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Abstract

In this paper, we study the stochastic differential equations with
respect to semimartingales and the property of convergence of the Euler-
Maruyama scheme approximations to the exact solutions.
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1 Introduction

In this paper we study the numerical solution of stochastic differential equation:

dY (t) = f(Y (t))dA(t) + g(Y (t))dM(t) 0 ≤ t ≤ T,

Y (0) = y0 ∈ R
n. (1.1)

where f : R
n → R

n and g : R
n → R

n×m are sufficiently smooth for the
existence and uniqueness of the solution. M(t) = (M1(t), . . . , Mm(t)) is an
m-dimensional continuous local martingale with M(0) = 0 and A(t) is a con-
tinuous adapted increasing process with A(0) = 0. Our main objective is to
study strong convergence questions for numerical approximations of Eq. (1.1).
In fact, when A(t) = t and M(t) is a Brownian motion, there exists an ex-
tensive literature in this area, we here only mention Higham, Mao and Stuart
[10], Kloeden and Platen [12], Mao [23], Schurz [26] and the references therein.

Throughout this paper, unless otherwise specified, we let (Ω,F , {Ft}t>0, P )
be a complete probability space with a filtration {Ft}t>0 satisfying the usual
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conditions (i.e., it is increasing and right continuous while F0 contains all P -
null sets). Let | · | denote the Euclidean norm in R

n as well as the matrix trace
norm. If A is a vector or matrix, its transpose is denoted by AT . We will
assume there exist Ft-adapted processes Kij(·), i, j = 1, . . . , m, such that

〈Mi, Mj〉(t) =

∫ t

0

Kij(s)dA(s), t ≥ 0. (1.2)

We shall write K := (Kij)m×m. Let γ and β be positive numbers such that
A(T ) ≤ γ a.s. and ‖K‖ ≤ β. Let Q be open subset subset of R

n. Denote
C2,1(Q × R+; R+) the family of all functions V (x, t) : Q × R+ → R+ which
continuous second partial derivatives in x and first partial derivative in t.
Define an operator L acting on C2,1(Q × R+) functions by

LV (x,A(t)) =
∂V (x,A(t))

∂t
+

n∑
i=1

fi(x)
∂V (x,A(t))

∂xi

+
1

2

n∑
i,j=1

m∑
k,l=1

gik(x)Kkl(t)gjl(x)
∂2V (x,A(t))

∂xi∂xj

In order to prove our results, we need the stochastic integral inequality of the
Gronwall-Bellman type (cf. Mao [21]).

Lemma 1.1 Let ρ be a finite stopping time and γ be a positive constant. Let
(A(t))0≤t≤ρ be a non-decreasing continuous adapted process such that A(0) = 0
and A(ρ) ≤ γ a.s. and let (X(t))0≤t≤ρ be a non-decreasing progressive process.
If

EX(τ) ≤ x0 + E

∫ τ

0

X(s)dA(s) (1.3)

holds for any stopping time τ with 0 ≤ τ ≤ ρ, where x0 is a constant, then we
have

EX(ρ) ≤ x0e
γ. (1.4)

Given a stepsize Δ > 0, we can now define the Euler-Maruyama (EM)
approximate solution to the Eq. (1.1). Given a stepsize Δ > 0, let tk = kΔ for
k ≥ 0. Compute the discrete approximations Xk ≈ Y (tk) by setting X0 = y0

and forming

Xk+1 = Xk + f(Xk)ΔAk + g(Xk)ΔMk, (1.5)
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where ΔAk = A(tk+1) − A(tk) and ΔMk = M(tk+1) − M(tk) . Let

X̄(t) = Xk, for t ∈ [tk, tk+1) (1.6)

and define the continuous EM approximate solution

X(t) = X0 +

∫ t

0

f(X̄(s))dA(s) +

∫ t

0

g(X̄(s))dM(s). (1.7)

Note that X(tk) = X̄(tk) = Xk, that is X(t) and X̄(t) coincide with the
discrete solution at the gridpoints. Let us now present a lemma for future use.

Lemma 1.2 Assume that f and g satisfy the linear growth condition:

(LG) There is a constant h > 0 such that

|f(x)| ∨ |g(x)| ≤ h(1 + |x|) for ∀x ∈ R
n.

Then for any p ≥ 2 there is a constant K, which is dependent only on p, T, h, y0

but independent of Δ, such that the exact solution and the EM approximate
solution to the Eq. (1.1) have the property that

E

[
sup

0≤t≤T
|Y (t)|p

]
∨ E

[
sup

0≤t≤T
|X(t)|p

]
≤ K. (1.8)

Proof. It follows from (1.7) and Hölder inequality ( cf. Hardy, Littlewood
and Polya [9]) that

|X(t)|p ≤3p−1

[
|y0|p + |

∫ t

0

f(X̄(s))dA(s)|p + |
∫ t

0

g(X̄(s))dM(s)|p
]

≤3p−1

[
|y0|p + T p−1

∫ t

0

|f(X̄(s))|pdA(s) + |
∫ t

0

g(X̄(s))dM(s)|p
]

.

This implies that for any 0 ≤ t1 ≤ T ,

E

[
sup

0≤t≤t1

|X(t)|p
]
≤ 3p−1

[
|y0|p + T p−1

∫ t1

0

E|f(X̄(s))|pdA(s)

+ E
[

sup
0≤t≤t1

|
∫ t

0

g(X̄(s))dM(s)|p]]. (1.9)

By the Burkholder-Davis-Gundy inequality ( cf. Daniel and Marc [3] ) and
the Hölder inequality we compute that

E
[

sup
0≤t≤t1

|
∫ t

0

g(X̄(s))dM(s)|p] ≤ CpE
[ ∫ t1

0

|g(X̄(s))|2d〈M, M〉(s)
]p/2

(1.10)

≤ CpT
p/2−1E

∫ t1

0

‖K(s)‖|g(X̄(s))|pdA(s) ≤ CpT
p/2−1βE

∫ t1

0

|g(X̄(s))|pdA(s),

(1.11)
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where Cp is a constant. Substituting this into (1.9) and then using the linear
growth condition (LG) we obtain

E

[
sup

0≤t≤t1

|X(t)|p
]
≤3p−1

[
|y0|p + 2p−1hp(T p−1 + βT p/2−1)E

∫ t1

0

(1 + |X̄(s)|p)ds

≤K1 + K1

∫ t1

0

E

[
sup

0≤t≤s
|X(r)|p

]
dA(s), (1.12)

where K1 = K1(p, T, h, y0) is a constant independent of Δ. Applying Lemma
1.1 to (1.12) yields

E

[
sup

0≤t≤T
|X(t)|p

]
≤ K1e

γK1 := K.

Similarly, we can show that

E

[
sup

0≤t≤T
|Y (t)|p

]
≤ K.

So the required assertion follows. �

2 Convergence with the Global Lipschitz Con-

dition

In this section we shall show the strong convergence of the EM approximate
solution to the exact solution under the following global Lipschitz condition:

(GL) There is a constant L > 0 such that

|f(x) − f(y)| ∨ |g(x) − g(y)| ≤ L|x − y|

for all x, y ∈ R
n.

Note from this global Lipschitz condition we have

|f(x)| ∨ |g(x)| ≤ h(1 + |x|) (2.1)

with h = L ∨ |f(0)| ∨ |g(0)|. In other words, the global Lipschitz condition
(GL) implies the linear growth condition (LG). Lemma 1.2 then shows that
under condition (GL) any pth moments, especially the 2nd moments, of the
exact solution and the EM approximate solution to Eq. (1.1) are finite.
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Theorem 2.1 Under the global Lipschitz condition (GL) and let

κ(ΔA) = max
{
E(ΔA), E(ΔA)2, (E(ΔA)4)1/2

}
.

Then

E

[
sup

0≤t≤T
|X(t) − Y (t)|2

]
≤ Cκ(ΔA) + o(κ(ΔA)), (2.2)

where C is a positive constant independent of Δ.

Proof. By the Hölder inequality and the Doob martingale inequality, it is not
difficult to show that for 0 ≤ t ≤ T ,

E
(

sup
0≤s≤t

|X(s) − Y (s)|2
)
≤2TE

∫ t

0

|f(X̄(s)) − f(Y (s))|2dA(s)

+8E

∫ t

0

|g(X̄(s)) − g(Y (s))|2‖K(s)‖dA(s). (2.3)

Note from (GL) that

E

∫ t

0

|f(X̄(s)) − f(Y (s))|2dA(s) ≤ L2

∫ t

0

E|X̄(s) − Y (s)|2dA(s)

≤ 2L2

[∫ t

0

E|X(s) − Y (s)|2dA(s) +

∫ t

0

E|X̄(s) − X(s)|2dA(s)

]
. (2.4)

By the Burkholder-Davis-Gundy inequality and (1.2) we obtain

E|M(t2) − M(t1)|4 ≤ Cκ(ΔA). (2.5)

For s ∈ [0, t], let ks = [s/Δ], the integer part of s/Δ. It then follows from
(1.7), (2.1) and (2.5) as well as Lemma 1.2 that

E|X̄(s) − X(s)|2 ≤ CE
[
(1 + |Xks|2)(|A(s) − A(ks)|2 + |M(s) − M(tks)|2)

]
≤ CE

[
|A(s) − A(ks)|2 + |M(s) − M(tks)|2

]
+ C(E|Xks|4)

1
2

[
(E|A(s) − A(ks)|4) 1

2 + (E|M(s) − M(ks)|4) 1
2

]
≤ Cκ(ΔA). (2.6)

Putting (2.6) into (2.4) we see that

E
(

sup
0≤s≤t

|X(s) − Y (s)|2
)
≤ C

∫ t

0

E|X(s) − Y (s)|2ds + Cκ(ΔA)

≤ C

∫ t

0

E
(

sup
0≤r≤s

|X(r) − Y (r)|2
)
dA(s) + Cκ(ΔA)

and the required result (2.2) follows from Lemma 1.1. �
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3 Convergence with the Local Lipschitz and

Linear Growth Condition

In the previous section we show the strong convergence of the EM method
of Eq. (1.1) under the global Lipschitz condition. But in many situations,
the coefficients f and g are only locally Lipschitz continuous. It is therefore
useful to establish the strong convergence of the EM method under the local
Lipschitz condition. By the local Lipschitz condition we mean:

(LL) For each R = 1, 2, · · · , there is a constant LR > 0 such that

|f(x) − f(y)| ∨ |g(x) − g(y)| ≤ LR|x − y|

for all those x, y ∈ R
n with |x| ∨ |y| ≤ R.

Theorem 3.1 Under the local Lipschitz condition (LL) and the linear growth
condition (LG), if

lim
Δ→0

E(ΔA)4 = 0, (3.1)

then the EM approximate solution converges to the exact solution of the Eq.
(1.1) in the sense that

lim
Δ→0

E

[
sup

0≤t≤T
|X(t) − Y (t)|2

]
= 0. (3.2)

Proof Fix a p > 2. By Lemma 1.2, there is a positive constant K indepen-
dent of Δ such that

E

[
sup

0≤t≤T
|X(t)|p

]
∨ E

[
sup

0≤t≤T
|Y (t)|p

]
≤ K. (3.3)

For sufficiently large integer R, define the stopping times

τR = inf{t ∈ [0, T ] : |X(t)| ≥ R}, ρR = inf{t ∈ [0, T ] : |Y (t)| ≥ R}, θR = τR ∧ ρR,

where throughout this paper we set inf ∅ = T . Let

e(t) = X(t) − Y (t).

Recall the Young inequality: for r−1 + q−1 = 1 and ∀a, b, δ

ab ≤ δ

r
ar +

1

qδq/r
bq.
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Thus, for any δ > 0,

E

[
sup

0≤t≤T
|e(t)|2

]
=E

[
sup

0≤t≤T
|e(t)|2I{τR>T,ρR>T}

]
+ E

[
sup

0≤t≤T
|e(t)|2I{τR≤T or ρR≤T}

]

≤E

[
sup

0≤t≤T
|e(t ∧ θR)|2I{θR>T}

]
+

2δ

p
E

[
sup

0≤t≤T
|e(t)|p

]

+
1 − 2/p

δ2/(p−2)
P (τR ≤ T or ρR ≤ T ). (3.4)

Now, by (3.3),

P (τR ≤ T ) = E

[
I{τR≤T}

|X(τR)|p
Rp

]
≤ 1

Rp
E

[
sup

0≤t≤T
|X(t)|p

]
≤ K

Rp
.

A similar result can be derived for ρR, so that

P (τR ≤ T or ρR ≤ T ) ≤ 2K

Rp
.

Note also from (3.3) that

E

[
sup

0≤t≤T
|e(t)|p

]
≤ 2p−1

(
E

[
sup

0≤t≤T
|X(t)|p

]
+ E

[
sup

0≤t≤T
|Y (t)|p

])
≤ 2pK.

Using these bounds gives

E

[
sup

0≤t≤T
|e(t)|2

]
≤E

[
sup

0≤t≤T
|X(t ∧ θR) − Y (t ∧ θR)|2

]

+
2p+1δK

p
+

2(p − 2)K

pδ2/(p−2)Rp
. (3.5)

In the similar way as Theorem 2.1 was proved, we can show that

E

[
sup

0≤t≤T
|X(t ∧ θR) − y(t ∧ θR)|2

]
≤ CRκ(ΔA) + o(κ(ΔA)), (3.6)

where CR is a constant independent of Δ. Substituting this into (3.5) gives

E

[
sup

0≤t≤T
|e(t)|2

]
≤ CRκ(ΔA) +

2p+1δK

p
+

2(p − 2)K

pδ2/(p−2)Rp
. (3.7)

Now, given any ε > 0, we can choose δ so that

2p+1δK

p
<

ε

3
,
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then choose R sufficiently large for

2(p − 2)K

pδ2/(p−2)Rp
<

ε

3
,

and finally choose Δ sufficiently small for

CRκ(ΔA)a <
ε

3
,

so that, in (3.7),

E

[
sup

0≤t≤T
|e(t)|2

]
< ε

as required. �

We observe that the proof of Theorem 3.1 uses only the local Lipschitz
condition (LL), (3.1) and the bounded pth moment property (3.3), namely

(BM) For some p > 2, there is a positive constant K independent of Δ such
that

E

[
sup

0≤t≤T
|X(t)|p

]
∨ E

[
sup

0≤t≤T
|Y (t)|p

]
≤ K.

So the following general statement holds.

Theorem 3.2 Under the local Lipschitz condition (LL), (3.1) and the bounded
pth moment condition (BM), the EM approximate solution converges to the
exact solution of the Eq. (1.1) in the sense that

lim
Δ→0

E

[
sup

0≤t≤T
|X(t) − Y (t)|2

]
= 0.

4 Convergence in Probability

Instead let us now concentrate on the the Eq. (1.1) with only the local Lipschitz
condition (LL) but without the linear growth condition (LG) or the bounded
pth moment property (BM). The following theorem describes the convergence
in probability, instead of L2, of the EM solutions to the exact solution under
some additional conditions in terms of Lyapunov-type functions. Let

Vx(x) =

(
∂V (x)

∂x1
, . . . ,

∂V (x)

∂xn

)
, Vxx(x) =

(
∂2V (x)

∂xi∂xj

)
n×n

.

Theorem 4.1 Let the local Lipschitz condition (LL) and (3.1) hold. Assume
that there exists a C2 function V : R

n → R+ satisfying the following three
conditions:
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(i) lim|x|→∞ V (x) = ∞;

(ii) for some h > 0,

LV (x) ∨ Vxg(x) ≤ h(1 + V (x)) ∀(x, i) ∈ R
n × S,

where

LV (x) =

n∑
i=1

fi(x)
∂V (x)

∂xi
+

1

2

n∑
i,j=1

m∑
k,l=1

gik(x)Kklgjl
∂2V (x)

∂xi∂xj
;

(iii) for each R > 0 there exists a positive constant KR such that for all
x, y ∈ R

n with |x| ∨ |y| ≤ R,

|V (x) − V (y)| ∨ |Vx(x) − Vx(y)| ∨ |Vxx(x) − Vxx(y)| ≤ KR|x − y|.

Then

lim
Δ→0

(
sup

0≤t≤T
|X(t) − Y (t)|2

)
= 0 in probability. (4.1)

Proof. We divide the whole proof into three steps.
Step 1. For sufficiently large R, define the stopping time

θ = inf{t ∈ [0, T ] : |Y (t)| ≥ R}.
Applying the generalised Itô formula (cf. Mao [21]) and using condition (ii) to
V (Y (t)) yields

V (Y (t ∧ θ)) = V (y0) +

∫ t∧θ

0

LV (Y (s))dA(s) +

∫ t∧θ

0

Vx(Y (s)g(Y (s))dM(s)

≤ V (y0) + h

∫ t∧θ

0

(1 + V (Y (s)))dA(s) +

∫ t∧θ

0

Vx(Y (s)g(Y (s))dM(s)

By Burkholder-Davis-Gundy inequality and Hölder inequality, we obtain

E

[
sup

0≤t≤t1

V 2(Y (t ∧ θ))
]
≤ [V (y0) + hT ]2 + h2E

(∫ t1∧θ

0

V (Y (s)))dA(s)

)2

+ E

(
sup

0≤t≤t1

|
∫ t∧θ

0

Vx(Y (s)g(Y (s))dM(s)|
)2

≤ [V (y0) + hT ]2 + h2TE

∫ t1∧θ

0

V 2(Y (s)))dA(s)

+ CE

∫ t1∧θ

0

|Vx(Y (s)g(Y (s))|2d〈MM〉s

≤ [V (y0) + 2hT ]2 + h2(T + 2βC)
∫ t1

0

E sup
0≤r≤s

V 2(Y (r ∧ θ)))dA(s)
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Using Lemma 1.1, we obtain

E[V 2(Y (T ∧ θ))] ≤ [V (y0) + 2hT ]2 eh2(T+2βC)γ . (4.2)

Let

vR = inf{V (x) : |x| ≥ R}.

By condition (i), vR → ∞ as R → ∞. Noting that |Y (θ)| = R whenever
θ < T , we derive from (4.2) that

[V (y0) + 2hT ]2 eh2(T+2βC)γ ≥ E[V 2(Y (θ))I{θ<T}]

≥ v2
RP (θ < T ).

That is

P (θ < T ) ≤ eh2(T+2βC)γ

v2
R

[V (y0) + 2hT ]2 . (4.3)

Step 2. For sufficiently large R define the stopping time

ρ = inf{t ∈ [0, T ] : |X(t)| ≥ R}.

Using (1.7) and applying the generalized Itô’s formula to V (X(t)) yields

dV (X(ρ ∧ t)) =
n∑

i=1

gi(X̄(s))
∂V (X(s))

∂xi
dM(s)

+

⎡
⎣ n∑

i=1

fi(X̄(s))
∂V (X(s))

∂xi
+

1
2

n∑
i,j=1

m∑
k,l=1

gik(X̄(s))Kkl(s)gjl(X̄(s))
∂2V (X(s))

∂xi∂xj

⎤
⎦ dA(s)

= LV (X̄(s))dA(s) +
n∑

i=1

gi(X̄(s))
(

∂V (X(s))
∂xi

− ∂V (X̄(s))
∂xi

)
dM(s)

+
n∑

i=1

gi(X̄(s))
∂V (X̄(s))

∂xi
dM(s) +

n∑
i=1

fi(X̄(s))
(

∂V (X(s))
∂xi

− ∂V (X̄(s))
∂xi

)
dA(s)

+
1
2

n∑
i,j=1

m∑
k,l=1

gik(X̄(s))Kkl(s)gjl(X̄(s))
(

∂2V (X(s))
∂xi∂xj

− ∂2V (X̄(s))
∂xi∂xj

)
dA(s).
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Whence on applying condition (iii) we obtain

dV (X(ρ ∧ t))

≤ h(1 + V (X̄(s)))dA(s) +

n∑
i=1

gi(X̄(s))
∂V (X̄(s))

∂xi
dM(s)

+
n∑

i=1

gi(X̄(s))

(
∂V (X(s))

∂xi
− ∂V (X̄(s))

∂xi

)
dM(s)

+

n∑
i=1

fi(X̄(s))

(
∂V (X(s))

∂xi
− ∂V (X̄(s))

∂xi

)
dA(s)

+
1

2

n∑
i,j=1

m∑
k,l=1

gik(X̄(s))Kkl(s)gjl(X̄(s))

(
∂2V (X(s))

∂xi∂xj

− ∂2V (X̄(s))

∂xi∂xj

)
dA(s)

= h(1 + V (X(s)))dA(s) + (V (X̄(s)) − V (X(s)))dA(s)

+

n∑
i=1

gi(X̄(s))
∂V (X̄(s))

∂xi
dM(s) +

n∑
i=1

gi(X̄(s))

(
∂V (X(s))

∂xi
− ∂V (X̄(s))

∂xi

)
dM(s)

+
n∑

i=1

fi(X̄(s))

(
∂V (X(s))

∂xi

− ∂V (X̄(s))

∂xi

)
dA(s)

+
1

2

n∑
i,j=1

m∑
k,l=1

gik(X̄(s))Kkl(s)gjl(X̄(s))

(
∂2V (X(s))

∂xi∂xj
− ∂2V (X̄(s))

∂xi∂xj

)
dA(s).

Integrating from 0 to ρ ∧ t and taking expections gives

1

6
E[ sup

0≤t≤t1

V 2(X(ρ ∧ t))] ≤ [V (y0) + hT ]2 + h2E

(∫ ρ∧t1

0

V (X(s))dA(s)

)2

+ h2E

(∫ ρ∧t

0

|V (X̄(s)) − V (X(s))|dA(s)

)2

+ E

(∫ ρ∧t

0

|Vx(X(s)) − Vx(X̄(s))||f (X̄(s))|dA(s)

)2

+
1

4
E

(∫ ρ∧t

0

|Vxx(X(s)) − Vxx(X̄(s))||g(X̄(s))|2‖K(s)‖dA(s)

)2

+ E

(
sup

0≤t≤t1

|
∫ ρ∧t

0

[Vx(X(s)) − Vx(X̄(s))]g(X̄(s))dM(s)|2
)

+ E

(
sup

0≤t≤t1

|
∫ ρ∧t

0

Vx(X̄(s))g(X̄(s))dM(s)|2
)

. (4.4)



2074 Yongtian Wang and Chenggui Yuan

By Burkholder-Davis-Gundy inequality and Hölder inequality, we obtain

1

6
E[ sup

0≤t≤t1

V 2(X(ρ ∧ t))]

≤ [V (y0) + hT ]2 + h2TE

(∫ ρ∧t1

0

V 2(X(s))dA(s)

)

+ β2TE

(∫ ρ∧t1

0

V 2(X̄(s))dA(s)

)
+ h2TE

(∫ ρ∧t

0

|V (X̄(s)) − V (X(s))|2dA(s)

)

+
1

4
TE

(∫ ρ∧t

0

|Vxx(X(s)) − Vxx(X̄(s))|2|g(X̄(s))|4‖K(s)‖dA(s)

)

+ E

(
|
∫ ρ∧t1

0

[Vx(X(s)) − Vx(X̄(s))]2g2(X̄(s))K(s)dA(s)|
)

By condition (iii) we have

E

∫ ρ∧t

0

|V (X̄(s)) − V (X(s))|2dA(s) ≤ E

∫ ρ∧t

0

K2
R|X̄(s) − X(s)|2dA(s)

We can similarly estimate the other terms on the right-hand side of (4.4) to
get that

E[ sup
0≤t≤t1

V 2(X(ρ ∧ t))] ≤ 6[V (y0) + hT ]2 + 6h2TE

∫ ρ∧t1

0
E sup

0≤r≤s
V 2(X(ρ ∧ r))dA(s)

+ C1(R)
∫ T

0

(
E|X̄(ρ ∧ s) − X(ρ ∧ s)|2

)
dA(s), (4.5)

where C1(R) and the following C2(R), C3(R), · · · are all constants dependent
of R but independent of Δ. But, in the same way as (2.6) was proved, we can
show that

E|X̄(ρ ∧ s) − X(ρ ∧ s)|2 ≤ C2(R)κ(ΔA) ∀s ∈ [0, T ].

Substituting this into (4.5) yields that

E[ sup
0≤t≤t1

V (X(ρ ∧ t), r(ρ ∧ t))] ≤ 6[V (y0) + hT ]2 + C3(R)κ(ΔA)

+ 6h2T

∫ t

0

E sup
0≤r≤s

V 2(X(ρ ∧ r))dA(s).

By the Gronwall inequality,

E[V (X(ρ ∧ T ), r(ρ ∧ T ))] ≤ e6h2Tγ
[
6[V (y0) + hT ]2 + C3(R)κ(ΔA)

]
. (4.6)
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In the way as (4.3) was obtained, we can then show that

P (ρ < T ) ≤ e6h2Tγ

v2
R

[
6[V (y0) + hT ]2 + C3(R)κ(ΔA)

]
. (4.7)

Step 3. Let τ = ρ∧ θ. In the same way as Theorem 2.1 was prove we can
show that

E

[
sup

0≤t≤τ∧T
|X(t) − Y (t)|2

]
≤ C4(R)κ(ΔA). (4.8)

Now, let ε, δ ∈ (0, 1) be arbitrarily small. Set

Ω̄ = {ω : sup
0≤t≤T

|X(t) − Y (t)|2 ≥ δ}

Using (4.8), we compute

δP (Ω̄ ∩ {τ ≥ T}) = δE
[
I{τ≥T}IΩ̄

]
≤ E

[
I{τ≥T} sup

0≤t≤τ∧T
|X(t) − Y (t)|2

]

≤ E

[
sup

0≤t≤τ∧T
|X(t) − Y (t)|2

]
≤ C4(R)κ(ΔA).

This, together with (4.3) and (4.7), yields that

P (Ω̄) ≤ P (Ω̄ ∩ {τ ≥ T}) + P (τ < T )

≤ P (Ω̄ ∩ {τ ≥ T}) + P (θ < T ) + P (ρ < T )

≤ C4(R)

δ
κ(ΔA) +

eh2(T+2βC)γ

v2
R

[V (y0) + hT ]2

+
e6h2Tγ

v2
R

[
6[V (y0) + hT ]2 + C3(R)κ(ΔA)

]
.

Recalling that vR → ∞ as R → ∞, we can choose R sufficiently large for

eh2Tγ[V (y0)+hT ]2

v2
R

[
e2h2βCγ + 6e5h2T

]
<

ε

2
,

and then choose Δ sufficiently small for

C4(R)

δ
κ(ΔA) +

e6h2Tγ

v2
R

C3(R)κ(ΔA) <
ε

2

to obtain

P
(
Ω̄
)

= P

(
sup

0≤t≤T
|X(t) − Y (t)|2 ≥ δ

)
< ε

This proves the assertion (4.1). �
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equations via approximations, Probab. Theory Relat. Fields, 105 (1996),
143-158.

[8] J. K. Hale and S. M. V. Lunel, Introduction to Functional Differential
Equations, Springer-Verlag, 1993.

[9] G.H. Hardy, J.E. Littlewood and G. Polya, Inequalities University Press,
Cambridge, 1952.

[10] D. J. Higham, X. Mao and A. M. Stuart, Strong convergence of numeri-
cal for nonlinear stochastic differential equations, Math Research Report,
Strathclyde Univ., 2001.

[11] R. Z. Khas’minskii, Stochastic Stability of Differential Equations, Sijthoff
and Noordhoff, 1981.

[12] P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential
Equations, Springer-Verlag, 1992.

[13] A. Kohatsu-Higa, and P. Protter, The Euler scheme for SDEs driven by
semimartingales, In stochastic Analysis on Infinite Dimensional Spaces
(H. Kunita and H. H. Kuo, eds) (1994), 141-151. Pitman, Marshield, MA.

[14] V. B. Kolmanoskii and A. Myshkis, Applied Theory of Functional Differ-
ential Equations, Kluwer Academic Publishers, 1992



Convergence of the Euler-Maruyama method 2077

[15] H. J. Kushner, Stochastic Stability and Control, Academic Press, 1967.

[16] G. S. Ladde, and V. Lakshmikantham, Random Differential Inequalities,
Academic Press, 1980.

[17] V. Lakshmikantham, S. Leeda and A. Martynyu, Stability Analysis of
Nonlinear Systems, Academic Press, 1980.

[18] V. Lakshmikantham, V. M. Matrosov and S. Sivasundaram, Vector Lya-
punov Functions and Stability Analysis of Nonlinear Systems, Kluwer
Academic Publishers, 1991.

[19] J. P. Lasalle, Stability theory of ordinary differential equations, J. Differ-
ential Equations 4(1968), 57-65.

[20] R. Sh. Liptser and A. N. Shiryayev, Theory of Martingales, Kluwer Aca-
demic Publishers, 1989.

[21] X. Mao, Stability of Stochastic Differential Equations with Respect to
Semimartingales, Longman Scientific and Technical, 1991.

[22] X. Mao, Exponential Stability of Stochastic Differential Equations, Marcel
Dekker, 1994.

[23] X. Mao, Stochastic Differential Equations and Applications, Horwood,
1997.

[24] S.-E. A. Mohammed, Stochastic Functional Differential Equations, Long-
man, Harlow/New York, 1986.

[25] P. Protter and D. Talay, The Euler scheme for Levy driven stochastic
differential equations, The Annals of Probability, 1(1997), 393-423.

[26] H. Schurz, Stability, Stationarity and Boundedness of some Implicit Nu-
merical Methods for Stochastic Differential Equations and Applications,
Logos Verlag, Berlin, 1997.

Received: January 25, 2007


