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Abstract. In this paper we present the exact solution of reduced wave
equation with a variable coefficient Δu(x) + k2n(x)u(x) = 0 for n(x) = n(r) ,
r = |x| by the solution of a classic Riccati differential equation. By construct-
ing an ”iteration” technique for a differential equation of the form z”=λz we
present not only partial solution of a classical Riccati differential equation but
olso the exact solution of the reduced wave equation with a variable coeffi-
cient.In addition we present a simple criterion for the existance of polynomial
solution of a differential equation of the form z”=λz .Where λ is a function in
C∞.
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1. Introduction

The wave equation is an important partial differential equation that de-
scribed a variety of waves, such as sound waves,light waves and water waves .
It arises in fields such as acoustic, electromagnetics and fluid dynamics.

The propogation of waves in a homogeneous , isotropic medium is mathe-
matically described by the wave equation

ΔV (x, t) − 1

c2
Vtt = 0 (1.1)
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where Δ is the Laplace operator and c denotes the speed of propogation. If
the problems involve time-harmonic waves,i.e.waves field of the form

V (x, t) = u(x)e−iwt (1.2)

where i =
√−1 and w denotes the frequences of waves, then the wave equation

can be reduced to the homogeneous scalar Helmholtz equation

Δu(x) + k2u(x) = 0, k =
w

c
(1.3)

If we consider an inhomogeneous medium in R
3 and if we assume that the

inhomogenity is compactly supported, then the propogation of time-harmonic
acoustic waves in the medium is governed by the equation

Δu(x) + k2n(x)u(x) = 0 (1.4)

where u describes the pressure field, k > 0 is the wave number and n(x)is
the refractive index of the medium. k and n(x) are related to the frequency
w of the wave and to the speed of sound of the medium via k = w

c0
and

n(x) =
(

c0
c(x)

)2

.

Elementary solution of the reduced wave equation for variable index of re-

fraction n , which generalize the well-known solution (point source) u = exp(ikR)
R

where R = (x− x0)
2 + (y − y0)

2 + (z − z0)
2 , ( line source) u = iπH

(1)
0 (kQ)

where Q2 = (x− x0)
2 + (y − y0)

2 and H
(1)
0 is the Hankel function of the first

kind of order zero , for a homogeneous medium ( n = 1) ,are known to be very
few in number. In fact , for layered media [n = n(y)] , only two such solution
have so far been found.These are (i) Pekeris’ solution [6] for a point source in
a medium specified by n = y−1,in which case

u =
2(yy0)

1
2

RR′ exp

[
2i

(
k2 − 1

4

) 1
2

tanh−1

(
R

R′

)]
, (1.5)

with R
′2

= (x− x0)
2 + (y + y0)

2 + (z − z0)
2 ;and (ii) Kormilitsin’s solution

[5] for a line source extending parallel to the z axis in a medium specified by

n = y
1
2 ,in which case

u =

∫ ∞

0

exp

[
ik

(
Q2

2ζ
+ (y + y0)

ζ

4
− ζ3

96

)]
dζ

ζ
. (1.6)

For n2 = 1 Fock [3] and Weinstein [7] have obtained asymtotic solution of
reduced wave equation for many important problems. In [4] R.L.Holford has
discussed the elemantery solution of reduced wave equation in two dimension
for which the refraction index is the form n = (A+Bx++Cy+Dx2 +Exy+
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Fy2)
1
2 . In [1] Daniel J.Arrigo and Fred Hickling have considered the reduced

wave equation with a variable wave speed and its parabolic approxsimation.

2. Formation of exact solution

One important tool for constructing exact solution to a differential (partial
differential) equation is to link its solution to the known solutions of another
differential (partial differential) equation . This tecnique , now commonly
referred to as Darboux transformations. In this paper Darboux transformation
is constructed from the Fundamental solution of scalar Helmholtz equation.

In the rest of this work we assume that n(x) = n(|x|)= n(r) and there exist
a continious function P (r) such that k2n(r) = k2 − P (r).

Lemma 2.1. Let f : R
3 → R\{0} be a continuous function that has first and

second derivatives and satisfies the equation

P (r) = −f
′′(r)
f(r)

+ 2
(f ′(r))2

f 2(r)
− (2k cot kr)

f ′(r)
f(r)

(2.1)

then

u(x) =
sin kr

rf(r)
, r = |x| (2.2)

satisfies the equation (1.4)
Note that in the rest of this paper,for the sake of simplicity we use only f

and P instead of f(r) and P (r).

Proof. Using the chain rule we get for i=1,2,3.

∂u
∂xi

=
[

k cos kr
rf

− sin kr
r3f

− f ′ sin kr
r2f2

]
xi

Moreover,
∂2u
∂x2

i
= cos kr

rf

(
k
r

)− sin kr
rf

(
1
r2 + f ′

rf

)
+

x2
i

r

{
sin kr

rf

(
−k2

r
+ 3

r3 + 3f ′
r2f

− f ′′
rf

+ 2f ′2

rf2

)
+ cos kr

rf

(
−3k

r2 − 2kf ′
rf

)}
Adding, we find

�u =
sin kr

rf

(
−k2 − f ′′

f
+

2f ′2

f 2

)
− cos kr

rf

(
2kf ′

f

)
(2.3)

If we rearrange the second term of the right side of the equation (2.3), we get

�u =
sin kr

rf

(
−k2 − f ′′

f
+

2f ′2

f 2
− (2k cot kr)

f ′

f

)
(2.4)

This completes the proof of the lemma by (2.1) and (2.2).
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To get a solution of the equation (1.4) in the form(2.2) we must solve the
equation (2.1) which is a second order nonlinear ordinary differential equation
with a variable coefficient.In addition the coefficient function cot(kr) may have
some singular points.Thus it seems that to get a solution f from the equation
(2.1) may not be easy.

As an initial simplification,we will choose a constant k such that (2.1) will
have no critical point.

Lemma 2.2. Let φ be a continuous differentiable function,such that φ satisfies
the Riccati differential equation

φ′ + φ2 = P − k2 (2.5)

then

u =
1

r
exp

(∫ r

φ(τ)dτ

)
(2.6)

is the solution of equation (1.4)

Proof. If we multiply by f 2 the equation (2.1) we get

ff ′′ − 2f ′2 + (2k cot kr)ff ′ + Pf 2 = 0 (2.7)

Let ψ is a continuous differentiable function and

f ′ = −fψ (2.8)

then we have

f ′2 = f 2ψ2, ff ′ = −f2ψ, ff ′′ = f 2
(
ψ2 − ψ′) (2.9)

If we use equalities (2.9) in the equation (2.7) we get

ψ′ + ψ2 = −(2k cot kr)ψ + P (2.10)

Again if we consider the change of variable

ψ = φ− k cot kr (2.11)

where φ is a continuous differentiable function , then the equation (2.10) be-
cames a classical Riccati equation in the form φ′+φ2 = P−k2, which completes
the proof of lemma.

Remark 2.3. It is well known that if g(r) �= 0 then a rational solution of the
equation φ′ +φ2 = g is equivalent to an exponential solution exp

(∫
φ(v)dv

)
of

the linear differential equation
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z′′ = g(r)z (2.12)

3. The asymtotic itereation method

Let λ0 ∈ C∞(a, b)and consider the equation

z′′(t) = λ0(t)z(t) (3.1)

For some λ0 function we shall give a new method to obtain the general
solution of (3.1) .This method depends on finding same symmetric structure
by using asymptotic behavior of equation (3.1). Thus for this purpose if we
differentiate (3.1) with respect to t, we find that

z′′′ = λ0z
′ + λ1z (3.2)

where λ1 = λ′0.
If we write second derivative of the equation (3.1), we get

z(4) = λ2z
′ + λ3z (3.3)

where λ2 = λ′0 + λ1 and λ3 = λ2
0 + λ′1.

Thus if we continue in this way ,we get for n ≥ 3

z(n) = λ2n−6z
′ + λ2n−5z (3.4)

where ,for k = 3, 4, ..., n

λ2k−1 = λ0λ2k−4 + λ′2k−3, andλ2k = λ′2k−2 + λ2k−1 (3.5)

Similarly,for the (n + 1) th and (n + 2) th derivatives, we get

z(n+1) = λ2n−4z
′ + λ2n−3z (3.6)

and

z(n+2) = λ2n−2z
′ + λ2n−1z (3.7)

for n = 3, 4, ....
From the ratio of the (n+ 2) th and (n + 1) th derivatives , we get

d

dt

(
ln z(n+1)

)
=
z(n+2)

z(n+1)
=
λ2n−2

(
z′ + λ2n−1

λ2n−2
z
)

λ2n−4

(
z′ + λ2n−3

λ2n−4
z
) (3.8)



2106 A. Misir

We now introduce the ”asymptotic” aspect of the method . If we have for
sufficiently large n ≥ 3

λ2n−1

λ2n−2
=
λ2n−3

λ2n−4
:= β (3.9)

then (3.8) reduces to

d

dt
(ln z(n+1)) =

λ2n−2

λ2n−4
(3.10)

which yields

z(n+1) = c1 exp

(∫ t λ2n−2 (τ)

λ2n−4 (τ)
dτ

)
(3.11)

But in equation (3.11) the integrant function is

λ2n−2

λ2n−4
=
λ′2n−4

λ2n−4
+
λ2n−3

λ2n−4
. (3.12)

Then (3.11) becomes

z(n+1) = c1λ2n−4 exp

(∫ t

β (τ) dτ

)
(3.13)

Substituting (3.13) into (3.6) we obtain the first order differential equation

z′ + βz = c1 exp

(∫ t

β (τ) dτ

)
. (3.14)

Which, in turn, yields the general solution of (3.1) as

z(t) = exp

(
−
∫ t

β (τ) dτ

)[
c1

∫ t

exp(

∫ τ

2β (ζ) dζ)dτ + c2

]
(3.15)

Lemma 3.1. The function β, which is defined by (3.9) must differ from zero.

Proof. If for sufficiently large n ≥ 3 there exist a β such that the equality (3.9)
hold , then λ2n−2λ2n−4 �= 0.If β = 0 then λ2n−1and λ2n−3could be zero and if
λ2n−1 = 0 then λ′2n−1 = 0, similarly λ′2n−3 = 0. İf we use this fact in (3.5) we
get λ0λ2n−4 = 0 .This is a contradiction because λ0 �= 0and λ2n−4 �= 0 .Thus
β �= 0.

If we use above fact (3.1)-(3.15), we have proved the following theorem.

Theorem 3.2. Given λ0 ∈ C∞(a, b), then the differential equation (3.1) has
a general solution (3.15) if for same n ≥ 3
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λ2n−1

λ2n−2

=
λ2n−3

λ2n−4

= β (3.16)

equality holds.Where

λ2k−1 = λ0λ2k−4 + λ′2k−3, andλ2k = λ′2k−2 + λ2k−1fork = 3, 4, ..., n. (3.17)

Example 3.3. Consider a simple Euler’s differential equation

z′′(t) =
2

t2
z(t) (3.18)

Then λ0 = 2
t2
, λ1 = −4

t3
, λ2 = −8

t3
, λ3 = 16

t4
, λ4 = 40

t4
, ....and for n = 3, 4, 5, ...

β =
λ2n−1

λ2n−2
=
λ2n−3

λ2n−4
= −2

t
(3.19)

Thus from Theorem1 the general solution of (3.18) is

z(t) = exp

(
−
∫ t(

−2

τ

)
dτ

)[
c1

∫ t

exp

(∫ τ

2

(
−2

ζ

)
dζ

)
dτ + c2

]
(3.20)

= c1(
−1

3t
) + c2t

2

If we choose c1 = 0,c2 = 1 in the equation (3.20) we get polynomial solution
z(t) = t2 of the equation (3.18).

Now we want to construct a characterization of polynomial solution ,at least
mathematically, of the equation (3.1) .For this purpose multiply (3.6) by λ2n−2

and (3.7) by -(λ2n−4) , and add.We obtain

λ2n−2z
(n+1) − λ2n−4z

(n+2) = Tnz (3.21)

where

Tn = λ2n−2λ2n−3 − λ2n−1λ2n−4 (3.22)

Thus, if equation (3.1) has a polynomial solution z(t) whose degree at most
n we have z(n+1) = z(n+2) = 0. Consequently we conclude that from (3.21) that
Tn = 0. Conversely if Tn = 0 and λ2n−2λ2n−4 �= 0, then from (3.22) we have
λ2n−1

λ2n−2
= λ2n−3

λ2n−4
= β, and , from Theorem 1,we conclude that a solution of (3.1)

is given by

z(t) = exp

(
−
∫ t

β (τ) dτ

)
(3.23)
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If we differentiate (3.23) with respect to t, we find that

z′(t) = −β (t) exp

(
−
∫ t

β (τ) dτ

)
= −λ2n−3

λ2n−4
z (t) (3.24)

thus we have

λ2n−4z
′ + λ2n−3z = 0 (3.25)

If we insert (3.25) in the equation (3.6) , we get z(n+1) = 0, or equivalently,
that z (t) is a polynomial of degree at most n.

Consequently, we have proved the following theorem.

Theorem 3.4. a) Given λ0 ∈ C∞(a, b), if the differential equation (3.1) has
a polynomial solution whose degree at most n then Tn = 0.

b)If Tn = 0 and λ2n−2λ2n−4 �= 0 , then the differential equation (3.1) has a
polynomial solution whosedegree at most n.

Lemma 3.5. Let λ0 ∈ C∞(0, r). If there exist a β such that the equality
(3.16) holds and P (r) = k2 − k2n (r), then

u =
1

r
exp

(
−
∫ r

β(τ)dτ

)
(3.26)

is the solution of (1.4) .

Proof. If there exist a β , which satisfies (3.16) , then a solution of (3.1) is

z = exp

(
−
∫ r

β(τ)dτ

)
(3.27)

Because of the function (3.27) satisfies the equation (3.1) for λ0 = −k2n (r) =
P − k2, we get

β ′ − β2 = P − k2. (3.28)

If we take β = −φ in equation (3.28) then the equation (3.28) becomes
(2.5).This completes the proof of lemma by using the Lemma 2 and Theorem 1
respectively.

Remark 3.6. Consider the differential equation

u′′ (t) +

(
2

t

)
u′ (t) + f (t) u (t) = 0 (3.29)

The substitution u (t) = t−1z (t) gives
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z′′ (t) + f (t) z (t) = 0 (3.30)

which is the equation (3.1) for λ0 = −f (t) .Thus if there exist a β such that
(3.9) holds for λ0 = −f (t), then general solution of the equation (3.29) can be
given by (3.15).

Remark 3.7. In [2] (2004) Guoting Chen and Yujie Ma proved that if the Ric-
cati differential equation φ′ + φ2 = g (r) with g (r) �= 0 has a general rational
solution , then g (r) has the form

g (r) =
m∑

i=1

(
δi

(r−ri)2
+ ηi

r−ri

)
,

in which 4δi = θ2
i −1 where r1, r2, ..., rm be the poles of r and θi is an integer

≥ 2.

4. Conclusion

In this paper first we considered a kind of Darboux transformation to solve
the reduced wave equation with a variable coefficient (in particular , refractive
index of medium is a function of r = |x| ).For this, a solution of Riccati
differential equation gives us an exact solution of the reduced wave equation
with a variable coefficient .Second , we present an asymtotic iteration method
for the differential equation z′′ = λ0z where λ0 ∈ C∞(a, b) which works under

the existance of λ2n−1

λ2n−2
= λ2n−3

λ2n−4
= β for n ≥ 3. So that we show that if there exist

a β for sufficiently large n ≥ 3 then -β is a particular solution of the Riccati
differential equation and an exact solution of the reduced wave equation with
a variable coefficient also obtained with the aid of β.
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