv(xn, τn),

which means y is a blow-up point. Similarly we may prove that any x ∈ (−l, x0)
is a blow-up point too. That is to say, v blows up globally in (−l, l).

The proof of Theorem 1.3 For problem(1.1), letting m1 = m−1
m

, p1 = p
m

,

q1 = q
m

, r1 = r
m

, T ∗ = 1
m

T1
∗
, we can obtain Theorem 1.3.
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