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Abstract 

 
Rectangular plates under uniform load, x = ±a, y = ±b, are considered. 

An exact solution is presented in which each term of the series is 
trigonometric and hyperbolic, and identically satisfies the boundary 

conditions on all four edges. The solution has three terms in which the first 
term corresponds to the case of a strip and the other two terms denote the 
effects of the edges. The method used to obtain the solution is simple and 
straightforward. In order to illustrate the method the numerical values of the 
deflections are calculated and compared with those of the previous papers. It 
is found that there is a reasonable agreement between the results of them 
and those of this paper. 
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1 Introduction 
 
 Thin plates are common structural elements employed in many 
engineering applications and are subject to a wide variety of excitations,  
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including acoustic excitations.  The problem of a rectangular plate clamped 
on four sides and carrying a uniformly distributed load is of great 
importance and many papers have been devoted to this subject. Many 
authors have calculated the deflections of uniformly loaded rectangular 
plates with clamped edges using different methods. Some of them are 
approximate methods. The accuracy of the analytic solutions compiled and 
developed in the literature varies: those for simply supported plates are 
exact, others approximate. For fixed rectangular thin plates no accurate 
results appear to be available.  Approximate solutions were also suggested, 
but these resulted in a notable loss of accuracy [1]. Many authors have 
calculated the deflections of rectangular plates with various supports using 
different methods [2-9]. Some of them are approximate methods. Two main 
methods of approach have been used for obtaining the solution of the 
maximum deflection for fixed thin rectangular plates under uniform load; 
these are the double cosine series and the superposition method as a 
generalization of Hencky's solution [10].  
 
 The problem of the uniformly loaded rectangular plate with fixed at 
all edges has been solved by Hencky and independently by Boobnoff. 
Boobnoff made exact calculations for several aspect ratios of the plate while 
Hencky made refined calculations only for the case of a square plat [3]. 
Hutchinson has used the solution from which was presented in [11] and 
tabulated deflections for uniformly loaded rectangular plates. Obtaining the 
numerical values of deflections for a rectangular plate may be difficult. A 
single cosine series for rectangular fixed plates have been presented in [12, 
13].  
 
 This paper analyses the deflections of a rectangular fixed thin plates 
under uniformly distributed loads. In this paper, a comprehensive method is 
presented for the numerical solution of the fixed rectangular plate problem 
under uniformly distributed loads and boundary conditions. A solution of 
the governing equation in terms of trigonometric and hyperbolic function is 
given. The method is based upon the classical cosine series expansion 
and found to be easier and more effective. By using this method, a 
rectangular plate having four edges fixed and subjected to uniformly 
distributed loading has been modeled. For an isotropic plate with a Poisson 
coefficient 3.0=ν , tables giving the values of the deflections, each with a 
different value of the aspect ratio ab /  are presented. A numerical method 
for dealing uniformly normal loaded rectangular plates is compared to the 
similar numerical techniques used in [5,9] and the results have been 
compared with those in the literature. The results show reasonable 
agreement with the other available results, but with a much simpler and a 
more practical approach. 
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2  Deflections of laterally loaded rectangular plates 
 
 According to the classic theory of plate bending, a small deflection 
is defined as small compared with the plate thickness. The governing 
differential equation for isotropic homogenous thin plates is  
 ( )4 ( , ) ( , )D W x y p x y∇ ⋅ =  (2.1) 

where W is the small deflections of the plate midsurface, ( )224 ∇∇≡∇  
denotes the bi-harmonic operator and 2∇  is Laplacian operator, p  is 
intensity of lateral pressure on the plate and D is the constant flexural 
rigidity terms of the material properties, Young’s modulus of the material E  
and Poisson’s ratio ν (taken equal to 0.3), and the plate thickness, h , 
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The problem of a rectangular plate fixed at four sides with a uniform load is 
considered. Taking the origin of coordinates at the center of the plate and x- 
and y-axes parallel, to the side a and b of the plate, and it is supposed 
throughout the paper that ba ≥ . The boundary conditions for (2.1) are 
obtained by requiring the solution to satisfy two prescribed conditions at 
each boundary point [14]. The boundary conditions are combinations of  

 0 and 0WW
n

∂
= =

∂
 (2.3) 

along all edges. When a boundary point is fixed, W and nW ∂∂ / are taken to 
be zero there. A direct series solution was not obtained for the boundary 
condition of fixed edges. 
 The solution to the homogenous biharmonic equation (2.1), the 
known solution for the simply supported plate with the uniform loading 
giving the deflection function for the strip case is combined with that for a 
solution of deflection function which shows the effects due to the edges 

es WWW += . A method is for efficiently determining a very large number of 
terms in the series. The series is given by 
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where / 2m a bα π= is deflection coefficient. It is seen that ),( yxW given by 
Eq.(2.4) vanishes in the middle of the plate and satisfies Eq.(1). The first 
term gives the deflection function for the strip case in byb ≤≤− . The  
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others show the effects due to the edges. The coefficients mE , mG  and mH in 
Eq.(2.4) must be chosen that the boundary conditions (2.3) are satisfied. 
These coefficients are to be determined from the condition that the slope at 
the boundaries is zero. Substuting Eq.(2.4) in Eq.(2.3), the following system 
of linear equations for determining the coefficients mE , mG and mH are 
obtained. 
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where / 2m a bα π= is deflection coefficient and bam 2/πβ = is moment 
coefficient. Thus, taking 0W = we obtain  

 3 3 5 5
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where mG  is found by expressing the slope at y b= ±  in a cosine series of 
the form 
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Similarly, for zero slope at x a= m  we find mH is obtained in a series of the 
form 
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After the usual procedure of determining the coefficients of mE , mG and mH  a 
Fourier series, the equations : 
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where / 2m a bα π= is deflection coefficient and bam 2/πβ = is moment 
coefficient. 
 
 The numerical calculation of the coefficients completes the solution 
of Eq.(2.1). Values of the deflection at the center point may be determined 
from the known relations in the theory of plates. These equations are solved 
numerically by neglecting all terms higher than a given order, which results 
in a system of simultaneous equations. The formula is valid for most 
commonly used metal materials that have Poission's ratios around 0.3. In  
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fact, the Poisson's ratio has a very limited effect on the displacement and the 
above calculation normally gives a very good approximation for most 
practical cases.  
 
 The increasing usage of flat plates in the construction of panels in 
such steel structure as bridges and decks has called attention to the need for 
more information on the behavior of rectangular plates with uniformly 
distributed loads. The center deflection of rectangular plates with fixed at 
four edges and subject to the action of uniformly distributed loads is an 
important problem that has received considerable attention because of its 
technical importance. The value of the deflection at the point 0=x , 0=y  is 
very important and it is given in the following form 
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 From the boundary condition (2.3), 0mG = for the center deflection of 
the rectangular plate. It is clearly seen that there is no contribution of the 
coefficient mG  on the deflection. The series in this expression converges 
very rapidly, and sufficient accuracy is obtained by taking only the first 
term.  The expansion of the center deflection function of the rectangular 
plate is in a series form and the second term of the series is negligible and 
that by taking only the first term the formula for deflection is obtained. 
When the aspect ratio goes to infinity, the center deflection tends 
to Dqb /00260417.0 4 . This result is in good agreement with [5,9]. 
 
 
3 Numerical example and results 
 
The problem to be considered is a uniformly loaded rectangular plate with 
its edges fixed as in Figure 1. This problem was solved using a variety of 
numerical methods and compared to the exact solutions.  
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Figure 1. A rectangular plate uniformly loaded and fixed at four edges. 
 
 
 The numerical values of the deflections can be calculated if the 
coefficients mE , mG and mH are known for all values of ab /  and can be 
determined by Eqs.(2.11), (2.12) and (2.13). The numerical values of 
coefficients are obtained by a set of linear equations as given in [3]. 
Accuracy of the numerical values of them depends on the number of linear 
equations. Computations of the coefficients mE , mG and mH were also made 
for ab / equal to 1.0, 1.2, 1.4, 1.6, 1.8, 2.0 and ∞ . Using the values of the 
coefficients mE , mG and mH , we proceed to find the maximum deflection in 
the plate under considerations.  
 The deflection at the center is then found from Eq.(2.14) and may be 
reduced to the form 
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In the calculation for the coefficientα , the value of Poisson’s ratio has been 
taken as 3.0=ν . From Eq.(2.15), Table 1 of coefficients for various values 
of ab /  of the sides of the plate was compiled. This table aggress essentially 
with that compiled by Henkcy based on his method of solving Eq.(2.1). 
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Table 1. Deflections for clamped rectangular plates with uniform load 
( 3.0=ν  , b a≥ ) 

ab /  4

(0,0)
/

w
pb D

 Evans 
 4 /pb D  

Taylor & Govindjee 
4 /pb D  

1.0 0.00126725 0.00126 0.00126532 
1.2 0.00172833 0.00172 0.00172487 
1.4 0.00207217 0.00207 0.00206814 
1.6 0.00230399 0.00230 0.00229997 
1.8 0.00244989 0.00245 0.00244616 
2.0 0.00253625 0.00254 0.00253297 
∞  0.00260417 0.00260 0.00260417 

 
It is observed that the results of the presented study are in good agreement 
with others. The results show that about twice the accuracy can be obtained. 
In comparison to the other methods, presented method has the advantage 
that the series representation satisfies the partial differential equation 
exactly. However, it is clearly seen that the method in this paper is simple 
and straightforward.  The results presented in this paper can be compared 
with those of the previous papers.  
 
4 Conclusions  
 
 A method for treating uniformly loading on thin rectangular plates has 
been presented. By using this method, a rectangular plate having four edges 
fixed and subjected to uniformly distributed loading has been modeled, the 
results of calculations for maximum deflection for several ratios of the sides 
of the plate have been computed, and the results have been compared with 
those in the literature. The result shows close agreement with other analysis 
methods. However, it is clearly seen that the method in this paper is simple 
and straightforward.  
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